Publication Library

Publication Library

DeepSeek-V3 Technical Report

Description: We present DeepSeek-V3, a strong Mixture-of-Experts (MoE) language model with 671B total parameters with 37B activated for each token (https://github.com/deepseek-ai/DeepSeek-V3). To achieve efficient inference and cost-effective training, DeepSeek-V3 adopts Multi-head Latent Attention (MLA) and DeepSeekMoE architectures, which were thoroughly validated in DeepSeek-V2. Furthermore, DeepSeek-V3 pioneers an auxiliary-loss-free strategy for load balancing and sets a multi-token prediction training objective for stronger performance. We pre-train DeepSeek-V3 on 14.8 trillion diverse and high-quality tokens, followed by Supervised Fine-Tuning and Reinforcement Learning stages to fully harness its capabilities. Comprehensive evaluations reveal that DeepSeek-V3 outperforms other open-source models and achieves performance comparable to leading closed-source models. Despite its excellent performance, DeepSeek-V3 requires only 2.788M H800 GPU hours for its full training. In addition, its training process is remarkably stable. Throughout the entire training process, we did not experience any irrecoverable loss spikes or perform any rollbacks. The model checkpoints are available at this https URL: https://github.com/deepseek-ai/DeepSeek-V3

Created At: 29 January 2025

Updated At: 29 January 2025

Introduction to IoT

Description: The Internet of Things has rapidly transformed the 21st century, enhancing decision-making processes and introducing innovative consumer services such as pay-as-you-use models. The integration of smart devices and automation technologies has revolutionized every aspect of our lives, from health services to the manufacturing industry, and from the agriculture sector to mining. Alongside the positive aspects, it is also essential to recognize the significant safety, security, and trust concerns in this technological landscape. This chapter serves as a comprehensive guide for newcomers interested in the IoT domain, providing a foundation for making future contributions. Specifically, it discusses the overview, historical evolution, key characteristics, advantages, architectures, taxonomy of technologies, and existing applications in major IoT domains. In addressing prevalent issues and challenges in designing and deploying IoT applications, the chapter examines security threats across architectural layers, ethical considerations, user privacy concerns, and trust-related issues. This discussion equips researchers with a solid understanding of diverse IoT aspects, providing a comprehensive understanding of IoT technology along with insights into the extensive potential and impact of this transformative field.

Created At: 29 January 2025

Updated At: 29 January 2025

WIPO TREATY ON INTELLECTUAL PROPERTY, GENETIC RESOURCES AND ASSOCIATED TRADITIONAL KNOWLEDGE 2024

Description: WIPO TREATY ON INTELLECTUAL PROPERTY, GENETIC RESOURCES AND ASSOCIATED TRADITIONAL KNOWLEDGE

Created At: 29 January 2025

Updated At: 29 January 2025

BetaExplainer - A Probabilistic Method to Explain Graph Neural Networks

Description: Graph neural networks (GNNs) are powerful tools for conducting inference on graph data but are often seen as "black boxes" due to difficulty in extracting meaningful subnetworks driving predictive performance. Many interpretable GNN methods exist, but they cannot quantify uncertainty in edge weights and suffer in predictive accuracy when applied to challenging graph structures. In this work, we proposed BetaExplainer which addresses these issues by using a sparsity-inducing prior to mask unimportant edges during model training. To evaluate our approach, we examine various simulated data sets with diverse real-world characteristics. Not only does this implementation provide a notion of edge importance uncertainty, it also improves upon evaluation metrics for challenging datasets compared to state-of-the art explainer methods.

Created At: 26 January 2025

Updated At: 26 January 2025

Comprehensive Insights into Drones - Challenges, and Future Trends

Description: Unmanned Aerial Vehicles (UAVs), commonly known as Drones, are one of 21st century most transformative technologies. Emerging first for military use, advancements in materials, electronics, and software have catapulted drones into multipurpose tools for a wide range of industries. In this paper, we have covered the history, taxonomy, architecture, navigation systems and branched activities for the same. It explores important future trends like autonomous navigation, AI integration, and obstacle avoidance systems, emphasizing how they contribute to improving the efficiency and versatility of drones. It also looks at the major challenges like technical, environmental, economic, regulatory and ethical, that limit the actual take-up of drones, as well as trends that are likely to mitigate these obstacles in the future. This work offers a structured synthesis of existing studies and perspectives that enable insights about how drones will transform agriculture, logistics, healthcare, disaster management, and other areas, while also identifying new opportunities for innovation and development.

Created At: 26 January 2025

Updated At: 26 January 2025

1 2 3 4 5 6 7 Last