Publication Library
Deep Learning Models Meet Financial Data Modalities
Description: Algorithmic trading relies on extracting meaningful signals from diverse financial data sources, including candlestick charts, order statistics on put and canceled orders, traded volume data, limit order books, and news flow. While deep learning has demonstrated remarkable success in processing unstructured data and has significantly advanced natural language processing, its application to structured financial data remains an ongoing challenge. This study investigates the integration of deep learning models with financial data modalities, aiming to enhance predictive performance in trading strategies and portfolio optimization. We present a novel approach to incorporating limit order book analysis into algorithmic trading by developing embedding techniques and treating sequential limit order book snapshots as distinct input channels in an image-based representation. Our methodology for processing limit order book data achieves state-of-the-art performance in high-frequency trading algorithms, underscoring the effectiveness of deep learning in financial applications.
Created At: 30 April 2025
Updated At: 30 April 2025
Semiparametric Dynamic Copula Models for Portfolio Optimization
Description: The mean-variance portfolio model, based on the risk-return trade-off for optimal asset allocation, remains foundational in portfolio optimization. However, its reliance on restrictive assumptions about asset return distributions limits its applicability to real-world data. Parametric copula structures provide a novel way to overcome these limitations by accounting for asymmetry, heavy tails, and time-varying dependencies. Existing methods have been shown to rely on fixed or static dependence structures, thus overlooking the dynamic nature of the financial market. In this study, a semiparametric model is proposed that combines non-parametrically estimated copulas with parametrically estimated marginals to allow all parameters to dynamically evolve over time. A novel framework was developed that integrates time-varying dependence modeling with flexible empirical beta copula structures. Marginal distributions were modeled using the Skewed Generalized T family. This effectively captures asymmetry and heavy tails and makes the model suitable for predictive inferences in real world scenarios. Furthermore, the model was applied to rolling windows of financial returns from the USA, India and Hong Kong economies to understand the influence of dynamic market conditions. The approach addresses the limitations of models that rely on parametric assumptions. By accounting for asymmetry, heavy tails, and cross-correlated asset prices, the proposed method offers a robust solution for optimizing diverse portfolios in an interconnected financial market. Through adaptive modeling, it allows for better management of risk and return across varying economic conditions, leading to more efficient asset allocation and improved portfolio performance.
Created At: 30 April 2025
Updated At: 30 April 2025
Dueling Deep Reinforcement Learning for Financial Time Series
Description: Reinforcement learning (RL) has emerged as a powerful paradigm for solving decision-making problems in dynamic environments. In this research, we explore the application of Double DQN (DDQN) and Dueling Network Architectures, to financial trading tasks using historical SP500 index data. Our focus is training agents capable of optimizing trading strategies while accounting for practical constraints such as transaction costs. The study evaluates the model performance across scenarios with and without commissions, highlighting the impact of cost-sensitive environments on reward dynamics. Despite computational limitations and the inherent complexity of financial time series data, the agent successfully learned meaningful trading policies. The findings confirm that RL agents, even when trained on limited datasets, can outperform random strategies by leveraging advanced architectures such as DDQN and Dueling Networks. However, significant challenges persist, particularly with a sub-optimal policy due to the complexity of data source.
Created At: 30 April 2025
Updated At: 30 April 2025
Risk-aware black-box portfolio construction using Bayesian optimization with adaptive weighted Lagrangian estimator
Description: Existing portfolio management approaches are often black-box models due to safety and commercial issues in the industry. However, their performance can vary considerably whenever market conditions or internal trading strategies change. Furthermore, evaluating these non-transparent systems is expensive, where certain budgets limit observations of the systems. Therefore, optimizing performance while controlling the potential risk of these financial systems has become a critical challenge. This work presents a novel Bayesian optimization framework to optimize black-box portfolio management models under limited observations. In conventional Bayesian optimization settings, the objective function is to maximize the expectation of performance metrics. However, simply maximizing performance expectations leads to erratic optimization trajectories, which exacerbate risk accumulation in portfolio management. Meanwhile, this can lead to misalignment between the target distribution and the actual distribution of the black-box model. To mitigate this problem, we propose an adaptive weight Lagrangian estimator considering dual objective, which incorporates maximizing model performance and minimizing variance of model observations. Extensive experiments demonstrate the superiority of our approach over five backtest settings with three black-box stock portfolio management models. Ablation studies further verify the effectiveness of the proposed estimator.
Created At: 30 April 2025
Updated At: 30 April 2025
A Composable Game-Theoretic Framework for Blockchains
Description: Blockchains rely on economic incentives to ensure secure and decentralised operation, making incentive compatibility a core design concern. However, protocols are rarely deployed in isolation. Applications interact with the underlying consensus and network layers, and multiple protocols may run concurrently on the same chain. These interactions give rise to complex incentive dynamics that traditional, isolated analyses often fail to capture. We propose the first compositional game-theoretic framework for blockchain protocols. Our model represents blockchain protocols as interacting games across layers -- application, network, and consensus. It enables formal reasoning about incentive compatibility under composition by introducing two key abstractions: the cross-layer game, which models how strategies in one layer influence others, and cross-application composition, which captures how application protocols interact concurrently through shared infrastructure. We illustrate our framework through case studies on HTLCs, Layer-2 protocols, and MEV, showing how compositional analysis reveals subtle incentive vulnerabilities and supports modular security proofs.
Created At: 30 April 2025
Updated At: 30 April 2025