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Abstract

Observers and practitioners of artificial intelligence (AI) have
proposed an FDA-style licensing regime for the most ad-
vanced AI models, or ’frontier’ models. In this paper, we ex-
plore the applicability of approval regulation – that is, regu-
lation of a product that combines experimental minima with
government licensure conditioned partially or fully upon that
experimentation – to the regulation of frontier AI. There are
a number of reasons to believe that approval regulation, sim-
plistically applied, would be inapposite for frontier AI risks.
Domains of weak fit include the difficulty of defining the reg-
ulated product, the presence of Knightian uncertainty or deep
ambiguity about harms from AI, the potentially transmissi-
ble nature of risks, and distributed activities among actors in-
volved in the AI lifecycle. We conclude by highlighting the
role of policy learning and experimentation in regulatory de-
velopment, describing how learning from other forms of AI
regulation and improvements in evaluation and testing meth-
ods can help to overcome some of the challenges we identify.

1 Introduction
Massive leaps in the scale, performance, and apparent risks
of artificial intelligence (AI) have led practitioners and
observers to call for various forms of regulation. Many
proposals have focused on adapting AI regulations to ac-
count for the novel risks introduced by ’frontier’ AI (An-
derljung et al. 2023a; Schuett et al. 2024). Based on recent
trends, we characterize frontier AI systems as usually hav-
ing (1) general-purpose functionality, (2) more costly R&D
processes (Whittaker 2021; Ahmed, Wahed, and Thomp-
son 2023), (3) dual-use capabilities that pose misuse risks,
and (4) systemic or structural risk (Zwetsloot and Dafoe
2019; Council of the European Union 2024). Some regu-
latory proposals for frontier AI are analogs of regulatory
regimes already in existence, including that of the U.S.
Food and Drug Administration (FDA). For example, at a
recent congressional hearing, emeritus professor Gary Mar-
cus stated that among the “many guardrails and regulations
I would suggest,” one was “Creating an FDA-like regulatory
regime for AI that evaluates large-scale deployment, bal-
ancing risks and benefit” (Marcus 2023). There have been
several proposals arguing for an explicit licensing regime
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based upon FDA-style approval regulation, including licens-
ing that would apply to model development, deployment, or
the operation of large datacenters (Stein and Dunlop 2023;
Matheny 2023; Microsoft 2023; Encode Justice and Future
of Life Institute 2023; Smith 2024; Malgieri and Pasquale
2024; Allen et al. 2024). Other aspects of FDA regulation
have also served as analogies. For example, the National
Artificial Intelligence Advisory Committee (NAIAC) has
called for an adverse events reporting system, wherein the
FDA system of the same title (it has been known for decades
as the AERS) figures as a reference point (The National Ar-
tificial Intelligence Advisory Committee 2023).

The possibility of an FDA-like regulatory regime for fron-
tier AI has since occasioned considerable debate. AI-related
regulatory frameworks and legislative proposals have in-
volved various forms of licensing (Blumenthal and Hawley
2023; Center for AI Policy 2024), and critics have iden-
tified many limitations of a licensing regime (Guha et al.
2023; Wheeler 2024), including a range of libertarian orga-
nizations and writers who quickly aligned against the idea
(Bailey 2023; Thierer and Chilson 2023). Thus far, the map-
ping of FDA-like analogies to AI regulation has largely pro-
ceeded by means of vague metaphors – understandable for
an early stage of public debate, but not desirable as actual
policies are discussed. Indeed, there are properties of AI and
its risks that would call for reconsideration of some aspects
of FDA-style regulation as it has been traditionally prac-
ticed.

In this paper, we argue that there is need for careful con-
sideration of institutional and organizational forms before
any regime, much less an “FDA-like regulatory regime,”
could be adopted. We proceed through four general claims.
First, at its essential core, FDA-style regulation is a form of
approval regulation linking mandatory testing with a regu-
latory veto over part or all of a firm’s R&D process. Sec-
ond, this regime of regulation makes specific assumptions
about the product and firm that are being regulated, the mea-
surability of risks from the product, the observability of a
firm’s actions (e.g. development and testing), and the en-
forceability of rules that prevent certain unapproved activ-
ities from taking place. Third, there are aspects of frontier
AI that do not conform to these assumptions. Finally, pol-
icy experimentation and learning are essential to address-
ing some limitations of approval regulation, including from
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other forms of AI regulation and developments in model
evaluation methods.

In Section 2, we describe approval regulation, including
its properties that make it unique from other forms of reg-
ulation. In Section 3, we describe the conditions that facil-
itate approval regulation in the FDA context. In Section 4,
we consider the applicability of approval regulation to the
frontier AI context. In Section 5, we overview the role of
policy experimentation and learning in the development an
an approval regulation regime.

Before proceeding, two prefatory notes. First, we make
no judgment here about whether approval regulation is op-
timal or efficient in the spaces in which it has been applied,
especially in the area of biomedical innovation. Second, it is
important to consider the possible complementarity or sub-
stitutability of different regulatory policies. Much of the ar-
gument from libertarian voices suggests that it is possible
to rely upon self-regulation, intellectual property regulation,
fiduciary or “duty of care” standards, or tort liability regimes
to regulate AI harms (Thierer 2023). These arguments may
be on the mark, but it is worth noting that in many areas
of regulation – and not just biomedical innovation – forms
of approval regulation co-exist with these and other forms
of governance. To say that they co-exist is not to assert that
they do so without friction or inefficient cross-subsidization
of activities. The point is that the desirability or plausibil-
ity of one form of regulatory institution does not, ipso facto,
rule out the possible desirability or plausibility of another.
Considering the optimal portfolio of institutions is exactly
where research is needed, and it is unlikely that any such
portfolio will be designed ex nihilo but will evolve.

