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Abstract

Large Language Models (LLMs) show potential for complex reasoning, yet their
capacity for emergent coordination in Multi-Agent Systems (MAS) when operating
under strict constraints—such as limited local perception and communication, char-
acteristic of natural swarms—remains largely unexplored, particularly concerning
the nuances of swarm intelligence. Existing benchmarks often do not fully capture
the unique challenges of decentralized coordination that arise when agents operate
with incomplete spatio-temporal information. To bridge this gap, we introduce
SwarmBench, a novel benchmark designed to systematically evaluate the swarm
intelligence capabilities of LLMs acting as decentralized agents. SwarmBench
features five foundational MAS coordination tasks (Pursuit, Synchronization, For-
aging, Flocking, Transport) within a configurable 2D grid environment, forcing
agents to rely primarily on local sensory input (k × k view) and local communi-
cation. We propose metrics for coordination effectiveness and analyze emergent
group dynamics. Evaluating several leading LLMs (e.g., deepseek-v3, o4-mini)
in a zero-shot setting, we find significant performance variations across tasks,
highlighting the difficulties posed by local information constraints. While some
coordination emerges, results indicate limitations in robust planning and strategy
formation under uncertainty in these decentralized scenarios. Assessing LLMs
under swarm-like conditions is crucial for realizing their potential in future decen-
tralized systems. We release SwarmBench as an open, extensible toolkit—built
upon a customizable and scalable physical system with defined mechanical proper-
ties. It provides environments, prompts, evaluation scripts, and the comprehensive
experimental datasets generated, aiming to foster reproducible research into LLM-
based MAS coordination and the theoretical underpinnings of Embodied MAS. Our
code repository is available at https://github.com/x66ccff/swarmbench.

1 Introduction

Large Language Models (LLMs) have demonstrated remarkable capabilities in language understand-
ing and generation [1], leading to growing interest in deploying them as autonomous agents capable
of perception, tool use, and collaboration [2, 3]. Consequently, research is increasingly investigating
the collaborative potential of LLM-driven agents, particularly in tasks requiring spatial reasoning and
interaction, connecting to broader studies of collective intelligence in artificial and human systems [4].
However, current evaluations predominantly focus on individual agent skills or multi-agent scenarios
characterized by ample communication, global visibility, or predefined organizational structures
[5–7]. Such settings often sidestep the fundamental challenge of achieving coordination when agents
operate under severe, decentralized constraints.
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Inspired by decades of research across biology, physics, and robotics, a critical question remains
largely unexplored in the LLM context: Can effective coordination and collective intelligence
emerge from the decentralized actions of numerous LLM agents operating with strictly limited
perception and communication, akin to natural swarms? This principle forms the bedrock of Swarm
Intelligence, which investigates how complex group behaviors arise from simple, local interactions
[8]. Nature provides compelling examples, from army ants forming living structures [9, 10] and
locusts achieving coordinated marching [11], to microswimmers forming vortices [12]. Seminal
simulations, like Reynolds’ flocking model [13], demonstrated that sophisticated global patterns
can emerge purely from local rules. This paradigm, emphasizing decentralization, local sensing,
and minimal communication, has been successfully applied in Swarm Robotics, where collectives
of simple robots achieve complex tasks like shape formation [14, 15]. Therefore, a key unknown
is whether LLMs, despite their advanced cognitive capabilities, can effectively participate in such
decentralized swarms, bridging individual sophistication and emergent collective action under classic
swarm constraints.

Figure 1: Swarm Intelligence: Natural Inspiration and SwarmBench Tasks. Top row: Examples
of collective behavior in nature driven by local interactions: (a) cooperative wolf pursuit, (b) firefly
synchronization, (c) ant foraging [9, 10], (d) bird flocking [13], and (e) cooperative ant transport.
Bottom row: Corresponding abstract tasks simulated in SwarmBench’s 2D grid environment,
depicting agents (represented by colored squares) facing analogous coordination challenges involving
targets (P), food (F), nests (N), and obstacles (B), constrained by walls (W). Agents rely solely on local
perception and communication, providing a testbed for emergent decentralized coordination.

Existing benchmarks do not adequately address this question rooted in the classical swarm intelligence
paradigm. Some evaluate spatial reasoning fundamentals without multi-agent dynamics [16], while
others test single-agent reasoning in complex tasks [17]. Multi-agent benchmarks often employ
structured games [18], collaborative tasks with rich communication [5, 6, 19], or scenarios where
coordination structures are imposed rather than emerging organically [20]. While valuable, these
approaches often do not center on the core challenge of achieving robust decentralized coordination
despite severe limitations on perception and communication. Consequently, whether LLM collectives
can exhibit complex swarm phenomena—like spontaneous leadership [20], the role of noise/diversity
[21, 22], or information cascades—under such stringent, decentralized conditions is a critical open
question. Existing approaches often bypass the core constraints necessary to observe such organically
emerging complexities, highlighting a gap SwarmBench aims to address.

To fill this gap, we introduce SwarmBench, a benchmark specifically designed to evaluate the
emergent coordination capabilities of LLM agents acting as individuals in a decentralized swarm.
Inspired by benchmarks like SnakeBench [23] and ARC-AGI [24], SwarmBench presents five
fundamental multi-agent coordination challenges—Pursuit, Synchronization, Foraging, Flocking,
and Transport—within a flexible 2D grid world. Critically, agents operate with restricted perception
(a small local view) and minimal, optional local communication, forcing reliance on local cues and
implicit coordination. We propose metrics to quantify task success and efficiency, and the nature of
the emergent collective behavior, including measures related to behavioral diversity.

The SwarmBench framework (Figure 2) was used to conduct extensive zero-shot evaluations of
several prominent LLMs. Our contributions are:
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task.py🚩

logger.py📋

framework.py

agent.py

environment.py🌍

physics.py

python eval.py

Launch SwarmBench class SwarmEnvironment(Environment):
    def reset(self):

...
    def obs(self, agent):

...
    async def act(self, agent, action):

...
    def update(self):

...
    def render(self, name):

...

class Task:
    def __init__(self, seed=42):
        self.seed = seed
        self.rng = Random(seed)
    def reset(self, env):
        ...
    def is_done(self, env):
        ...
    def update(self, env, actions):
        ...
...

class SwarmLogger(Logger):
    def __init__(self, name, 
        meta, log_dir):
        super().__init__(name)
        ...
        self.game_logs = []
        self.agent_logs = []
    ...

class Node:
    def __init__(self, data):
        self.data = data 
        self.detected = False
        self.neighbors = set()
        self.force = 0
        self.forces = None
        self.mass = data.mass 
        self.static = data.static
    ...
class Mesh:
    def __init__(self, pos, shape,
         static, name=''):
        self.pos = pos
        self.shape = shape
        self.name = name
        self.edges = { (-1, 0): [],
            (1, 0): [],
            (0, 1): [],
            (0, -1): []}
        self.node = None
        self.static = static
        self.mass = 0
    ...

class SwarmAgent(Agent):
    def __init__(self, name, brain,
           sys_prompt, memory):
        ...
    async def decision(self, obs):
        ...
    def gen_prompt(self, obs,
msgs):
        ...
        self.prompt = 
        f"""You are Agent {name}
        ...
        """
    def to_action(self, response):
        ...

class SwarmFramework:
    instances = {}
    submission = {}
    ...
    def run_level(self, model, 
        level, num_agents, 
             max_round, width,
     height, seed, view_size):
    ...

SwarmBench

LeaderBoard

SwarmBench

Dataset

SwarmBench

RLVR Pipeline
a

r

Figure 2: Conceptual Architecture of SwarmBench. The SwarmBench framework is designed
for modularity and extensibility in evaluating LLM-based swarm intelligence. An evaluation begins
by launching SwarmBench, which orchestrates the core interactions between the defined task, the
simulation environment, the LLM-powered agents, and a comprehensive logger for data capture.
Snippets from underlying modules illustrate how SwarmBench implements this: defining diverse
coordination tasks, managing the environment and its physics, structuring agent perception and
decision-making logic, providing the overall experimental framework, and logging results. This
architecture enables systematic benchmarking, generates comprehensive Datasets from experiments,
and facilitates the creation of a LeaderBoard for model comparison. The framework is also designed
to readily support future extensions, such as the integration of an RLVR Pipeline.
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• SwarmBench: A novel benchmark grounded in swarm intelligence principles, designed
to assess emergent decentralized coordination in LLM swarms under strict perception and
communication constraints.

• A systematic evaluation of contemporary LLMs on SwarmBench, characterizing their
current abilities and limitations in canonical swarm scenarios.

• An analysis of emergent group dynamics, connecting LLM swarm behavior (e.g., behavioral
variability, failure modes) to established collective intelligence concepts.

• An open-source toolkit, built upon a customizable and scalable physical system with
defined mechanical properties, comprising environments, standardized prompts, evaluation
scripts, and the comprehensive datasets generated, to facilitate reproducible research into
LLM-based swarm intelligence.

Our findings indicate that while LLMs exhibit potential for basic coordination, they struggle signifi-
cantly with long-range planning and robust spatial reasoning under uncertainty when operating under
severe decentralization. SwarmBench provides a dedicated platform to measure progress and guide
future research towards developing LLMs capable of genuine collective intelligence in decentralized
settings. Understanding such capabilities is vital, given the growing focus on collective behavior in
artificial and human systems [25, 26].

2 Related Work

Our research builds upon the foundations of swarm intelligence, multi-agent systems (MAS), and
LLMs. We investigate classical swarm principles using modern LLMs, positioning our work relative
to recent multi-agent evaluation methodologies.

Swarm Intelligence and Self-Organization Swarm intelligence examines how complex, adaptive
group behaviors emerge from local interactions among individuals with relatively simple capabilities,
drawing from natural systems like insect colonies, bird flocks, and microscopic swimmers [8,
13, 12]. Biological examples include army ants constructing living bridges [9, 10] and locusts
transitioning to coherent marching [11]. This natural blueprint inspired swarm robotics, focusing
on coordinating large groups of robots, often with limited individual abilities [27]. Seminal projects
like Kilobots demonstrated collective shape formation by a thousand simple robots using only
local communication [14, 15]. Further advancements include adaptive control hierarchies like
Self-Organizing Neural Systems (SoNS) [28], and specialized simulators like ARGoS [29] and
Kilombo [30]. The functional role of diversity or noise, potentially enhancing coherence [22, 21],
resonates with our exploration. SwarmBench adopts core operational constraints (local sensing,
minimal communication) but substitutes simpler agents with powerful LLMs, to investigate how
swarm intelligence manifests with sophisticated cognitive entities. This focus on physical action
differentiates our work from data processing approaches like Swarm Learning [31].

