Publication Library

Publication Library

EarthView - A Large Scale Remote Sensing Dataset for Self-Supervision

Description: This paper presents EarthView, a comprehensive dataset specifically designed for self-supervision on remote sensing data, intended to enhance deep learning applications on Earth monitoring tasks. The dataset spans 15 tera pixels of global remote-sensing data, combining imagery from a diverse range of sources, including NEON, Sentinel, and a novel release of 1m spatial resolution data from Satellogic. Our dataset provides a wide spectrum of image data with varying resolutions, harnessed from different sensors and organized coherently into an accessible HuggingFace dataset in parquet format. This data spans five years, from 2017 to 2022. Accompanying the dataset, we introduce EarthMAE, a tailored Masked Autoencoder, developed to tackle the distinct challenges of remote sensing data. Trained in a self-supervised fashion, EarthMAE effectively processes different data modalities such as hyperspectral, multispectral, topographical data, segmentation maps, and temporal structure. This model helps us show that pre-training on Satellogic data improves performance on downstream tasks. While there is still a gap to fill in MAE for heterogeneous data, we regard this innovative combination of an expansive, diverse dataset and a versatile model adapted for self-supervised learning as a stride forward in deep learning for Earth monitoring.

Created At: 22 January 2025

Updated At: 22 January 2025

International Scientific Report on the Safety of Advanced AI - Interim Report

Description: This is the interim publication of the first International Scientific Report on the Safety of Advanced AI. The report synthesises the scientific understanding of general-purpose AI -- AI that can perform a wide variety of tasks -- with a focus on understanding and managing its risks. A diverse group of 75 AI experts contributed to this report, including an international Expert Advisory Panel nominated by 30 countries, the EU, and the UN. Led by the Chair, these independent experts collectively had full discretion over the report's content.

Created At: 22 January 2025

Updated At: 22 January 2025

Black-Box Access is Insufficient for Rigorous AI Audits

Description: External audits of AI systems are increasingly recognized as a key mechanism for AI governance. The effectiveness of an audit, however, depends on the degree of access granted to auditors. Recent audits of state-of-the-art AI systems have primarily relied on black-box access, in which auditors can only query the system and observe its outputs. However, white-box access to the system's inner workings (e.g., weights, activations, gradients) allows an auditor to perform stronger attacks, more thoroughly interpret models, and conduct fine-tuning. Meanwhile, outside-the-box access to training and deployment information (e.g., methodology, code, documentation, data, deployment details, findings from internal evaluations) allows auditors to scrutinize the development process and design more targeted evaluations. In this paper, we examine the limitations of black-box audits and the advantages of white- and outside-the-box audits. We also discuss technical, physical, and legal safeguards for performing these audits with minimal security risks. Given that different forms of access can lead to very different levels of evaluation, we conclude that (1) transparency regarding the access and methods used by auditors is necessary to properly interpret audit results, and (2) white- and outside-the-box access allow for substantially more scrutiny than black-box access alone.

Created At: 22 January 2025

Updated At: 22 January 2025

How Do AI Companies Fine-Tune Policy - Examining Regulatory Capture in AI Governance

Description: Industry actors in the United States have gained extensive influence in conversations about the regulation of general-purpose artificial intelligence (AI) systems. Although industry participation is an important part of the policy process, it can also cause regulatory capture, whereby industry co-opts regulatory regimes to prioritize private over public welfare. Capture of AI policy by AI developers and deployers could hinder such regulatory goals as ensuring the safety, fairness, beneficence, transparency, or innovation of general-purpose AI systems. In this paper, we first introduce different models of regulatory capture from the social science literature. We then present results from interviews with 17 AI policy experts on what policy outcomes could compose regulatory capture in US AI policy, which AI industry actors are influencing the policy process, and whether and how AI industry actors attempt to achieve outcomes of regulatory capture. Experts were primarily concerned with capture leading to a lack of AI regulation, weak regulation, or regulation that over-emphasizes certain policy goals over others. Experts most commonly identified agenda-setting (15 of 17 interviews), advocacy (13), academic capture (10), information management (9), cultural capture through status (7), and media capture (7) as channels for industry influence. To mitigate these particular forms of industry influence, we recommend systemic changes in developing technical expertise in government and civil society, independent funding streams for the AI ecosystem, increased transparency and ethics requirements, greater civil society access to policy, and various procedural safeguards.

Created At: 22 January 2025

Updated At: 22 January 2025

An FDA for AI - Pitfalls and Plausibility of Approval Regulation for Frontier Artificial Intelligence

Description: Observers and practitioners of artificial intelligence (AI) have proposed an FDA-style licensing regime for the most advanced AI models, or 'frontier' models. In this paper, we explore the applicability of approval regulation -- that is, regulation of a product that combines experimental minima with government licensure conditioned partially or fully upon that experimentation -- to the regulation of frontier AI. There are a number of reasons to believe that approval regulation, simplistically applied, would be inapposite for frontier AI risks. Domains of weak fit include the difficulty of defining the regulated product, the presence of Knightian uncertainty or deep ambiguity about harms from AI, the potentially transmissible nature of risks, and distributed activities among actors involved in the AI lifecycle. We conclude by highlighting the role of policy learning and experimentation in regulatory development, describing how learning from other forms of AI regulation and improvements in evaluation and testing methods can help to overcome some of the challenges we identify.

Created At: 22 January 2025

Updated At: 22 January 2025

First 4 5 6 7 8 9 10 Last