2 “FDA-Style” Approval Regulation
Commentators referring to an “FDA-like” or “FDA-style”
regime are usually referencing the FDA’s regulation of new
biomedical products, a function which is now global and ex-
ercised by dozens of national and regional regulators (the
European Medicines Agency (EMA), for instance). At their
core, “FDA-style” regimes rest upon structures of approval
regulation (Carpenter 2004; Carpenter and Ting 2007; Car-
penter, Grimmer, and Lomazoff 2010; Henry and Ottaviani
2019; Henry, Loseto, and Ottaviani 2022; Ottaviani and
Wickelgren 2023), which we define here as a regime in
which a regulator requires a firm to engage in testing before
conducting subsequent activities (e.g. releasing a product),
and in which this testing generates data that is used by the
regulator to decide whether part or all of the subsequent ac-
tivities can be conducted.

So defined, approval regulation gives the regulator a
“veto” over stages of product development and release, but
approval regulation is far more than a mere gatekeeping
function or a veto. Any number of other regulatory mech-
anisms can regulate “entry” (Djankov et al. 2002), including
mechanisms that are already being used in AI governance.
For example, the EU AI Act requires ex-ante assessments
of conformity with standards for high-risk AI deployments
(Council of the European Union 2024).

Furthermore, many regulatory mechanisms can encour-
age or require testing, audits, and/or information disclo-

sure without linkage to approval mechanisms. For exam-
ple, Executive Order 14110 (EO 14110) in the U.S. re-
quires that certain testing results for ”dual-use foundation
models” are reported to regulators (Executive Office of
the President 2023). Furthermore, various standards-setting
bodies, including the National Institute of Standards and
Technology (NIST) in the U.S. (U.S. Department of Com-
merce 2023) and CEN (European Committee for Standard-
ization)/CENELEC (European Committee for Electrotech-
nical Standardization) in the E.U. (Laux, Wachter, and Mit-
telstadt 2024), are developing further AI standards and best
practices, including testing guidelines. Subsequent regula-
tions can require or incentivize developers to follow these
standards without a connection to approval mechanisms.

The essential properties of approval regulation were out-
lined in a series of mathematical models before 2010 (Car-
penter 2004; Carpenter and Ting 2007; Carpenter, Grimmer,
and Lomazoff 2010), and subsequent research has led to a
more detailed understanding of how these regimes develop
and operate. The history of approval regulation institutions
has been the subject of studies in history and political sci-
ence (Marks 1997; Carpenter 2010). Models from the eco-
nomic theory and management science literature have exam-
ine general properties of regulation and veto institutions and
consider issues such as optimal timing of entry and regula-
tion, the structure of costly experimentation in persuasion,
and the relationship between ex ante and ex post regula-
tion (Henry and Ottaviani 2019; Henry, Loseto, and Otta-
viani 2022; Ottaviani and Wickelgren 2023). Recent mod-
els have also explored a range of alternative institutional ar-
rangements and the potential tradeoffs or complementarities
among them (Henry and Ottaviani 2019; McClellan 2022;
Bates et al. 2024). While all of these models are simpli-
fications, they are nonetheless essential for understanding
the critical operative structure and incentive-based kernels
of these regimes, especially when modelers pay appropriate
attention to the institutional context.

The combination of testing and veto in approval regu-
lation is essential to differentiating these institutions from
other institutions that erect entry barriers. These two powers
reinforce each other, create particular incentives, and com-
plement a range of other regulatory policies implemented
and enforced by agencies such as the FDA and EMA.

The ability of regulators to write new rules governing
testing depends heavily upon gatekeeping. Regulators ver-
ify that tests are conducted according to particular practices
because specific testing results are necessary for them to
perform their gatekeeping function. For example, required
labeling for biomedical products incorporates information
from required experiments, and the proposed labeling is an
important part of the pre-market review. While regulators
are influential in shaping and standardizing best practices
in testing, their views of these best practices are also sig-
nificantly influenced by developments that are exogenous to
regulation. For example, the standards of pre-market review
at the FDA developed hand-in-hand with changes in phar-
macological and experimental standards (Marks 1997; Car-
penter 2010). In terms of phased experimentation, develop-
ments in oncology (especially at the National Cancer Insti-



tute) were critical to the FDA’s view of phased experiment
(Carpenter 2010; Keating and Cambrosio 2014).

Approval regulation also creates particular experimental
and long-range behavioral incentives. First, the fact that the
regulator likely has a higher bar for converting R&D into
product launch than does the firm itself means that firms
have incentives to conduct more testing than they other-
wise would (Carpenter and Ting 2007; Henry and Ottaviani
2019), and adhere more closely to practices specified by the
regulator. Notably, the primary costs associated with gate-
keeping regulation are not the agency’s decision itself but
the set of experiments that come before, which are directly
observed and regulated.1 Second, a single company likely
has a range of products, some that are already released and
others that are under development. A key property of the
biomedical marketplace is that there is more profit to be
made from the newest products than the older ones, due in
part to patents (Carpenter 2004; Carpenter et al. 2010). This
means that even a profitable firm has strong incentives to
behave “well” in front of the approval regulator, as its prof-
itability depends heavily upon a stream of new molecules to
be authorized in the future. Being perceived well by the reg-
ulator can both increase the chance of approval and reduce
the expected time to approval.