LLM as Agents in Multi-Agent Systems Utilizing LLMs as the decision-making core for au-
tonomous agents is a rapidly growing field [2, 32]. LLMs bring vast world knowledge and reasoning,
enabling more adaptable agent interactions [33]. This extends to MAS, where LLMs might enhance
communication and teamwork [34, 35], reflecting human collective intelligence factors [4]. LLMs are
applied in diverse multi-agent contexts: software development (MetaGPT [35]), simulated scientific
discovery [36, 37], complex social simulations [33, 3, 38, 39], and code generation [40]. Studies on
emergent cooperation and Theory of Mind in LLM teams identify promising capabilities alongside
consistency limitations [41]. Imposed organizational structures can improve efficiency [20]. LLM
integration into multi-robot systems is also surveyed [42]. However, many investigations involve rich
communication channels, predefined roles, or assume reliable information transfer, contrasting with
swarm systems where noise and limited propagation are defining features [43]. A key unaddressed
question is how LLMs perform in large, decentralized groups where coordination emerges from local
perception and constrained signaling. SwarmBench directly targets this.

Benchmarking LLM Coordination and Spatial Reasoning Meaningful evaluation of LLM
agents in MAS requires appropriate benchmarks. Recent efforts use cooperative games: LLM-
Coordination (Hanabi, Overcooked [18]), Collab-Overcooked (natural language in Overcooked [6]),
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and COBLOCK (3D construction [44]). SnakeBench uses competitive games [23] without strict
swarm constraints. These game-based benchmarks often provide full visibility or structured com-
munication distinct from swarm intelligence’s local-information world. Other benchmarks explore
complex tasks: MultiAgentBench (MARBLE) with diverse scenarios, often with roles [5]; Villager-
Bench (Minecraft group tasks [19]); and Generative Agents (emergent social dynamics [33]). These
showcase LLM capabilities but typically rely on higher-level coordination mechanisms. Foundational
reasoning is assessed by SpatialEval (spatial understanding [16]) and BALROG (single-player agentic
reasoning [17]). LLMs reportedly struggle with patterns like multi-agent flocking [45]. SwarmBench
distinguishes itself by concentrating on emergent decentralized coordination within LLM swarms,
adopting classical swarm intelligence constraints (restricted perception/communication). It employs
foundational, nature-inspired tasks and analyzes collective dynamics often overlooked in benchmarks
focused on structured frameworks.

LLM-Driven Coordination in Embodied Simulations Significant research explores LLMs for
coordination within embodied multi-agent systems, often using sophisticated 3D simulators (e.g., AI-
THOR, Habitat) for tasks like household assistance and navigation [46–48]. These systems frequently
address challenges like heterogeneous capabilities, task allocation [49], and integrating perception
with planning [50, 51], alongside developing modular architectures [52], world models [53], or
deadlock resolution [54]. While demonstrating progress, this body of work typically operates with
richer sensory inputs, more sophisticated communication (sometimes low-distortion [43]), or different
architectural assumptions (e.g., centralized components). In contrast, SwarmBench specifically
isolates and evaluates the emergence of fundamental swarm intelligence driven by minimal local
interactions under highly constrained, decentralized conditions, reflecting classical swarm intelligence
principles. By focusing on these aspects in a simplified 2D grid world, SwarmBench provides a
complementary evaluation focused on raw emergent coordination potential from local constraints.

3 SwarmBench

To evaluate the capacity of Large Language Models (LLMs) for emergent decentralized coordination
under constraints typical of swarm intelligence, we introduce SwarmBench. This benchmark provides
a suite of multi-agent tasks within a configurable 2D grid-world environment, coupled with standard-
ized protocols for evaluating LLM-driven agents. SwarmBench focuses on scenarios where agents
possess only limited local perception and rely on local communication capabilities, necessitating
the emergence of collective strategies from decentralized interactions rather than global planning or
explicit centralized control. Further details on the environment, agent capabilities, and evaluation
protocol are provided in Appendix B.

3.1 Environments

SwarmBench utilizes a simulation environment based on a 2D grid world, a design choice aligned
with foundational AI benchmarking (e.g., SnakeBench [23], ARC-AGI [24]) to facilitate focused
investigation of core coordination dynamics. This environment is a customizable physical system with
explicitly modeled mechanical interactions (detailed in Appendix A). The benchmark includes five
core multi-agent coordination tasks: Pursuit, Synchronization, Foraging, Flocking, and Transport.
These tasks, visualized in Figure 1 and detailed in Appendix B, probe different facets of emergent
swarm behavior. The environment framework is extensible and supports procedural generation of
instances to ensure robust evaluation.

3.2 Observations, Actions, and Communication

Agents operate with restricted perception, primarily an egocentric k × k grid view, and can engage in
optional local, anonymous message passing. Based on their local observation (which includes the
grid view, self-status, and received messages), agents decide on a primary action (e.g., movement,
task-specific) and an optional message. This setup compels reliance on local cues and implicit coordi-
nation. Specifics of the observation packet, action space, physics of movement, and communication
mechanics are elaborated in Appendix B, with the agent prompt structure in Appendix C.
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3.3 Evaluation Setting and Models

We employ a zero-shot evaluation protocol where each agent is controlled by an independent, stateless
LLM instance. Persistence of memory is managed through the prompt. SwarmBench is model-
agnostic; our experiments (Section 4) utilize several contemporary LLMs without task-specific
fine-tuning. The detailed evaluation methodology is described in Appendix B.

3.4 Evaluation Metrics for Group Dynamics

To quantitatively analyze emergent collective behaviors, we compute metrics based on agent positions
and actions, capturing aspects like behavioral diversity and movement coordination. These metrics,
detailed in Appendix E, facilitate the analysis of emergent strategies and performance.

4 Results
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Figure 3: Overview of LLM Performance on SwarmBench Tasks. Average scores achieved by
different LLMs across the five core tasks (Pursuit, Synchronization, Foraging, Flocking,
Transport). Bars represent the mean score over 5 simulation runs. Performance varies significantly
depending on the model and the specific coordination challenge. Detailed scores and standard
deviations are provided in Table S.1 in Appendix F

.

We evaluated thirteen contemporary LLMs (Fig. 3) on the five core SwarmBench tasks (Pursuit,
Synchronization, Foraging, Flocking, Transport) under the zero-shot protocol. Agents oper-
ated with a 5× 5 local view (k = 5), making decisions based on this restricted perception and the
potential for local communication via the MSG action (as detailed in Section B.2). Performance, aver-
aged over 5 simulation runs per model per task, reveals significant variation based on both the model
and the specific coordination challenge, highlighting the difficulty of decentralized coordination
under strict local constraints.

4.1 Task Performance Comparison

Figure 3 visually summarizes the average task scores achieved by the evaluated LLMs across
the five core SwarmBench challenges: Pursuit, Synchronization, Foraging, Flocking, and
Transport. The results reveal significant performance variability, contingent on both the specific
LLM and the nature of the coordination task.
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Overall trends indicate that tasks presented varying levels of difficulty, with Flocking generally
yielding the highest scores across models, while Synchronization showed greater divergence
in performance. Model strengths also differed considerably; for instance, gemini-2.0-flash
and o4-mini demonstrated relative strength in spatial tasks like Pursuit and Foraging, whereas
claude-3.7-sonnet excelled specifically in Synchronization. Notably, no single model dom-
inated all tasks, and several models (deepseek-r1, claude-3.5-haiku) struggled significantly
across the board in this zero-shot setting, underscoring the inherent difficulty of these swarm coordi-
nation problems. Figure 4 further illustrates the score progression dynamics over time.

These results emphasize that LLM coordination ability under swarm-like constraints is highly task-
dependent and relies heavily on emergent strategies formed from local information. The observed
variability points to diverse capabilities and limitations among current models when faced with
decentralized coordination challenges. For detailed numerical results, including mean scores and
standard deviations over the 5 simulation runs per model and task, please refer to Table S.1 in
Appendix F.
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Figure 4: LLM Score Progression on SwarmBench Tasks Over Time. Average task score
accumulation over 100 simulation rounds for different LLMs across the five core tasks (Pursuit,
Synchronization, Foraging, Flocking, Transport). Lines represent the mean score trajectory,
and shaded areas indicate the standard deviation across 5 simulation runs. This illustrates the
dynamics of performance development during each task.

4.2 Analysis of Emergent Group Dynamics and Communication Correlates

To understand the behavioral underpinnings of performance across all tasks, we conducted two main
analyses on the simulation data.

First, we performed a primary analysis focusing on the correlation between physical group dynamics
metrics (defined in Section 3.4 and detailed in Appendix E) and the final task scores, aggregating
data from all 325 simulation runs. This analysis aimed to identify general principles of effective
swarm coordination emerging from agents’ physical actions and local observations. The detailed
results of this dynamics analysis are presented in Appendix H. Key findings (Table S.2) indicate that
higher scores are significantly correlated with behavioral variability (e.g., std_action_entropy,
r = 0.300; std_dominant_action_prop, r = 0.274) and efficiency (e.g., prop_stay_actions,
r = 0.297). Conversely, excessive movement (prop_move_actions, r = −0.222) and persistent
alignment (avg_polarization_index, r = −0.241) are negatively correlated with performance.
Visualizations are provided (Figures S.8, S.9 in Appendix H), and a linear regression model based
solely on these dynamics features explains approximately 24.5% of score variance (Table S.3 in
Appendix H), emphasizing the primary role of emergent physical coordination.

Second, to investigate the potential contribution of explicit communication, we conducted a supple-
mentary analysis focused on messages generated by agents via the MSG action. We quantified basic
communication patterns (frequency, length) and assessed semantic properties using standard NLP
techniques (methodology detailed in Appendix G). Correlating these communication-related metrics
with task scores revealed weaker relationships than observed for physical dynamics (detailed results
in Appendix I). The statistically significant findings from this sampled analysis were:

• Message Length: A weak positive correlation between the average length of non-empty
messages per run (avg_non_empty_msg_length_run) and score (r ≈ 0.19, p < 0.001).
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• Semantic Stability: A weak negative correlation between the variability (standard deviation)
of semantic similarity among messages within a run (std_similarity_run) and score
(r ≈ −0.17, p < 0.01).

Message frequency and average semantic similarity did not show significant correlations in this
supplementary analysis (see Appendix I). These findings suggest that while physical dynamics
predominantly drive performance, characteristics of the communication itself—specifically, message
length and semantic consistency—may exert a minor influence.

4.3 Visualization of Emergent Behaviors

Visual examples of agent trajectories and interactions for each core task are provided in Appendix D
(Figures S.2 through S.6). These visualizations illustrate the challenges faced by agents, such as
forming effective containment in Pursuit, achieving synchrony in Synchronization, navigating
efficiently in Foraging, maintaining cohesion in Flocking, and coordinating pushes in Transport.
They also qualitatively reveal differences in strategies and success levels across different models and
runs, complementing the quantitative analysis.

4.4 Analysis of Failure Modes

Qualitative observation of simulation runs, particularly those resulting in low scores (see Appendix F
for score distributions and Appendix D for visual examples), reveals common failure patterns. In tasks
like Pursuit and Transport, agents often struggle with sustained coordination; initial promising
formations may dissolve due to individual agents making suboptimal local decisions or failing to
interpret implicit cues from neighbours. Cascading failures, where one agent’s poor move disrupts
others, were observed. In Foraging, agents sometimes exhibited inefficient exploration or got stuck
in loops. The difficulty in robust planning under uncertainty, stemming from the limited local view,
appears to be a major factor. These failures are also reflected in the dynamics analysis (Appendix
H), where high negative correlations with score were found for metrics indicating disorganised or
excessive movement (e.g., prop_move_actions).

5 Discussion

Our SwarmBench evaluations offer key insights into LLM-driven decentralized coordination. The pri-
mary analysis (Appendix H) reveals that emergent physical group dynamics—particularly behavioral
flexibility (e.g., std_action_entropy) and efficiency (e.g., prop_stay_actions)—are significant
drivers of performance, collectively explaining approximately 24.5% of score variance. In contrast,
while our supplementary communication analysis (Appendices G, I) suggests that characteristics
like message length and semantic consistency have a statistically significant, albeit weaker, positive
correlation with outcomes, a substantial portion of performance variation remains. This indicates that
factors intrinsic to the LLMs themselves—such as differences in their pre-trained reasoning capabili-
ties, their proficiency in spatial understanding derived from textual inputs, or their interpretation of
the task prompts (Appendix C)—are highly influential yet not fully captured by our current set of
group dynamics metrics.

The evaluated LLMs, operating zero-shot under these strict local constraints, appear to compensate
for what might be underdeveloped or inefficient explicit communication strategies by relying more
heavily on adaptive physical behaviors and implicit coordination cues. This approach differs notably
from many natural swarm systems, which often achieve robust coordination through efficient, low-
distortion signaling pathways [43]. The difficulties LLM swarms face in maintaining sustained
collective alignment and robust planning under uncertainty likely stem from challenges in spatial
reasoning and effective conflict resolution when information is severely limited.

Furthermore, the sensitivity analysis (Appendix J) highlights that performance is non-trivially depen-
dent on environmental parameters like agent density (N ) and perception range (k). This underscores
the challenge of developing LLM agents that are not only capable of coordination but are also robustly
adaptable to varying information availability and group dynamic conditions. Understanding and
overcoming these limitations are crucial for harnessing the full potential of LLMs in decentralized,
multi-agent systems.
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6 Conclusion

In this work, we introduced SwarmBench, a novel benchmark specifically designed to assess the emer-
gent decentralized coordination capabilities of Large Language Models operating under conditions
characteristic of swarm intelligence. Our evaluations reveal that while contemporary LLMs demon-
strate foundational abilities for basic coordination within SwarmBench tasks, they face significant
challenges in achieving the sophisticated and robust collective behaviors observed in natural systems.
Particularly, their emergent collective strategies, especially concerning information propagation and
resilience to noise under strict decentralization, do not yet mirror the highly efficient, low-distortion
signaling and coordinated action typical of, for instance, bird flocks [43].

This observed gap between individual LLM sophistication and emergent collective intelligence under
decentralized constraints highlights a critical direction for future research. Developing LLM-based
systems that can more effectively bridge this divide is paramount. SwarmBench offers a systematic
platform to measure progress in this domain, guiding the development of LLMs towards more
robust, adaptive, and genuinely collective behavior. Such capabilities will be increasingly vital as AI
systems become more deeply integrated into complex, real-world contexts requiring decentralized
coordination, from autonomous robotic swarms to distributed computational networks.

7 Limitations

It is important to acknowledge the scope defined by SwarmBench’s current design. The adoption of
a 2D grid world—though the SwarmBench engine is a customizable physical system with defined
mechanics (Appendix A)—is a deliberate choice aligning with foundational AI benchmarks [23, 24].
This facilitates focused investigation of core coordination dynamics but necessarily abstracts from
the complexities of continuous 3D spaces relevant to physical swarm robotics. Our primary focus on
zero-shot evaluation provides a crucial baseline for LLMs’ intrinsic abilities but defers exploration of
adaptive learning mechanisms. The sensitivity analysis (Appendix J) indicates that results can vary
with parameters like agent count (N ) and field of view (k), implying that findings are contingent on
specific configurations. Furthermore, our communication analysis employed a particular Sentence-
BERT model; a broader suite of NLP techniques might yield additional insights. These design
choices establish clear boundaries, enabling SwarmBench to serve as a foundational platform for
systematically dissecting emergent coordination under the specific, well-defined constraints central
to classical swarm intelligence.

8 Future Work

Building on SwarmBench’s framework and our initial findings, future work will focus on several key
areas. These include exploring agent adaptation through learning mechanisms like reinforcement
learning or fine-tuning, potentially integrating an RLVR Pipeline (e.g., [55–57]), and extending the
benchmark with 3D environments, more complex physics, and novel tasks. Deeper investigations
into inter-agent communication—analyzing diverse protocols, studying learned messaging, and
employing broader NLP methods—are planned. Additionally, developing novel agent architectures
and prompting strategies (cf. Appendix C) to enhance decentralized reasoning under constraint,
alongside theoretical models for LLM-based swarms, will be crucial for advancing the field.

9 Broader Impacts

As research into decentralized AI systems like LLM-driven swarms progresses, spurred by tools
such as SwarmBench, it is imperative to proactively consider the broader societal implications. The
enhanced capabilities under development could, if deployed without robust ethical guidelines and
safeguards, be misused for purposes such as automated surveillance, sophisticated disinformation
campaigns, or the disruption of critical infrastructure. Consequently, technical advancements must
be paralleled by dedicated research into mechanisms for controllability, transparency in agent and
swarm behavior, and the steadfast alignment of these complex AI systems with human values and
societal norms to ensure their responsible development and deployment.
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A Physics Simulation Details

The SwarmBench simulation employs a sophisticated discrete physics engine to govern interactions
between agents and objects within the 2D grid world. This engine is designed to resolve com-
plex multi-body pushing scenarios, ensuring that collective actions, such as those required in the
Transport task, are subject to consistent and non-trivial physical laws.

A.1 Core Physical Entities and Properties

Two primary constructs define physical entities:

• Mesh: Represents a discrete physical object on the grid. Each Mesh has:
– pos: Its global top-left coordinate (i, j).
– shape: A 2D array defining its footprint (e.g., a 1× 1 square for an agent, or a 1× 4

rectangle for a large obstacle).
– static: A boolean indicating if the object is immovable (e.g., walls ‘W’).
– mass (m): Resistance to motion, calculated as m = ⌊

√
area⌋, where area is the number

of non-empty cells in its shape. For a standard 1× 1 agent, area is 1, thus mass m = 1.
• Node: A computational representation used during physics resolution. A Node can repre-

sent a single Mesh or, crucially, an aggregate of Meshes that form a Strongly Connected
Component (SCC) in the interaction graph (see below). Each Node aggregates:

– Total mass and static status of the Mesh(es) it represents.
– Net external force applied to it by agents or other Nodes.

Agents are a specific type of Mesh with mass m = 1. When an agent performs a movement action
(e.g., UP, RIGHT), it attempts to apply a directed force, typically of magnitude F = 2, to an adjacent
entity or into empty space.

A.2 Interaction Resolution via SCCs and ILP

The simulation resolves all potential movements and pushes within a single time step through a
multi-stage process:

1. Contact Graph Construction: The engine identifies all Mesh objects that are adjacent and
could potentially exert force on one another based on intended agent actions or ongoing
pushes. This forms a directed graph where an edge v → u indicates that Mesh v could
potentially push Mesh u.

2. Strongly Connected Component (SCC) Reduction: Tarjan’s algorithm is applied to
the contact graph to identify all SCCs. An SCC represents a group of Meshes that are
mutually pushing each other or form a rigid cluster that must move as one unit (or not at
all). Each SCC is collapsed into a single aggregate Node. Meshes not part of any cycle
become individual Nodes. This process transforms the potentially cyclic contact graph into
a Directed Acyclic Graph (DAG) of Nodes, representing the pathways of force transmission.
The mass and applied forces for an aggregate Node are summed from its constituent Meshes.

3. Integer Linear Program (ILP) Formulation and Solution: The core of the physics
resolution is an ILP problem formulated and solved using the PuLP library.

• Variables: Binary variables xv indicate if Node v moves; continuous variables represent
net forces on nodes and forces transmitted between connected nodes in the DAG.

• Objective: Maximize
∑

xv — i.e., maximize the number of (aggregate) Nodes that
are successfully moved.

• Key Constraints:
– Movement Condition: A Node v can only move (xv = 1) if the total net force Fnet,v

acting on it in the direction of potential movement is greater than or equal to its
total mass mv (i.e., Fnet,v ≥ mv).

– Force Transmission: Force is transmitted along the DAG. A Node v can only exert
force on its children in the DAG if it itself moves (xv = 1) and has sufficient
"leftover" force (Fnet,v −mv).
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– Static Objects: Nodes marked as static (e.g., containing walls) are constrained
such that xv = 0.

– Grid Boundaries: Movement is implicitly constrained by grid boundaries and
collisions with other static objects, handled by the graph construction.

The ILP solver finds the optimal set of Nodes that can move simultaneously while satisfying
all physical constraints.

4. Position Update: The global positions of the Meshes belonging to the Nodes determined to
be movable by the ILP solution are updated on the simulation grid.

This physics model, particularly the SCC reduction and ILP-based resolution, allows SwarmBench to
simulate complex, emergent physical interactions that require genuine coordination, such as multiple
agents cooperatively pushing a heavy object that no single agent could move alone.

Agent

Agent

AgentAgent

Object

Object

Object

F = 2

F = 2

F = 2

Total F ≳ 3

m = 1

m = 2

m = 2

(Moves)

(Moves)

(Moves)

Figure S.1: Illustration of the core physics principle: an applied force (F ) versus object mass (m).
An agent applies a standard force (typically F = 2). An object moves if the net applied force is
greater than or equal to its mass (F ≥ m). Top: A single agent (F = 2) pushes an object of m = 1.
Since 2 ≥ 1, the object moves. Middle: A single agent (F = 2) pushes an object of m = 2. Since
2 ≥ 2, the object moves. Bottom: Two agents cooperatively push. Agent 3b pushes Agent 3a, which
in turn pushes the object. The effective combined force (e.g., Ftotal ≳ 3 after accounting for Agent
3a’s own mass if it also moves) is applied to the object of m = 2. Since Ftotal ≥ 2, the object moves.
The ILP solver handles the precise calculation of force transmission and movement thresholds in
such multi-body scenarios based on the DAG of interactions.
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B SwarmBench System and Protocol Details

This appendix provides a detailed description of the SwarmBench environment, agent capabilities,
and the evaluation protocol used in our experiments, complementing Section 3 of the main text.