Of course, the EMA and FDA do many things other than
require testing and decide upon the marketability of new
biomedical products. These agencies inspect production fa-
cilities, require firms to conduct experiments after regula-
tory authorization, require firms and other actors to gener-
ate reports on “adverse events” associated with the product,
monitor other data (a form of observational epidemiology),
consider revisions to labels and warnings, and also regulate
advertising and marketing practices. How can we consider
these in relation to approval regulation? It is useful to dif-
ferentiate here between the set of things that happen before
a product is authorized – ex ante regulation – and the set of
things that happen afterwards – ex post regulation (Carpenter
2010; Henry, Loseto, and Ottaviani 2022). The basic struc-
ture of phased experiment – Phase I trials for basic toxicity
in non-diseased individuals, Phase II and III trials for exam-
ination of safety and efficacy in diseased populations – oc-
curs before marketing authorization (the “veto”). Yet impor-
tant regulatory tools are available after regulatory marketing
authorization. The regulator can require or request changes
in labeling, can remove the product from the market (making
the initial approval reversible at least in fact) and can, on its
own volition, monitor a range of other data on the evolving
risks of the approved product.

1In the model of Carpenter and Ting (2007), the firm possesses
a more precise prior on the state variable of the regulated product –
the asymmetric information is not absolute – but all experiments
are publicly observed. Later approval regulation models have a
similar structure, and while there are aspects of this assumption
that are violated in the real world (such as when a regulatory spon-
sor has access to certain aspects of Phase III trial records that the
regulator does not), this simplification captures much of the actual
operation of approval regulation regimes.

3 Conditions for Approval Regulation
As it has developed in the area of biomedical innovation
(Marks 1997; Carpenter 2010), approval regulation assumes
a particular form. A firm develops a molecule and then be-
gins to test it, first upon non-human animals and then upon
humans in a series of clinical trials.2 The regulator observes
these trials and their results on roughly the same sched-
ule – though not, simultaneously, with the same precision
– as does the firm. The firm then collects data and docu-
mentation from these experiments and other tests (such as
manufacturing data) and submits a “new drug application”
or “dossier” to the regulator. The dossier is massive and
is the basis for the regulator’s decision of whether or not
to authorize/release for marketing of the drug. After reg-
ulatory approval, the regulator often mandates further ex-
periments (often called “postmarketing trials” or “Phase IV
trials”) and also monitors the risk profile of the molecule
through a combination of inspections, adverse event reports
and survey of databases. Medical device regulation carries
forward many principles and institutions from drug regula-
tion. In both molecules and devices, the dominant regulatory
regimes for the FDA include mandatory pre-market experi-
mentation and then an approval decision based upon those
experiments.

The set of assumptions and enabling structures undergird-
ing these regulatory regimes is considerable. It includes:

• Identifiability of a regulated unit. In examining any
regulatory policy, we should ask what is the thing to be
regulated, to be governed? In the case of biopharmaceu-
tical regulation, it is the molecule even more than the
firm. More specifically and germanely, approval regula-
tion in biopharmaceuticals generally possesses an identi-
fiable object of regulation. This is not exogenous to reg-
ulation but is defined in part by the law itself, in the con-
cepts of Investigational New Drug and New Molecular
Entity or New Therapeutic Biological Products, or in the
case of medical devices, Class III devices.

• Identifiability of firms engaging in regulated activ-
ities. In part because biomedical innovation is exoge-
nously costly, in part because the costs associated with
regulation itself, and in part because of the incentives
stemming from patent systems (an agent must claim in-
tellectual property rights over the molecule in order to
enjoy patent protection upon its marketing authoriza-
tion), the production of new therapeutic molecules and
the agents or organizations that produce them and con-
duct experiments upon them is often well known. This
assumption holds even in innovation markets with highly
secondary and tertiary markets for contracting and sub-
contracting.

2Importantly, at the EMA and FDA, the relevant regulated or-
ganization (the “firm”) is not necessarily the one that “discovered”
the product (molecule) but its rather the “sponsor,” the firm that pre-
pares and submits the regulatory dossier. As detailed in Carpenter
(2010, Chapter 10), the structure of approval regulation at the FDA
and related agencies is such that regulatory sponsorship is now an
established, if not pivotal, component of biopharmaceutical firms.



• Testing methods to identify and measure risk. In bio-
pharmaceutical regulation, two facts about the data used
in evaluation are that (1) the adverse events to which
probabilities are assigned are often known and detectible
and (2) well-known probability models can be developed
to describe the risk of these adverse events, such that
these probability models are consulted directly in product
evaluation. While in theory the set of things that could go
wrong is infinite, in practice it is usually quite manage-
able.3 For instance, a vast amount of research has been
conducted on the risk of hepatotoxicity associated with
the ingestion of biopharmaceuticals, as many of these
products place heavy demands upon the liver and their
therapeutic properties often depend upon metabolization
there. An entire set of measurements and statistics are
available for measuring these risks and assigning proba-
bilities or severity measures to them. The “set of things
that could go wrong” is often well known and regula-
tors know where to look for most of (perhaps not all of)
the risk. Beyond this, the tests conducted by developers
and required by regulators make it more likely that ad-
verse events will be potentially observable at sufficient
frequency that large-sample properties of statistical in-
ference can be applied.