B.1 Environment Details

SwarmBench utilizes a simulation environment based on a 2D grid world where multiple agents
(N agents), controlled by LLMs, operate and interact. The adoption of a 2D grid world, while an
abstraction, is a deliberate design choice aligned with foundational AI benchmarking practices (e.g.,
SnakeBench [23] and ARC-AGI [24]). This facilitates a focused investigation of core coordination
dynamics while maintaining tractable complexity for initial explorations. This environment itself
is designed as a customizable and scalable physical system, where mechanical interactions such as
forces and multi-body dynamics (further detailed in Appendix A) are explicitly modeled.

The simulation proceeds in discrete time steps (rounds, t = 1, . . . , T ). In each round, all agents
perceive their local environment (including messages from the previous round) simultaneously and
decide upon their next action and potential message based on the state at the beginning of the
round. Environment updates, including agent movement and object interactions, occur only after
all agents have committed to their actions for that round. Interactions between agents and objects,
particularly pushing and collision resolution, are governed by this discrete physics simulation that
handles complex multi-body dynamics, ensuring that the mechanical properties of the system are
consistently applied.

The benchmark includes several core multi-agent coordination tasks designed to probe different facets
of emergent swarm behavior (visualized in Figure 1 in the main text and detailed with examples in
Appendix D):

• Pursuit: Agents (e.g., ‘0’-‘9’) must collaboratively track and corner a faster-moving prey
(‘P’). Tests coordination for containment, potentially aided by communication.

• Synchronization: Agents aim to synchronize an internal binary state (‘Number’ vs.
‘$Number’) across the swarm and collectively alternate this state via a SWITCH action.
Assesses consensus formation leveraging local cues and communication.

• Foraging: Agents navigate an environment with walls (‘W’) to find a food source (‘F’),
transport it to a nest (‘N’), changing appearance (‘Number’ to ‘$Number’) when carrying.
Evaluates exploration, pathfinding, and potential communication-driven task allocation.

• Flocking: Agents must move as a cohesive group, maintaining alignment and separation
while potentially navigating towards a target or avoiding obstacles. Tests emergent formation
control and coordinated movement.

• Transport: Multiple agents must cooperate to push a large object (‘B’) towards a designated
goal area. Tests coordinated force application and navigation around obstacles.

The environment framework supports additional tasks (e.g., Obstacle Pushing, Shape Formation)
and is extensible. Interactions follow simplified physics rules detailed in Appendix A. Environment
instances, including initial agent positions, object placements, and potentially other environmental
features, are procedurally generated based on a random seed. To ensure robust evaluation and prevent
overfitting to specific scenarios, each simulation run across different models or trials utilizes a distinct
seed. This presents varied initial conditions and environmental layouts, promoting the development
of generalizable coordination strategies.

B.2 Agent Perception, Action, and Communication Details

Consistent with the goal of studying emergent behavior from local information, agents operate with
significantly restricted perception. The primary input is an egocentric k × k grid view (e.g., 5× 5 in
our main experiments) centered on the agent at position xi,t ∈ R2. This view displays local entities
using symbols: the agent itself (‘Y’), other agents (by ID, e.g., ‘1’/‘$1’), walls (‘W’), obstacles
(‘B’), empty space (‘.‘), off-map markers (‘*‘), and task-specific objects (‘P’, ‘N’, ‘F’). The
view includes global coordinate labels.

The full observation packet provided to the LLM includes:
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• The local k × k grid view.
• The agent’s global coordinates xi,t.
• Task-specific status (e.g., carrying_food).
• Messages received from other agents in the previous round (t− 1). Messages are received

only from agents within the sender’s perception radius at time t− 1.
• The task description and current progress indicators (e.g., score).
• A limited history of the agent’s own recent observations and actions (e.g., last memory=5

rounds).

The detailed structure and content of the prompt given to the LLM are provided in Appendix C.

Based on this observation, the agent’s LLM must decide on two outputs for round t:

1. A primary action Ai,t chosen from a set A typically including basic movements (UP, DOWN,
LEFT, RIGHT, STAY). Movement actions correspond to an agent attempting to apply a
directed force (default magnitude = 2). Agents and objects possess inherent weight (referred
to as ’mass’ in the simulation, default agent mass = 1 calculated from a 1x1 size). Movement
or pushing only occurs if the net applied force overcomes the resistance (mass) of the target
object(s), considering potentially complex chain reactions resolved by the physics engine
(see Appendix A). Task-specific actions (e.g., SWITCH, PICKUP, DROP) are also included.

2. A message Mi,t (a string, potentially empty) intended for local broadcast via the MSG action.

The message Mi,t (if non-empty) is broadcast locally and anonymously to agents within the sender’s
perception radius, becoming part of their observation packet in the next round (t+ 1). Messages are
subject to a character limit (e.g., 120 characters). This setup compels reliance on interpreting local
visual cues and utilizing the constrained communication channel for effective coordination.

B.3 Evaluation Protocol Details

We define a standardized protocol focusing on zero-shot LLM evaluation. Each agent i is controlled
by an independent LLM instance. In round t, the agent receives its full observation packet (including
received messages from t− 1), formulates a prompt containing this information (see Appendix C),
and queries the LLM. Each query is stateless regarding the LLM’s internal conversational context;
persistence is managed via the prompt’s explicit inclusion of observation history and received
messages.

The LLM response is parsed to extract the intended primary action Ai,t ∈ A and the message content
Mi,t. An episode ends upon task success criteria being met or reaching a maximum round limit
(max_round).

SwarmBench is model-agnostic. Our experiments (Section 4) utilize several contemporary closed-
source (API-based) and open-source LLMs, evaluated without task-specific fine-tuning to assess their
inherent zero-shot coordination potential derived from pre-training.
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C Prompt Design

The following tcolorbox shows the exact structure and content of the prompt string generated by
the ‘gen_prompt’ function and provided to each LLM agent in SwarmBench at each decision step.
Placeholders within curly braces (e.g., {name}, {task_desc}, {view_str}) are dynamically filled
with actual simulation data during runtime.

SwarmBench Agent Prompt Template

"""You are Agent {name}, operating in a multi-agent environment. Your goal is
to complete the task through exploration and collaboration.

Task description:
{task_desc}

Round: {round_num}

Your recent {self.memory}-step vision (not the entire map):
{view_str}

Your current observation:
{level_obs_str}

Message you received:
{messages_str}

Your action history:
{history_str}

Symbol legend:
- Number: An agent whose id is this number (do not mistake column no. and
line no. as agent id).
- Y: Yourself. Others see you as your id instead of "Y".
- W: Wall.
- B: Pushable obstacle (requires at least 5 agents pushing in the same
direction).
- .: Empty space (you can move to this area).
- *: Area outside the map.
And other symbols given in task description (if any).

Available actions:
1. UP: Move up
2. DOWN: Move down
3. LEFT: Move left
4. RIGHT: Move right
5. STAY: Stay in place
6. MSG: Send a message
And other actions given in task description (if any).

Physics rules:
1. Your own weight is 1, and you can exert a force of up to 2.
2. An object (including yourself) can only be pushed if the total force in
one direction is greater than or equal to its weight.
3. Static objects like W (walls) cannot be pushed; only B can be pushed.
4. Force can be transmitted, but only between directly adjacent objects.
That means, if an agent is applying force in a direction, you can push that
agent from behind to help.
5. Only pushing is allowed - there is no pulling or lateral dragging. In
other words, to push an object to the right, you must be on its left side and
take the RIGHT action to apply force.

Message rules:
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1. A message is a string including things you want to tell other agents.
2. Your message can be received by all agents within your view, and you can
receive messages from all agents within your view.
3. Messages are broadcast-based. The source of a message is anonymous.
4. Write only what’s necessary in your message. Avoid any ambiguity in your
message.
5. Messages is capped to no more than 120 characters, exceeding part will be
replaced by "...".

Other rules:
1. Coordinates are represented as (i, j), where i is the row index and j is
the column index. Your 5x5 vision uses global coordinates, so please use
global coordinates.
2. The direction of increasing i is downward, and increasing j is to the
right.
3. Objects that are completely outside the map (marked with "*") will be
removed.

Please think carefully and choose your next action. You will need to
collaborate with other agents to successfully complete the task.

Your response should include:
1. Analysis of the current situation
2. Your decision and reasoning
3. The message to be left (if any)

End your response clearly with your chosen action: "ACTION: [YOUR_ACTION]"
and/or "MSG: [Your message (no line breaks).]"
"""

Example SwarmBench Prompt (Agent_5, Round 62, Transport Task)

You are Agent Agent_5, operating in a multi-agent environment. Your goal is
to complete the task through exploration and collaboration.

Task description:
The boundary of the map is surrounded by walls (denoted as W), with a gap
leading to the outside of the map (denoted as ’*’). The gap is blocked by an
obstacle (denoted as B).
The goal is to first locate the obstacle (B), then have five robots
simultaneously push it through the exit, and finally escape to the outside
of the map (denoted as ’*’).

Round: 62

Your recent 5-step vision (not the entire map):
Current Step:

1 2 3 4 5
3 1 B B B B
4 9 8 0 11 10
5 . . Y . 7
6 . . . . .
7 . . . . .

1 Steps Before:
1 2 3 4 5

3 1 B B B B
4 . 9 8 0 11
5 . . Y . 7
6 . . . . .
7 . . . . .
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2 Steps Before:
1 2 3 4 5

3 1 B B B B
4 . 9 8 0 11
5 . . Y . 7
6 . . . . .
7 . . . . .

3 Steps Before:
1 2 3 4 5

3 1 B B B B
4 . 9 8 0 11
5 . . Y . 7
6 . . . . .
7 . . . . .

4 Steps Before:
1 2 3 4 5

3 1 B B B B
4 . 9 8 0 11
5 . . Y . 7
6 . . . . .
7 . . . . .

Your current observation:

Message you received:
Message: "At (5,3), moving UP to (4,3) for LEFT push on B at (3,3). Ready
for 5-force."
Message: "Moving to (4,5) to join LEFT push on B at (3,5). Ready for 5-force
push."
Message: "Moving RIGHT to (4,3) then (4,4) for LEFT push on B. Ready to join
force."
Message: "At (4,5) pushing LEFT on B at (3,5). 5-force confirmed. Executing
now."

Your action history:
Round 58: Action: UP, Message: "Moving to (4,3) then (3,4) for LEFT push on
B. Need 4 more at (3,4)/(4,4)."
Round 59: Action: UP, Message: "Moving to (4,3) then (3,4) for LEFT push on
B. Need 4 more at (3,4)/(4,4)."
Round 60: Action: UP, Message: ""Moving to (3,3) for LEFT push on B. Need 1
more at (3,3)/(4,3) to complete 5-force.""
Round 61: Action: UP, Message: ""Moving to (4,3) for LEFT push on B at
(3,3). Ready to join 5-force push.""
Round 62: Action: UP, Message: "At (5,3), moving UP to (4,3) for LEFT push
on B at (3,3). Ready for 5-force."

Symbol legend:
- Number: An agent whose id is this number (do not mistake column no. and
line no. as agent id).
- Y: Yourself. Others see you as your id instead of "Y".
- W: Wall.
- B: Pushable obstacle (requires at least 5 agents pushing in the same
direction).
- .: Empty space (you can move to this area).
- *: Area outside the map.
And other symbols given in task description (if any).
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Available actions:
1. UP: Move up
2. DOWN: Move down
3. LEFT: Move left
4. RIGHT: Move right
5. STAY: Stay in place
6. MSG: Send a message
And other actions given in task description (if any).

Physics rules:
1. Your own weight is 1, and you can exert a force of up to 2.
2. An object (including yourself) can only be pushed if the total force in
one direction is greater than or equal to its weight.
3. Static objects like W (walls) cannot be pushed; only B can be pushed.
4. Force can be transmitted, but only between directly adjacent objects.
That means, if an agent is applying force in a direction, you can push that
agent from behind to help.
5. Only pushing is allowed - there is no pulling or lateral dragging. In
other words, to push an object to the right, you must be on its left side and
take the RIGHT action to apply force.

Message rules:
1. A message is a string including things you want to tell other agents.
2. Your message can be received by all agents within your view, and you can
receive messages from all agents within your view.
3. Messages are broadcast-based. The source of a message is anonymous.
4. Write only what’s necessary in your message. Avoid any ambiguity in your
message.
5. Messages is capped to no more than 120 characters, exceeding part will be
replaced by "...".

Other rules:
1. Coordinates are represented as (i, j), where i is the row index and j is
the column index. Your 5x5 vision uses global coordinates, so please use
global coordinates.
2. The direction of increasing i is downward, and increasing j is to the
right.
3. Objects that are completely outside the map (marked with "*") will be
removed.

Please think carefully and choose your next action. You will need to
collaborate with other agents to successfully complete the task.

Your response should include:
1. Analysis of the current situation
2. Your decision and reasoning
3. The message to be left (if any)

End your response clearly with your chosen action: "ACTION: [YOUR_ACTION]"
and/or "MSG: [Your message (no line breaks).]"
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Example LLM Output (JSON)

{
"response": "### Analysis of the Current Situation:\n1. **Obstacle (B)
Location**: The obstacle B is located at positions (3,2), (3,3), (3,4),
and (3,5). The exit is likely at one of these positions, but the exact
exit (*) is not visible in the current vision. However, based on the
messages, the agents are focusing on pushing B at (3,3) and (3,5) LEFT (
towards column 1).\n2. **Agent Positions**: \n - You (Y) are at (5,3). \
n - Other agents are at (4,3), (4,5), and possibly others not visible in
the current vision. \n - Messages indicate that agents are ready for a

5-force push on B at (3,3) and (3,5).\n3. **Messages**: \n - Agents are
coordinating to push B LEFT at (3,3) and (3,5). \n - A 5-force push is
confirmed for B at (3,5), and agents are moving into position for B at
(3,3).\n4. **Your Role**: You are at (5,3) and can move UP to (4,3) to
join the push on B at (3,3). Alternatively, you could move to (4,5) to
assist with the push on B at (3,5), but the messages suggest the push at
(3,5) is already confirmed with enough agents.\n\n### Decision and
Reasoning:\n- **Primary Goal**: Assist in the 5-force push on B at (3,3).
The messages indicate that agents are ready at (4,3) and (4,4) for this
push. You are at (5,3) and can move UP to (4,3) to join the push.\n- **
Action**: Move UP to (4,3) to align yourself for the LEFT push on B at
(3,3). This will contribute to the 5-force needed to move the obstacle.\n-
**Message**: Confirm your readiness to join the push at (3,3) to ensure

coordination.\n\n### Message:\n\"At (5,3), moving UP to (4,3) for LEFT
push on B at (3,3). Ready for 5-force.\"\n\n### Action:\nACTION: UP \nMSG:
\"At (5,3), moving UP to (4,3) for LEFT push on B at (3,3). Ready for 5-

force.\"",
"action": "UP",
"message": "\"At (5,3), moving UP to (4,3) for LEFT push on B at (3,3).
Ready for 5-force.\""

}
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D Examples

This appendix provides visual examples of the simulation environment for each of the five core
SwarmBench tasks. Each figure shows a snapshot from a simulation run, illustrating agent positions,
environment features, and the overall task objective.

D.1 Pursuit

Global Map
0 1 2 3 4 5 6 7 8 9

0 W W W W W W W W W W
1 W . . 6 . . . . . W
2 W . . . . . . . . W
3 W . . . . . 1 . . W
4 W . . . . 5 7 . . W
5 W . . . . 2 . . . W
6 W . . . . . 4 3 . W
7 W . 10 . . . . 11 . W
8 W P . . 0 . 9 8 . W
9 W W W W W W W W W W

View Agent_0 View Agent_1 View Agent_2 View Agent_3
0 1 2 3 4

0 . . . . 4
1 10 . . . .
2 . . 0 . 9
3 W W W W W
4 * * * * *

0 1 2 3 4
0 . . . . .
1 . . . . .
2 . . 1 . .
3 . 5 7 . .
4 . 2 . . .

0 1 2 3 4
0 . . . 1 .
1 . . 5 7 .
2 . . 2 . .
3 . . . 4 3
4 . . . . 11

0 1 2 3 4
0 5 7 . . W
1 2 . . . W
2 . 4 3 . W
3 . . 11 . W
4 . 9 8 . W

View Agent_4 View Agent_5 View Agent_6 View Agent_7
0 1 2 3 4

0 . 5 7 . .
1 . 2 . . .
2 . . 4 3 .
3 . . . 11 .
4 0 . 9 8 .

0 1 2 3 4
0 . . . . .
1 . . . 1 .
2 . . 5 7 .
3 . . 2 . .
4 . . . 4 3

0 1 2 3 4
0 * * * * *
1 W W W W W
2 . . 6 . .
3 . . . . .
4 . . . . .

0 1 2 3 4
0 . . . . .
1 . . 1 . .
2 . 5 7 . .
3 . 2 . . .
4 . . 4 3 .

View Agent_8 View Agent_9 View Agent_10 View Agent_11
0 1 2 3 4

0 . 4 3 . W
1 . . 11 . W
2 . 9 8 . W
3 W W W W W
4 * * * * *

0 1 2 3 4
0 . . 4 3 .
1 . . . 11 .
2 0 . 9 8 .
3 W W W W W
4 * * * * *

0 1 2 3 4
0 W . . . .
1 W . . . .
2 W . 10 . .
3 W P . . 0
4 W W W W W

0 1 2 3 4
0 2 . . . W
1 . 4 3 . W
2 . . 11 . W
3 . 9 8 . W
4 W W W W W

–- Agent Messages –-
Agent_0: P likely (8,4). Trapped by Y(0) at (8,3), 9 at (8,5), Wall at row
9. Need agent at (7,4) urgently! I STAY at (8,3).**
Agent_1: At (3,6), see 2(5,5), 5(4,5), 7(4,6). No P. Moving UP to (2,6).
Agent_2: At (5,5). Moving DOWN towards reported P near (8,4)/(8,5).
Agent_3: At (6,7), blocked by 4(6,6) \& 11(7,7). Holding. Need path to P @
(8,3).
Agent_4: At (6,6). P reported at (8,3). Moving DOWN to (7,6) to support
cordon.
Agent_5: At (4,4). Heard P near (8,4)/(8,5). Moving RIGHT to (4,5).
Agent_6: At (1,2), no P. Moving RIGHT.
Agent_7: At (4,6). Heard P near (8,4)/(8,5). Moving RIGHT to (4,7).
Agent_8: At (8,7). Blocked by 9(8,6), 11(7,7), W(8,8), W(9,7). Holding
position. STAYING.
Agent_9: Moving LEFT to (8,4) to close gap next to 0(8,3). P likely near
(7,3)/(7,4)/(6,3). Wall at row 9.
Agent_10: P at (8, 1)! Walls W(8,0), S(9,1). I’m Y(10) at (7, 2), moving
LEFT to (7, 1) (North). Need agent E at (8, 2)! Agent 0 m...
Agent_11: P near (8,5)? Trap needs (7,5). 4->(7,5)? 9 STAY at (8,6)? 11
moving LEFT to (7,6).

Figure S.2: Example visualization for the Pursuit task. Agents (0-11) attempt to surround the prey
(P).
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D.2 Synchronization

Global Map
0 1 2 3 4 5 6 7 8 9

0 W W W W W W W W W W
1 W . . . . 11 . . . W
2 W . 8 . . . . 9 . W
3 W 4 . . . 6 . . . W
4 W 1 . . 0 . . 2 . W
5 W . . . . . . . 3 W
6 W . . . 7 . 10 5 . W
7 W . . . . . . . . W
8 W . . . . . . . . W
9 W W W W W W W W W W

View Agent_0 View Agent_1 View Agent_2 View Agent_3
0 1 2 3 4

0 8 . . . .
1 . . . $6 .
2 . . 0 . .
3 . . . . .
4 . . 7 . 10

0 1 2 3 4
0 * W . 8 .
1 * W 4 . .
2 * W 1 . .
3 * W . . .
4 * W . . .

0 1 2 3 4
0 . . $9 . W
1 $6 . . . W
2 . . 2 . W
3 . . . 3 W
4 . 10 5 . W

0 1 2 3 4
0 . . . W *
1 . 2 . W *
2 . . 3 W *
3 10 5 . W *
4 . . . W *

View Agent_4 View Agent_5 View Agent_6 View Agent_7
0 1 2 3 4

0 * W . . .
1 * W . 8 .
2 * W 4 . .
3 * W 1 . .
4 * W . . .

0 1 2 3 4
0 . . 2 . W
1 . . . 3 W
2 . 10 5 . W
3 . . . . W
4 . . . . W

0 1 2 3 4
0 . . $11 . .
1 . . . . $9
2 . . $6 . .
3 . 0 . . 2
4 . . . . .

0 1 2 3 4
0 . . 0 . .
1 . . . . .
2 . . 7 . 10
3 . . . . .
4 . . . . .

View Agent_8 View Agent_9 View Agent_10 View Agent_11
0 1 2 3 4

0 W W W W W
1 W . . . .
2 W . 8 . .
3 W 4 . . .
4 W 1 . . 0

0 1 2 3 4
0 W W W W W
1 $11 . . . W
2 . . $9 . W
3 $6 . . . W
4 . . 2 . W

0 1 2 3 4
0 0 . . 2 .
1 . . . . 3
2 7 . 10 5 .
3 . . . . .
4 . . . . .

0 1 2 3 4
0 * * * * *
1 W W W W W
2 . . $11 . .
3 . . . . $9
4 . . $6 . .