• Observability of the fact of testing, once mandated.
In biopharmaceutical regulation, the event that “the firm
conducts a test upon its product” is highly observable,
and in models of approval regulation (Carpenter 2004;
Carpenter and Ting 2007; Henry and Ottaviani 2019),
this fact is perfectly observable and at a cost known to the
regulator as well as the firm. This fact is in part endoge-
nous to institutions, including regulatory institutions, be-
cause the molecule is registered with the FDA (all drugs
under study in the United States must have an approved
status of Investigational New Drug (IND)) as well as pro-
fessional institutions (funding agencies such as the Na-
tional Institute of Health, research clinics and hospitals
that are regulated by professions and by numerous levels
of government). Furthermore, groups of professional sci-
entists and statisticians are routinely consulted in the de-
sign, pre-registration and analysis of these experiments.
This observability assumes that regulators and experts
external to the firm are given access to information about
the product and the experiments conducted upon it.

• Observability of the fact of development. In biophar-
maceutical regulation, it is difficult for actors to conceal
the development, release, and marketing of new thera-
peutic products. For example, if a consumer wants insur-
ance to pay for health services, they will need to come
from a licensed or recognize provider, and relatedly, the
product prescribed to the consumer will need to be listed
on some kind of formulary. In the market for human med-
ical services as well as the market for therapeutic com-
modities (pharmaceuticals or devices), the vast insurance
market serves as a de facto regulator of illegal develop-

3This is even true with the transmissible risk from biologics, as
in many cases infectious disease specialists know at least some, if
not many, of the “red flags” to look for.

ment and provision. It is not impossible, however, and
substantial activity prevails at the margins of the reg-
ulated marketplace, either with known but unregulated
products that are consumed (but not legally marketed)
with believed health effects in mind, such as nutritional
supplements, or with non-ethical drug use for health-
related purposes (those who grow their own cannabis and
who use it for self-ascribed health improvement reasons).
In related forms of regulation, such as the regulation of
new dams or nuclear reactors, the ability of an actor to
“innovate” (create a new product) outside the bounds of
regulation is again quite limited. In the field of molecules,
this fact is also not exogenous to institutions, as a range
of drug enforcement agencies at various levels of gov-
ernment monitor and enforce laws against unauthorized
production of chemical substances.

• An industrial structure and social institutions that fa-
cilitate the previous assumptions. The identifiability of
firms, the ability of the regulator (or other agents) to ob-
serve these firms’ behavior, and the observability of the
fact of testing (a kind of compliance) are greatly facil-
itated in the biopharmaceutical industry by the fact that
the number of firms, while large, is not so large as to defy
manageability. Once we consider the fact that the field for
evaluating risk in biopharmaceuticals is often bounded
by the extent of a diseased population, it is further the
case that the number of firms and laboratories active in a
particular disease market is far smaller than the set of all
biopharma firms generally. While there is no mathemati-
cal or empirical proof of the hypothesis, there may be rea-
son to believe that the feasibility of approval regulation
depends in part upon an oligopolistic industrial structure.
Beyond this, much of FDA governance in molecules and
medical devices is assisted by, relies upon the science and
professional standards of, and assumes the enforcement
of physicians and other medical and health professions.

A final note. Some observers might quibble, and fairly,
with this simplified description of the biopharmaceutical
world to which “FDA-style” approval regulation has been
applied. Our point is that these stylized facts have charac-
terized something of the “steady state” of the biopharma-
ceutical world, even as it is an incredibly dynamic domain
with massive amounts of investment and innovation. Entire
modes of innovation, from early forms of model-assisted
drug development to the important role that AI itself now
plays in drug development, have changed. And yet some of
the institutional and contextual features of the system are
quite stable, and not only because of approval regulation.

4 Potential Pitfalls for AI Approval
Regulation

Given these stylized conditions that facilitate approval reg-
ulation, especially in the biopharmaceutical realm, we now
turn to the emerging field of frontier AI development and as-
sess the extent to which its characteristics are conducive to
FDA-style regulation. Whether the facts adumbrated in the
previous section apply to frontier AI regulation is an empiri-
cal question. It is possible that the conditions for applicabil-



ity of approval regulation to biopharmaceuticals, which are
shown in Table 1, are not yet satisfied in the area of fron-
tier AI, but that they could be in the future, given policies
or forms of industrial evolution, so nothing in this section
should be construed as an impossibility result. Another way
of putting the matter is that the potential fit between mod-
els of approval regulation and frontier AI is a fruitful re-
search agenda in institutional design as well as applied gov-
ernance.

4.1 Scope
Defining Regulated Units Approval gates are intended to
regulate risky products or activities, so they rely on clear def-
initions of what counts as risky. However, frontier AI poses
several challenges to such demarcations.