–- Agent Messages –-
Agent_0: 0 ON. Target ALL ON! View: 7,8,10 ON; $6$ OFF. Agent 6 SWITCH ON!
Agent 2 (reported OFF) SWITCH ON! Others/Unknowns HOLD...
Agent_1: Agent 1: ON. Target ALL ON. See 4 ON, 8 ON. Heard 0 ON. Holding
ON. Echoing Agent 4 \& 8: Agent 6, if OFF, please SWITCH ...
Agent_2: 2 ON. Target: ALL ON. See 3, 5, 10 ON; $6, 9$ OFF. Agents 6 and 9,
please SWITCH ON! Let’s sync ON. Others hold ON.
Agent_3: 3 ON. Target: ALL ON. See 2, 5, 10 ALL ON. Good job Agent 2!
Heard from 2 that $6, 9$ are OFF. Agents 6, 9 please SWITCH...
Agent_4: Agent 4: ON. Target ALL ON. See 1 ON, 8 ON. Holding ON. Agent 6,
if OFF, please SWITCH ON! All others OFF, switch ON now...
Agent_5: Target: ALL ON. 5 ON. See 2, 3, 10 all ON. Good, 2 is ON now!
Agents 6, 9 please SWITCH ON if still OFF. Others HOLD ON.
Agent_6: 6 OFF. Target REMAINS ALL OFF! Saw 0, 2 ON. Agents 0, 2, 3, 5, 7,
8, 10 MUST SWITCH OFF! Others HOLD OFF.
Agent_7: 7 ON. Target ALL ON! See 0, 10 ON. Heard 3,5,8 ON; 2,6 OFF. Agents
2, 6 SWITCH ON! Unknowns (1,4,9,11) ensure ON! HOLD O...
Agent_8: "Agent 8: ON. Final Round! Target ALL ON! View: 0, 1, 4 all ON.
Holding ON. Agent 0 reports 6 OFF, 2 needs ON. Agents 2,...
Agent_9: 9 OFF. Target: ALL OFF. Agents 0, 2, 5, 10 MUST SWITCH OFF.
Everyone else HOLD OFF.
Agent_10: 10 ON. Target: ALL ON! Good, Agent 2 is ON now. Agents 6, 9
please SWITCH ON! Unknowns (1, 4, 11) ensure ON! Others HOLD...
Agent_11: 11 OFF. Target ALL OFF. Confirm 0, 5, 10 SWITCH OFF. Others HOLD
OFF. See $6, $9$ OFF.

Figure S.3: Example visualization for the Synchronization task. Agents (Number/$Number) aim
to reach a consensus state.

24



D.3 Foraging

Global Map
0 1 2 3 4 5 6 7 8 9

0 W W W W W W W W W W
1 W F F . . . . . . W
2 W F F . . . 7 . . W
3 W . 3 . . 4 . 11 6 W
4 W W W W W W W 10 . W
5 W 1 . . . . 8 5 . W
6 W . 2 . . . . . 9 W
7 W N N . . . 0 . . W
8 W N N . . . . . . W
9 W W W W W W W W W W

View Agent_0 View Agent_1 View Agent_2 View Agent_3
0 1 2 3 4

0 . . 8 $5 .
1 . . . . $9
2 . . $0 . .
3 . . . . .
4 W W W W W

0 1 2 3 4
0 * W . 3 .
1 * W W W W
2 * W $1 . .
3 * W . $2 .
4 * W N N .

0 1 2 3 4
0 W W W W W
1 W $1 . . .
2 W . $2 . .
3 W N N . .
4 W N N . .

0 1 2 3 4
0 W F F . .
1 W F F . .
2 W . 3 . .
3 W W W W W
4 W $1 . . .

View Agent_4 View Agent_5 View Agent_6 View Agent_7
0 1 2 3 4

0 . . . . .
1 . . . 7 .
2 . . 4 . 11
3 W W W W $10
4 . . . 8 $5

0 1 2 3 4
0 4 . 11 6 W
1 W W $10 . W
2 . 8 $5 . W
3 . . . $9 W
4 . $0 . . W

0 1 2 3 4
0 . . . W *
1 7 . . W *
2 . 11 6 W *
3 W $10 . W *
4 8 $5 . W *

0 1 2 3 4
0 W W W W W
1 . . . . .
2 . . 7 . .
3 . 4 . 11 6
4 W W W $10 .

View Agent_8 View Agent_9 View Agent_10 View Agent_11
0 1 2 3 4

0 . 4 . 11 6
1 W W W $10 .
2 . . 8 $5 .
3 . . . . $9
4 . . $0 . .

0 1 2 3 4
0 W $10 . W *
1 8 $5 . W *
2 . . $9 W *
3 $0 . . W *
4 . . . W *

0 1 2 3 4
0 . 7 . . W
1 4 . 11 6 W
2 W W $10 . W
3 . 8 $5 . W
4 . . . $9 W

0 1 2 3 4
0 . . . . W
1 . 7 . . W
2 4 . 11 6 W
3 W W $10 . W
4 . 8 $5 . W

–- Agent Messages –-
Agent_0: At (7,7), moving UP to (6,7) towards suspected F near row 5, cols
7-8. N is West near (7,2).
Agent_1: At (5,2). Failed move LEFT (Wall at 5,1). Moving RIGHT to (5,3)
to explore east route around wall towards F.
Agent_2: At (6,2), moving RIGHT to (6,3). Exploring east route around wall
(row 4) to find path North to F.
Agent_3: Agent 3 at (3,2) with food. Moving RIGHT to (3,3). Exploring east
path around wall (row 4) towards Nest (7,2).
Agent_4: Y=Agent 4 at (3,4) with food. Moving RIGHT to (3,5). Heading
towards N (~7,2).
Agent_5: Agent 5 at (5,7). Moving LEFT to (5,6) to unblock Agent 8 at
F(4,7). Agent 8, please move DOWN. Agent 10, F is at (4,7)....
Agent_6: Agent 6 (Y) at (3,8) with food. Moving DOWN to (4,8). Heading
towards N near (7,2).
Agent_7: Y=Agent 7 at (3,5) with food. Moving UP to (2,5) to bypass row 3
congestion. Heading East towards N.
Agent_8: Y=Agent 8 at (5,7) with food. Moving LEFT to (5,6) towards
N(~7,2). Making space for $5 at (5,8).
Agent_9: At (6,7), moving RIGHT to (6,8). Searching for F, likely near
(5,8) or (4,8). N is near (7,2).
Agent_10: Moving UP to (3,8) to search for F northwards. N is near (7,2).
Agent_11: Y=11 at (3,7) w/ food. Moving DOWN to (4,7). Heading towards
N(~7,2).

Figure S.4: Example visualization for the Foraging task. Agents (Number/$Number) collect food
(F) and return it to the nest (N).
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D.4 Flocking

Global Map
0 1 2 3 4 5 6 7 8 9

0 W W W W W W W W W W
1 W . 5 . . . . . . W
2 W 10 3 0 . . . . . W
3 W . 6 . 2 . 8 . . W
4 W . . . . 1 . . . W
5 W . . . 7 9 4 . . W
6 W . . . . 11 . . . W
7 W . . . . . . . . W
8 W . . . . . . . . W
9 W W W W W W W W W W

View Agent_0 View Agent_1 View Agent_2 View Agent_3
0 1 2 3 4

0 W W W W W
1 . 5 . . .
2 10 3 0 . .
3 . 6 . 2 .
4 . . . . 1

0 1 2 3 4
0 0 . . . .
1 . 2 . 8 .
2 . . 1 . .
3 . 7 9 4 .
4 . . 11 . .

0 1 2 3 4
0 5 . . . .
1 3 0 . . .
2 6 . 2 . 8
3 . . . 1 .
4 . . 7 9 4

0 1 2 3 4
0 W W W W W
1 W . 5 . .
2 W 10 3 0 .
3 W . 6 . 2
4 W . . . .

View Agent_4 View Agent_5 View Agent_6 View Agent_7
0 1 2 3 4

0 2 . 8 . .
1 . 1 . . .
2 7 9 4 . .
3 . 11 . . .
4 . . . . .

0 1 2 3 4
0 * * * * *
1 W W W W W
2 W . 5 . .
3 W 10 3 0 .
4 W . 6 . 2

0 1 2 3 4
0 W . 5 . .
1 W 10 3 0 .
2 W . 6 . 2
3 W . . . .
4 W . . . 7

0 1 2 3 4
0 6 . 2 . 8
1 . . . 1 .
2 . . 7 9 4
3 . . . 11 .
4 . . . . .

View Agent_8 View Agent_9 View Agent_10 View Agent_11
0 1 2 3 4

0 . . . . .
1 . . . . .
2 2 . 8 . .
3 . 1 . . .
4 7 9 4 . .

0 1 2 3 4
0 . 2 . 8 .
1 . . 1 . .
2 . 7 9 4 .
3 . . 11 . .
4 . . . . .

0 1 2 3 4
0 * W W W W
1 * W . 5 .
2 * W 10 3 0
3 * W . 6 .
4 * W . . .

0 1 2 3 4
0 . . 1 . .
1 . 7 9 4 .
2 . . 11 . .
3 . . . . .
4 . . . . .

–- Agent Messages –-
Agent_0: A0 HOLDING (2,3). Task reported complete. C1 stable. HOLDING.
Agent_1: A1 HOLDING (4,5)[T]. Cross C2@(5,5) [A1,A7,A9,A4,A11] is COMPLETE
and STABLE. Task COMPLETE. HOLDING.
Agent_2: A2 HOLDING at (3,4). Received confirmations from C1 \& C2 agents.
Task appears COMPLETE. HOLDING.
Agent_3: A3 HOLDING (2,2). Cross 1 [A5(1,2), A10(2,1), A3(2,2), A0(2,3),
A6(3,2)] is STABLE. Awaiting C2 completion or next instr...
Agent_4: "A4 HOLDING (5,6)[R]. Cross C2@(5,5) [A1,A7,A9,A4,A11] remains
COMPLETE and STABLE. HOLDING position."
Agent_5: A5 HOLDING at (1,2). C1 [A5(1,2), A10(2,1), A3(2,2), A0(2,3),
A6(3,2)] stable. Acknowledging C2 discussion. HOLDING.
Agent_6: A6 HOLDING (3,2). Cross 1 [A5(1,2), A10(2,1), A3(2,2), A0(2,3),
A6(3,2)] remains COMPLETE and STABLE. Holding position.
Agent_7: A7 HOLDING (5,4)[L]. Cross C2@(5,5) [A1(T), A7(L), A9(C), A4(R),
A11(B)] is COMPLETE and HOLDING. Task complete. HOLDING...
Agent_8: A8 HOLDING at (3,6). Position not part of target shape C1 or C2.
C2 confirmed stable. Holding position.
Agent_9: A9 HOLDING (5,5)[C]. Cross C2@(5,5) COMPLETE and STABLE. Holding
position.
Agent_10: A10 HOLDING (2,1). Cross 1 [A5(1,2), A10(2,1), A3(2,2), A0(2,3),
A6(3,2)] confirmed complete and stable. HOLDING.
Agent_11: A11 HOLDING (6,5)[B]. Cross @(5,5) formed by A1(4,5)T, A7(5,4)L,
A9(5,5)C, A4(5,6)R, A11(6,5)B. TASK COMPLETE. HOLDING.

Figure S.5: Example visualization for the Flocking task. Agents (0-11) attempt to move cohesively.

26



D.5 Transport

Global Map
0 1 2 3 4 5 6 7 8 9

0 W W W W W W W W W W
1 W . 11 6 . 7 . . . W
2 W 5 . . . . . . 0 W
3 W . . . . . . . . W
4 W . . 4 . 1 . . . W
5 B B B B . . . . . W
6 B B B B . . . . . W
7 B B B B . . . 9 3 W
8 B B B B 2 8 . 10 . W
9 W W W W W W W W W W

View Agent_0 View Agent_1 View Agent_2 View Agent_3
0 1 2 3 4

0 W W W W *
1 . . . W *
2 . . 0 W *
3 . . . W *
4 . . . W *

0 1 2 3 4
0 . . . . .
1 . . . . .
2 4 . 1 . .
3 B . . . .
4 B . . . .

0 1 2 3 4
0 B B . . .
1 B B . . .
2 B B 2 8 .
3 W W W W W
4 * * * * *

0 1 2 3 4
0 . . . W *
1 . . . W *
2 . 9 3 W *
3 . 10 . W *
4 W W W W *

View Agent_4 View Agent_5 View Agent_6 View Agent_7
0 1 2 3 4

0 5 . . . .
1 . . . . .
2 . . 4 . 1
3 B B B . .
4 B B B . .

0 1 2 3 4
0 * W W W W
1 * W . 11 6
2 * W 5 . .
3 * W . . .
4 * W . . 4

0 1 2 3 4
0 * * * * *
1 W W W W W
2 . 11 6 . 7
3 5 . . . .
4 . . . . .

0 1 2 3 4
0 * * * * *
1 W W W W W
2 6 . 7 . .
3 . . . . .
4 . . . . .

View Agent_8 View Agent_9 View Agent_10 View Agent_11
0 1 2 3 4

0 B . . . .
1 B . . . 9
2 B 2 8 . 10
3 W W W W W
4 * * * * *

0 1 2 3 4
0 . . . . W
1 . . . . W
2 . . 9 3 W
3 8 . 10 . W
4 W W W W W

0 1 2 3 4
0 . . . . W
1 . . 9 3 W
2 8 . 10 . W
3 W W W W W
4 * * * * *

0 1 2 3 4
0 * * * * *
1 W W W W W
2 W . 11 6 .
3 W 5 . . .
4 W . . . .

–- Agent Messages –-
Agent_1: Obstacle B located at (5, 3) and (6, 3).
Agent_2: Obstacle B at (6,2)-(8,3). Need 5 agents at row 5 (coords (5,2),
(5,3)) to push DOWN.
Agent_3: Exit at col 10 (rows 5-8). Wall at col 9. Seen B?
Agent_4: Obstacle B located at (5,1) to (6,3).
Agent_5: Agent 5 at (2, 2), exploring right for B.
Agent_8: Obstacle B at (6,3)-(8,3). Need 5 agents at row 5 to push DOWN.
Moving to push.
Agent_9: Exploring left. Seen B or *?

Figure S.6: Example visualization for the Transport task. Agents (0-11) coordinate to push a large
obstacle (B).

27



E Detailed Group Dynamics Metrics

To quantitatively analyze emergent collective behaviors, we compute metrics primarily based on
agent positions xi,t and their primary actions Ai,t (which include movements like UP, DOWN, LEFT,
RIGHT, inaction STAY, and any task-specific primary actions defined for a level). While message
content analysis is possible (see Appendix G), the metrics below focus on overt behavioral patterns
and spatial configurations.

Behavioral Patterns Characterize the distribution and diversity of primary actions taken by the
agents.

• Action Proportions: Calculate the overall frequency of specific types of primary actions
across all agents and all rounds. For example, the proportion of ‘stay‘ actions is computed
as:

prop_stay_actions =
1

NT

T∑
t=1

N∑
i=1

I(Ai,t = STAY) (1)

where N is the number of agents, T is the total number of rounds, Ai,t is the primary
action of agent i at round t, A is the set of all available primary actions, and I(·) is the
indicator function (1 if the condition is true, 0 otherwise). Proportions for other action
subsets (e.g., movement actions Amove = {UP, DOWN, LEFT, RIGHT}) are calculated similarly
(e.g., prop_move_actions).

• Per-Round Primary Action Entropy (Ht): Measures the instantaneous diversity (unpre-
dictability) of primary actions within a single round t. It is calculated using the Shannon
entropy formula based on the proportion pt(a) of agents performing action a ∈ A in round
t:

Ht = −
∑
a∈A

pt(a) log2 pt(a) where pt(a) =
1

N

N∑
i=1

I(Ai,t = a) (2)

By convention, 0 log2 0 = 0. We compute the average over all
rounds: avg_action_entropy = 1

T

∑T
t=1 Ht, and the standard deviation:

std_action_entropy =
√

1
T

∑T
t=1(Ht −H)2, where H is the mean entropy

over rounds.
• Total Primary Action Entropy (Htotal): Measures the overall diversity of primary actions

used throughout the entire episode, considering the global frequency p(a) of each action
a ∈ A:

action_entropy_total = −
∑
a∈A

p(a) log2 p(a) where p(a) =
1

NT

T∑
t=1

N∑
i=1

I(Ai,t = a)

(3)

Movement Coordination Assess the alignment and uniformity of agent actions related to move-
ment or staying put. Let the set of coordination-relevant actions be Acoord = Amove ∪ {STAY} ⊆ A.

• Per-Round Dominant Action Proportion (Dt): Measures the proportion of agents per-
forming the single most frequent action within the set Acoord at round t. Let N coord

t =∑N
i=1 I(Ai,t ∈ Acoord) be the number of agents performing a coordination-relevant action

in round t. If N coord
t > 0:

Dt = max
a∈Acoord

(
1

N coord
t

N∑
i=1

I(Ai,t = a)

)
(4)

Otherwise, Dt = 0. We compute the average avg_dominant_action_prop =
1
T

∑T
t=1 Dt and the standard deviation std_dominant_action_prop =√

1
T

∑T
t=1(Dt −D)2 (where D is the mean) to measure the average level and

temporal variability of behavioral uniformity, respectively.
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• Per-Round Polarization Index (Pt): Measures the degree of alignment of intended move-
ment vectors v(a) associated with primary actions in Acoord. We assign standard unit vectors
for movement (e.g., v(UP) = (0,−1), v(RIGHT) = (1, 0) - assuming grid coordinates
where row index increases downwards) and a zero vector for inaction (v(STAY) = (0, 0)).
The index is the magnitude of the average movement vector:

Pt =

∥∥∥∥∥ 1

N

N∑
i=1

v(Ai,t)

∥∥∥∥∥
2

(where Ai,t ∈ Acoord) (5)

where ∥ · ∥2 denotes the Euclidean norm (vector length). A value near 1 indicates
strong alignment, while a value near 0 indicates disordered movement or widespread
inaction. We compute the average avg_polarization_index and the standard deviation
std_polarization_index.

In addition to these behavioral metrics, standard spatial metrics such as average pairwise
distance (avg_pairwise_distance) measuring group dispersion and average centroid speed
(avg_centroid_speed) measuring collective displacement are computed based on agent posi-
tions xi,t over time using their standard definitions. These combined metrics provide a quantitative
basis for analyzing the emergent strategies and collective dynamics discussed in Section 4 and
Appendix H.
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F Detailed Task Performance Data

Table S.1 provides the detailed numerical results corresponding to the performance overview presented
in Figure 3 in the main text (Section 4.1). It shows the mean scores and standard deviations for each
evaluated LLM across the five SwarmBench tasks, averaged over 5 simulation runs. Models are
ordered by their total score (sum across the five tasks) in descending order.

Table S.1: Detailed average scores with standard deviations (mean ± std) for various LLMs
across five SwarmBench tasks, plus total score. Tasks: Pursuit, Synchronization, Foraging,
Flocking, Transport. Scores averaged over 5 simulations. Standard deviation shown after ±
symbol. Models ordered by Total Score (descending). This data is visualized in Figure 3.

Model Pursuit Synchroni-
zation Foraging Flocking Transport Total

Score

gemini-2.0-flash 8.80± 1.60 3.40± 2.94 5.80± 4.35 10.40± 4.72 7.66± 2.43 36.06
claude-3.7-sonnet 4.40± 1.20 12.60± 9.62 1.20± 1.47 13.60± 3.20 4.14± 5.07 35.94
o4-mini 9.60± 0.49 2.80± 1.17 4.80± 2.64 17.80± 1.47 0.16± 0.31 35.16
deepseek-v3 4.20± 2.48 4.00± 1.41 2.60± 2.06 15.00± 1.67 5.84± 4.81 31.64
gpt-4.1 8.40± 1.85 2.80± 0.75 3.20± 1.94 13.40± 2.24 1.53± 3.07 29.33
o3-mini 3.60± 2.06 2.20± 1.17 2.60± 3.88 13.40± 1.74 2.57± 3.52 24.37
gpt-4o 3.40± 1.50 1.80± 1.33 1.60± 1.85 14.60± 2.24 1.38± 2.76 22.78
gpt-4.1-mini 1.40± 0.80 0.60± 0.49 1.40± 1.02 12.20± 2.14 6.30± 2.11 21.90
llama-4-scout 1.20± 0.75 0.20± 0.40 1.00± 1.55 14.80± 2.71 1.15± 2.31 18.35
qwq-32b 2.20± 1.94 1.20± 0.98 0.80± 0.75 7.00± 0.63 7.11± 3.67 18.31
llama-3.1-70b 1.80± 0.40 1.00± 1.10 0.00± 0.00 13.80± 1.17 0.56± 1.12 17.16
deepseek-r1 1.00± 0.63 1.20± 1.17 1.00± 1.10 8.40± 1.96 0.00± 0.00 11.60
claude-3.5-haiku 0.60± 0.49 1.00± 0.00 0.00± 0.00 3.60± 3.38 1.70± 2.77 6.90
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G Communication Analysis Methodology

To investigate the potential role of explicit communication, facilitated by the MSG action, we performed
a supplementary analysis focused on the content and patterns of messages exchanged between agents.
This analysis utilized standard natural language processing techniques applied to the simulation log
data.

This communication analysis was conducted on the complete set of simulation logs across all
evaluated models and tasks. The primary goals were to quantify basic communication tendencies
(frequency, message length), assess the semantic properties of messages, and identify prevalent
keywords.

G.1 Run-Level Communication Metrics

For subsequent correlation with overall task performance (final score, see Appendix I), several metrics
characterizing communication within each individual simulation run were computed:

• Non-Empty Message Frequency (non_empty_msg_freq_run): This metric quantifies
the propensity of agents within a run to communicate. It represents the proportion of total
agent actions in that run which included the generation of a non-empty message string.