First, there are not clear metrics to characterize the risk
posed by AI systems, in part due to their generality and
complexity. While definitions of foundation models that are
dual-use or systemically risky have been used as the basis of
regulatory action in the U.S. and E.U. (Executive Office of
the President 2023; Council of the European Union 2024),
these definitions have been criticized for being overinclusive
or underinclusive of certain types of systems that might be
developed (Schuett 2023; Bommasani 2023).

Furthermore, actors throughout the distribution chain can
make a vast array of modifications to AI systems which can
alter their risk profile (Davidson et al. 2023), exacerbating
the problem of defining what counts as a ’new’ unit sub-
ject to gatekeeping. For example, fine-tuning or other mod-
ifications to parameters can alter a system’s behavior or ca-
pabilities, and scaffolding frameworks in which AI systems
are embedded can also alter their risk (Sharkey et al. 2024).
There is an open question of the extent to which this problem
can be addressed by emerging methods that make it more
difficult to modify models to introduce undesirable behav-
iors (Deng et al. 2024; Sheshadri et al. 2024). Another con-
sideration is that a new foundation model with similar or
identical properties to an existing model (e.g. architecture,
data, etc.) might not count as a new system for the purpose
of regulation.

The identifiability of homogeneous regulated units is not
merely important for determining when a new system is de-
veloped that is subject to approval, but also for aggregat-
ing data about risk to enable more informed assessments
(Bommasani et al. 2022). If new data about an AI system
(e.g. from testing or incident reports) leads to an updated
risk profile, regulators rely upon an understanding of how
applicable the new findings are to other systems. However,
this task becomes more difficult as heterogeneity becomes
more complicated. The FDA has more established methods
for data aggregation. For example, when examining a large
dataset of chemical assays of a molecule, or the experience
of thousands of patients with that molecule, or the mechan-
ical properties of a hip implant, or the experiences of thou-
sands of patients with said device, both the product and the
experience have to sufficiently comparable (or “commensu-
rable” as to be able to aggregated).

In addition, the development of a model itself introduces
risks. In biomedical innovation, there are many products and

experiments that the public or regulators generally do not
see or do not observe as thoroughly, and this is especially
so for the products that “fail” in the sense of not having
achieved market launch (Hwang et al. 2016). These prod-
ucts sit on the “shelf” and there is not likely much of a risk
of their being seized and deployed for other uses.4 In the
world of algorithms there seems little, beside strong intellec-
tual property and cybersecurity protections, to prevent oth-
ers from unsafely using them (Guha et al. 2023; Nevo et al.
2023), including through stealing model weights or devel-
oping a similar model of their own. This raises the question
of whether approval should be required for certain forms of
development activities prior to any deployment, which may
include the conduct of a large training run, certain forms of
modification after pre-training, or the operation of a large
datacenter where regulated models are trained and stored.

Regulated Entities The originators of foundation mod-
els are, for the moment and in general, well known. How-
ever, compared to a range of other regulated entities – say
bank holding companies regulated by the Federal Reserve
and other national bank regulators, or biopharmaceutical and
medical device companies as regulated by the FDA or EMA
– there is far less known about the industrial structure of the
AI industry. This fact stems in part from the novelty of the
industry and its rapid rise, but also from the fact of its non-
regulation. Regulation often stipulates certain organizational
forms be taken by a regulated organization (a compliance de-
partment, or a regulatory affairs department) that must then
function as a liaison between the organization and the rel-
evant regulatory agency. These sub-organizations produce
considerable data and fulfill reporting requirements. They
function as a translator for the agency and make the regu-
lated firm and its products more “observable.”

It is unclear whether the industrial organization of foun-
dation model development will lead to an industrial structure
with these properties. There are reasons to think that the fu-
ture of foundation model development will be characterized
by high-cost research and development and by a small num-
ber of dominant firms whose models not only outcompete
the models of other firms on a performance basis, but also
learn about the strengths and weaknesses of those rival mod-
els and adapt. Indeed, the compute cost of training a frontier
model is increasing rapidly (Whittaker 2021; Sevilla et al.
2022; Cottier 2023). As with many other capital-intensive
industries, then, the number of operative firms would be re-
duced. Large and well-resourced companies or laboratories
would more likely have the organizational and financial ca-
pacity to comply with intensive reporting requirements. At
least OpenAI and Anthropic have established internal posi-
tions or teams responsible for documenting the implemen-
tation of catastrophic risk assessment practices for frontier
models (OpenAI 2023; Anthropic 2023).

However, several factors could enable many smaller orga-
nizations to be involved in the development of new founda-
tion models, including reductions in the cost of development

4In some sense, intellectual property regimes address some of
this risk, but in most regulated markets they address the risk of
illegal appropriation for profit, not for misuse.



Category Considerations

Scope

Regulated Units: What characteristics demarcate products or activities that are subject to approval regu-
lation?
Regulated Entities: How conducive are the organizational forms of entities involved in frontier AI devel-
opment to facilitating oversight and complying with requirements?

Observability

Testing Requirements: What evaluation tools and tests are available for measuring risks and informing
approval decisions?
Oversight Mechanisms: What oversight mechanisms are available for regulators to verify firms’ compli-
ance and ensure the rigor of model evaluation/testing or other forms of risk assessment?

Enforceability
Control of Unregulated Activities: To what extent do conditions enable unreported activities subject
to regulation to persist, included unreported domestic activities or foreign activities that undermine the
efficacy of domestic approval regulation?