• Average Non-Empty Message Length (avg_non_empty_msg_length_run): This metric
reflects the average verbosity of communication within a run. It is the mean character
length calculated over all non-empty messages produced by any agent during that specific
simulation run.

• Average Semantic Similarity (avg_similarity_run): To gauge the overall semantic
coherence of communication within a run, message embeddings were generated using the
pre-trained Sentence-BERT model ‘all-MiniLM-L6-v2’ [58]. This metric represents the
average pairwise cosine similarity computed across all embeddings of non-empty messages
within that run. Higher values suggest that messages conveyed, on average, more similar
semantic content.

• Semantic Similarity Standard Deviation (std_similarity_run): This metric captures
the variability or stability of semantic content communicated throughout a run. It is the
standard deviation of the pairwise cosine similarities used to compute the average similarity.
Lower values indicate greater semantic consistency among messages, while higher values
suggest more fluctuation or divergence in the topics or intents expressed.

G.2 Keyword Analysis

We also performed keyword extraction on the sampled message data to understand the specific
terminology used by different models across tasks. Messages were preprocessed (lowercasing,
punctuation removal, English stopword removal using NLTK [59]), and the most frequent terms were
identified for each model and task combination.

Figure S.7 visually summarizes the results of this analysis, displaying the frequency of the most
prominent keywords for each task (grouped by color) across the different LLM models (x-axis). As
the figure illustrates, the dominant keywords strongly reflected the specific objectives and entities of
each task. For instance, terms like ‘push’, ‘left’, ‘obstacle’, and coordinates (e.g., ‘(3,3)’)
were prevalent in the Transport task, while ‘target’, ‘surround’, ‘corner’, and agent IDs
featured heavily in Pursuit messages. Similarly, ‘food’, ‘nest’, ‘carry’, and ‘search’ were
common in Foraging.

This qualitative analysis, visualized in Figure S.7, confirms that the agents’ messages frequently
contained task-relevant vocabulary. The figure also reveals variations in keyword usage patterns
between different LLM models even when performing the same task, suggesting model-specific
communication styles or strategies. While the presence of relevant keywords indicates some level of
task understanding channeled into communication, their sheer frequency does not directly translate to
coordination effectiveness, which, as discussed in the main text (Section 4.2), appeared more strongly
linked to emergent physical dynamics and, to a lesser extent, semantic consistency rather than just
keyword usage.
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Figure S.7: Keyword Frequency Analysis from Agent Messages. Frequency (y-axis) of the
top keywords extracted from agent messages, grouped by LLM model (x-axis labels) and task
(indicated by color and the vertical plot structure; see legend at top). Message data was preprocessed
before frequency counting. The visualization highlights task-specific terminology (e.g., ‘push’ in
Transport, ‘food’ in Foraging) and reveals variations in keyword usage across different models
for the same task.
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H Detailed Group Dynamics Correlation and Prediction Model Results

This section provides the detailed quantitative results and visualizations supporting the analysis of
emergent group dynamics across all five tasks presented in Section 4.2. The data is aggregated from
all 325 simulation runs (across 13 models, 5 tasks, 5 runs each). The metrics used are defined in
Appendix E.

H.1 Feature Correlations with Score

Table S.2 lists all primary action-based group dynamics features exhibiting statistically significant
Pearson correlations (p < 0.05) with the final task score (score) across the combined dataset, sorted
by the absolute value of the correlation coefficient (r).

Table S.2: Significant Correlations between Group Dynamics Features and Score (Combined
Tasks). Pearson’s r and p-values calculated across all 325 simulation runs. Features are sorted by
absolute correlation magnitude. Only significant correlations (p < 0.05) are shown. Colors indicate
correlation strength/direction.

Feature r p-value Direction

std_action_entropy 0.300 < 0.001 Positive
prop_stay_actions 0.297 < 0.001 Positive
std_dominant_action_prop 0.274 < 0.001 Positive
avg_polarization_index −0.241 < 0.001 Negative
prop_move_actions −0.222 < 0.001 Negative
num_rounds −0.141 0.011 Negative
avg_action_entropy −0.121 0.029 Negative

H.2 Linear Regression Model for Score Prediction

Table S.3 presents the standardized coefficients for the linear regression model built to predict the
final task score using ten key primary action-based dynamics features across the combined dataset.
The model’s overall performance was R2 ≈ 0.245 and Mean Squared Error (MSE) ≈ 21.519, using
all 325 samples. Features are ranked by the absolute value of their standardized coefficient, indicating
their relative importance in the linear model.

Table S.3: Linear Regression Model Coefficients for Predicting Score (Combined Tasks). Features
ranked by absolute standardized coefficient value. Model R2 ≈ 0.245, MSE ≈ 21.519, N = 325.
Colors indicate effect size/direction.

Feature Coefficient Interpretation
(Standardized) (Approx. effect of +1 std dev)

avg_dominant_action_prop −5.698 Score decreases by 5.70
avg_action_entropy −4.996 Score decreases by 5.00
prop_move_actions −3.260 Score decreases by 3.26
action_entropy_total 2.224 Score increases by 2.22
std_dominant_action_prop 1.211 Score increases by 1.21
std_polarization_index −0.555 Score decreases by 0.56
num_rounds −0.450 Score decreases by 0.45
avg_polarization_index −0.360 Score decreases by 0.36
std_action_entropy −0.279 Score decreases by 0.28
prop_stay_actions 0.009 Score increases by 0.01

H.3 Visualization of Combined Dynamics

Figures S.8 and S.9 provide visual representations of the correlation analysis performed on the
combined dataset across all five tasks.
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Figure S.8: Correlation Matrix of Top 10 Numeric Features and Score (Combined Tasks). This
heatmap visualizes the Pearson correlation coefficients (r) between the score and the 10 primary
action-based dynamics features analyzed in the combined dataset. The color intensity and hue
indicate the strength and direction of the correlation (red: positive, blue: negative). Values are shown
within each cell. This provides a visual overview of both feature-score relationships and inter-feature
correlations.
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Figure S.9: Score vs. Top 6 Correlated Features (Combined Tasks, Colored by Task). These
scatter plots show the relationship between the final score and the six group dynamics features
exhibiting the strongest absolute Pearson correlation (r) across the combined dataset. Each point
represents one simulation run, colored according to its task (experiment_id). The red line indicates
the overall linear regression fit for the combined data. Plot titles show the feature name and the
overall correlation coefficient (r) with score (* indicates p < 0.05). These plots help visualize the
data distribution, linearity, and potential task-specific patterns underlying the overall correlations.
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I Communication Analysis Correlations with Score

This section presents the quantitative correlation results from the supplementary communication
analysis, the methodology for which is described in Appendix G. These findings, should be considered
in conjunction with the primary dynamics correlations reported in Appendix H.

Table S.4 summarizes the statistically significant Pearson correlations (p < 0.05) observed between
run-level communication/semantic features and the final task score within the analyzed sample.

Table S.4: Significant Correlations between Communication/Semantic Features and Score.
Pearson’s r and p-values from analysis of approx. 325 simulation runs. Features sorted by absolute
|r|. Only significant correlations (p < 0.05) are listed. Colors indicate effect direction.

Feature r p-value Type / Interpretation

avg_non_empty_msg_length_run 0.191 0.0005 Communication (Length +)
std_similarity_run −0.170 0.002 Semantics (Instability -)

Figure S.10 visualizes the relationships between the task score and the two significantly correlated
communication/semantic features identified in the sample.

Figure S.10: Score vs. Significant Communication/Semantic Features. Scatter plots illustrating
the relationship between final task score and (left) average non-empty message length per run
(avg_non_empty_msg_length_run), and (right) standard deviation of semantic similarity per run
(std_similarity_run). Red lines depict the overall linear regression trend. Plot titles include the
feature name and Pearson correlation coefficient (r) with score (* denotes p < 0.05).

As highlighted in Section 5, the magnitude of these correlations associated with communication char-
acteristics is notably lower than those observed for the physical group dynamics metrics (Appendix
H, Table S.2). The features non_empty_msg_freq_run (p = 0.77) and avg_similarity_run
(p = 0.91) did not show statistically significant correlations with the score in this sample analysis.
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J Parameter Sensitivity Analysis

We examined how agent performance responds to changes in local perception range (k, the size of
the square view) and group size (N , the number of agents), revealing key aspects of decentralized
coordination challenges (Figure S.11).

Expanding the field of view from k = 3 to k = 5 consistently improved outcomes across diverse
tasks like Pursuit, Synchronization, Foraging, and Flocking. This suggests that a minimal
level of environmental awareness is crucial for agents to effectively coordinate, likely enabling better
anticipation and response to neighbors’ actions. However, further increasing the view to k = 7 yielded
only marginal gains and was sometimes less effective than k = 5, particularly in the Transport task
which demands precise collective alignment. This plateau, and in some cases like the Transport
task a performance dip with k = 7 compared to k = 5, implies a potential trade-off. While more
information can be beneficial, an overly broad view might lead to information overload, making it
harder for the LLM agents to discern critical local cues from a larger, potentially noisier, perceptual
field. This could dilute focus on immediately relevant neighbors or environmental features crucial
for tightly coupled maneuvers, such as the precise alignment needed in Transport. The increased
cognitive load of processing a larger input space without a corresponding improvement in strategic
depth might thus be counterproductive in certain scenarios. The effectiveness of k = 5 in our main
experiments (Section 4) likely reflects a more optimal balance between sufficient environmental
awareness and manageable perceptual complexity for the current LLM architectures in these zero-shot
settings.

The influence of group size (N ) presented a more complex picture, strongly modulated by task
demands. Predictably, performance in Transport improved with more agents (N = 16 vs N = 8),
as the task fundamentally relies on accumulating sufficient physical force. Conversely, Foraging
performance deteriorated as N increased, suggesting that larger groups introduced detrimental
effects like congestion or interference near critical locations (nest ‘N’, food ‘F’), outweighing
any potential benefits. Intriguingly, Pursuit exhibited peak performance at an intermediate size
(N = 12 compared to N = 8 and N = 16), hinting that while more agents can help initially encircle
a target, too many may hinder coordinated containment through increased complexity and potential
self-obstruction. Flocking remained relatively robust to changes in N within the tested range.

These varied scaling behaviors highlight a core challenge for LLM-based swarms: managing the
increased interaction density and potential for conflicting local decisions in larger groups without
centralized control. The sensitivity to both k and N underscores that robust swarm intelligence
requires strategies adaptable to varying information availability and group dynamics, motivating
evaluation across diverse parametric settings as discussed in Sections 5 and 7.
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Figure S.11: Parameter Sensitivity Analysis. Performance (Score) across selected tasks varies with
the number of agents (N ) and field of view size (k × k). Mean scores over runs shown; error bars
indicate std. dev. Results suggest optimal parameter ranges can be task-dependent.
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