Table 1: Conditions for the applicability of approval regulation to frontier AI, based on experiences from biomedical regulation.

of frontier models from improvements in algorithmic effi-
ciency (Ho et al. 2024) or meaningful alterations via post-
training enhancements (Qi et al. 2023). These organizations
are less likely to have the resources to engage in as rigorous
compliance and reporting activities.

Another problem arises from the fact that the set of orga-
nizations that deploy foundation models may differ materi-
ally and appreciably from the set of labs that create them.
If deployers are making consequential decisions that im-
pact the risk profile, including implementing their own us-
age monitoring or other safety guardrails, regulators may
have an interest in granting approval for actions by deployers
rather than, or in addition to, upstream developers (Stein and
Dunlop 2023). However, deployers may lack the ability to
conduct as rigorous testing and reporting as upstream devel-
opers due to having less expertise, resources, and, perhaps
most importantly, access to proprietary information about
the system that is maintained by upstream developers (Bom-
masani et al. 2023a; Hacker, Engel, and Mauer 2023; An-
derljung et al. 2023b; Casper et al. 2024).

In addition, deployers would likely lack the institutional
forms that facilitate observability and verification of com-
pliance, especially where model weights are openly released
(Seger et al. 2023; Kapoor et al. 2024). The general princi-
ple here is that approval regulation in the biomedical realm
depends upon a set of social and economic institutions that
developed alongside and somewhat separably from approval
regulators like the FDA or EMA. In the biomedical realm,
the secondary market for the “deployment” of approved
technologies is regulated by the professionalization of pre-
scribers and, more implicitly but no less consequentially, by
the tort system. Similar structures and institutional forms
are still in their early stages for AI development, deploy-
ment, and usage (Solaiman 2023; Eiras et al. 2024; Gorwa
and Veale 2024; Shevlane 2024). Yet this raises the question
for AI regulation of what social and economics structures –
professionals that regulate use, tort systems that impose li-
ability constraints, concentrated industrial structure that en-
hances the prospect for compliance capacity – will emerge
in foundation models.

4.2 Observability
Experimentation Requirements In an important obser-
vation, Knight (1921) described a form of “uncertainty” in
which events can be enumerated but probabilities cannot be
assigned to them. In a recent paper, Sunstein (2023) reviews
the postulates of this concept and argues that regulatory pol-
icy development must take account of this ineluctable fact.

Whether probabilities can be assigned to the various risk
events that we encounter with the development of AI to
form the basis of effective regulatory decisions is not known.
The complexity of the deployment environment means that
model behaviors and their resulting effects are difficult to
anticipate (Weidinger et al. 2023).

But even if Knightian uncertainty did not exist in this
world, another problem would: deep ambiguity or what Kay
and King (2020) call “radical uncertainty.” Compared to
most regulated domains, the AI domain seems replete with
potential risks and rewards that are, almost by forcible exten-
sion from the promise and pitfalls of artificial intelligence,
hard to imagine. A related concern is what Taleb (2014) has
called the Lucretius problem, namely the tendency to be-
lieve that the past contains the full set of harms that could
occur and that nothing worse than what is in that (mem-
ory) set could possibly occur in the future. This problem
is exacerbated by increasingly capable models that can cre-
ate previously unknown pathways for risk (Shevlane et al.
2023; OpenAI 2023). Or the auxiliary risks from diffusive
bioweapons, proliferating nuclear weapons, or interconnect-
edness may exacerbate the harm that could happen from an
otherwise stable process governing risks from foundation
models (Zwetsloot and Dafoe 2019). This makes risk eval-
uation and risk management not merely a difficult proposi-
tion but also requires those who would regulate frontier AI
to consider scenarios that have never before occurred and
have not yet been imagined, either by machine or by human.

Recent regulatory developments suggest that one kind of
testing that is and will be conducted upon foundation mod-
els is ’red teaming’ (Ganguli et al. 2022; Perez et al. 2022;
Rando et al. 2022; Casper et al. 2023; Feffer et al. 2024),
which EO 14110 defines as a ”structured testing effort” that
usually involves ”adversarial methods to identify flaws and
vulnerabilities, such as harmful or discriminatory outputs
from an AI system, unforeseen or undesirable system behav-



iors, limitations, or potential risks associated with the mis-
use of the system” (Executive Office of the President 2023).
The mapping from AI red teaming to risk assessment is akin
to financial stress-testing, where red teaming exercises can
provide insights into harms that can arise in various scenar-
ios or contexts. Indeed, stress testing in the financial sec-
tor involves considering worst-case scenarios and contexts
involving systemic risk. While previous AI red-teaming ef-
forts have been limited (Feffer et al. 2024), more rigorous
red-teaming exercises may involve providing red-teamers
with greater access to models to assess worst-case behav-
iors (Kinniment et al. 2023; Casper et al. 2024). Advances
in methods to identify a wider array of undesirable behav-
iors can enhance the effectiveness of red-teaming. However,
red-teaming shares a property of stress testing that tests are
biased towards studying scenarios that humans have already
imagined. Indeed, stress tests were conducted before the
2008 financial crisis, but they did not imagine and test for
a scenario with sufficient stress from a decline in housing
prices (Frame, Gerardi, and Willen 2015).

Behavioral testing methods, such as AI red-teaming as it
is often practiced, are also prone to producing misleading
results (Casper et al. 2024), including due to a poor un-
derstanding of training dynamics (Schaeffer, Miranda, and
Koyejo 2023) or data contamination (Golchin and Surdeanu
2023; Oren et al. 2023). A related concern is that the training
process might encourage advanced models to behave well
during behavioral testing in contrast to actual deployment
(Berglund et al. 2023; Cohen et al. 2024; Ngo, Chan, and
Mindermann 2024; Hubinger et al. 2024).

Testing can involve complementary approaches beyond
behavioral evaluations. For example, interpretability meth-
ods focused on studying model internals can gain insights
into model reasoning (Wang et al. 2022; Li et al. 2024a).
While researchers often use these methods to analyze small
models (Elhage et al. 2022), recent work raises the question
of whether emerging interpretability methods can produce
valuable insights about the behavior of large models (Cun-
ningham et al. 2023; Marks et al. 2024; Templeton et al.
2024). ”In-the-wild” testing (Naihin et al. 2023), including
in sandbox environments (Park et al. 2023), can also pro-
duce insights that are difficult to produce in more controlled
settings. Ecosystem-wide documentation (Bommasani et al.
2023b; Chan et al. 2024) can also be directly consulted to
inform risk assessment. In general, various forms of testing
can complement each other when assessing the risk profile
of a model.

The question of risk from frontier AI is not merely the
question of considering various pathways and their likeli-
hoods, but also the potential costs incurred once that bar-
rier is ruptured (or ruptured with sufficient severity that se-
rious human costs occur). To be clear, any regulatory regime
that makes decisions based in part on imagined worst-case
scenarios would have to avoid implementing the most naı̈ve
decision rules. Just because an exercise can produce a hor-
rific imagined result – the end of the world – should not
imply that the most restrictive regulatory response should be
adopted (Sunstein 2009). Any speculative exercise that in-
cluded the worst possible scenario would also need to con-

sider humanity’s likely best response in addition to regula-
tory options.

Despite ongoing experimentation and recent progress in
AI risk assessment, the risks are currently far better known
in biomedical innovation, in part because they have been
known descriptively for decades or even a century or more.
We can and do measure the risk of liver damage or hep-
atotoxicity from drugs, but beyond that, there is abundant
community knowledge about where such risks can lead and
the likely profile of costs that can be imposed. In oncology,
for instance, there is an entire subfield dedicated to studying
the cardiac risks of oncologic therapies, including cytotoxic
and immunotherapeutic interventions (Herrmann et al. 2022;
Lyon et al. 2020). The “event” (hepatotoxicity, cardiotoxic-
ity) can be defined, as can its attendant sequellae that im-
poses costs upon the human person (conditional probability
or likelihood of dysfunction requiring a transplant, or mor-
tality). Or in disaster insurance, there are entire industries
dedicated to modeling the aggregate effects of a hurricane
or tornado cluster. In short, there are a set of questions that
any implementable risk science would need to be addressed
in any risk-benefit analysis of a foundation model.

Oversight Mechanisms If tests are required, what is the
enforcement regime for ensuring that they are carried out?
Even in the area of biomedical regulation, many pivotal tri-
als are not reported and many post-approval trials are neither
commenced, completed nor fully reported (Carpenter 2010;
Moore and Furberg 2014; Hwang, Kesselheim, and Bour-
geois 2014; Wallach et al. 2018). One descriptive study of
new drugs approved by the FDA in 2008 found that five
years later (2013) “26 of 85 (31%) of the postmarketing
study commitments had been fulfilled, and 8 (9%) [of those
studies] had been submitted for agency review” (Moore and
Furberg 2014; see also Carpenter 2014).

The regulated organization would be responsible for car-
rying out testing or permitting government or third-party ob-
servers access to the resources with which they could be per-
formed. In the case of financial stress tests, the regulated
organization is often one of the most heavily regulated and
well-documented organizations on the planet. Consider, for
example, the kinds of data that the Federal Reserve carries
and published on commercial banks or bank holding compa-
nies (https://www.federalreserve.gov/data.htm). On a quar-
terly basis, regulators observe hundreds if not thousands of
indicators on the operation of each entity they regulate. In
the case of bank holding companies, for instance, this in-
cudes a regular statement of their consulting, advising and
external legal expenses (Libgober and Carpenter 2024). And
as of May 2022, different government agencies employ over
60,000 bank examiners.5

A similar degree of oversight does not exist for frontier
AI developers. Many developers are hesitant to share infor-
mation about their proprietary models (Bommasani et al.
2023a) and have incentives to limit information sharing
(Casper et al. 2024; Kolt et al. 2024). Furthermore, doc-

5See the data adduced by the Bureau of Labor Statistics, which
decomposes the bank examiner population into several profes-
sional types; https://www.bls.gov/oes/current/oes132061.htm.



Labs Models Tests Regulator 
Decides fully informed, 
sees lab and all tests

Decides partially informed, 
observes lab but not all tests

Decides informed for original 
model, but does not see 
modified model. 

Never sees the lab or models

Observes all tests, but tests 
miss some undesirable 
behaviors/red flags

Figure 1: Possible scenarios where regulators lack complete information about frontier AI model development or testing. Ar-
rows show which models were trained by which labs. Dark blue icons reflect regulators having complete information, and faded
blue icons reflect a lack of regulatory visibility. Purple icons represent misleading or uninformative test results.

umentation and disclosure practices among frontier model
developers are inconsistent and incomplete (Kolt et al. 2024;
Pal, Bau, and Miller 2024). This inhibits an understanding of
model behaviors and risks even when information is shared,
and some relevant information (e.g. detailed documentation
of internal testing) might not be documented at all. In Fig-
ure 1, we show several scenarios which could result in regu-
lators lacking complete information about models subject to
approval regulation, including testing data.

4.3 Enforceability
Control of Unregulated Activities Approval regulation
and any other kind of licensing or entry regulation depends
upon institutions of detection. Furthermore, approval regu-
lation is reinforced by the existence of an organization that
could be sanctioned for illegally marketing or distributing
an unapproved product, or that could potentially be fined for
failure to observe regulatory requirements.

Direct regulation of innovators is becoming a standard
feature of policy proposals in the AI domain. This is the
direction in which the Biden Administration in the United
States (Executive Office of the President 2023) as well as
the European Union are moving. The question becomes how
enforceable such requirements are. The applicability of ap-
proval regulation to frontier AI governance depends, again,
upon the existence, whether designed or co-evolved, of an
industry structure that permits detection of R&D, violation
of regulatory requirements, and feasible compliance activi-
ties.

If firms or labs do not wish to announce the development
of a new model, or if there are many small labs capable of
producing new foundation models, then it may be more dif-

ficult for any third-party agent to observe many acts of a new
foundation model being developed or deployed.

However, foundation model development that is not
reported by developers may be observable to compute
providers because of the scale of frontier AI model train-
ing runs (Sastry et al. 2024). As new AI models are devel-
oped and deployed, they often require massive utilization of
computing power (and, relatedly, monetary investments to
purchase relevant equipment, processing time and concomi-
tant utilization of energy), so they are trained in large data-
centers (Pilz and Heim 2023). If these expenditures can be
measured by regulators or third parties, then development
of new foundation models may be detectible (Shavit 2023;
Heim et al. 2024). Another possibility is that the expense of
new model development may be so high as to induce exoge-
nous barriers to entry and a small number of dominant firms
or labs. Then as with the earlier problem of regulated orga-
nizations, industrial structure – something like an oligopoly
– may reduce the set of regulable players to a manageable
number.

Still, some risk may come from the fact that organiza-
tions in less well-regulated jurisdictions may wish to invest
in laboratories or compute infrastructure to develop their
own AI capabilities – this may include state-sponsored or-
ganizations. In addition, regulatory settings with lower-cost
regulatory requirements might well attract more laboratory
activity from abroad and compute infrastructure develop-
ment. Because foundation models present the prospect of
highly diffusive and contagious risk, the globalization or
“harmonization” of regulatory requirements would likely be
far more important in regulating AI than it would in regulat-
ing biomedical products (Ho et al. 2023; Trager et al. 2023).



Hence, an effective approval regulation regime would still be
constrained without legal uniformity (at least for regulatory
minima) for foundational model developers (Cihon 2019),
as well as international coordination on monitoring devel-
opment (Trager et al. 2023; Shavit 2023).

5 Developing Approval Regulation through
Experimentation and Learning

The upshot of these considerations might be that the con-
ditions do not yet exist for the implementation of an effec-
tive approval regulation regime. However, it would be pre-
mature to conclude that the obstacles we laid out could not
be overcome, especially through policy experimentation and
learning. Any regulatory policy must be considered in a dy-
namic context, which means that the status quo must always
be regarded as at least partially an experiment from which
lessons can be drawn and to which adaptations can be made.
The longer history of approval regulation in molecules has
taken the better part of a century (in devices, a half-century
at least) to evolve, and decades- or century-long time hori-
zons have characterized the evolution of regulation in other
domains such as antitrust, anti-collusion, consumer product
safety and systemic finance.

Consider that molecular regulation in therapeutics started
without a regulatory veto for therapeutic drugs—the 1906
Pure Food and Drugs Act gave the federal government post-
market inspection and product removal power (though note
that the very first vaccines did have something like a gate-
keeping institution in the 1902 Biologics and Vaccines Act).
Regulatory development depended heavily upon coincident
developments in pharmacology, statistics and the study of
clinical trials and cancer therapeutics (Keating and Cam-
brosio 2014). It was these developments, combined with
particular regulatory crises, that led to a new regime of
regulatory pre-market review in the 1930s and the sub-
sequent Kefauver-Harris Amendments of 1962 (Carpenter
2010, Chapter 3), which mandated proof of ”effectiveness”.

Furthermore, regulatory experience at the FDA spurred
scientific findings that have led to various transformations of
its approval models. For example, in some areas of therapeu-
tics, while there is an abiding debate about the merits of such
programs (Fleming 2005; Moore and Furberg 2014; Carpen-
ter 2014; Budish, Roin, and Williams 2015; Naci, Smalley,
and Kesselheim 2017), most or all new drugs are now ap-
proved on the basis of surrogate endpoints (Yu et al. 2015).
The basic idea is that what society most cares about is mor-
tality and morbidity, but that stand-in correlates of these core
variables (tumor growth in solid tumors, say, or A1C reduc-
tion in diabetes medications) can be observed or measured
earlier in the experimentation process, and may be sufficient
for making decisions about the marketability of a new prod-
uct.

5.1 Learning from Other AI Regulations
One possibility, and a scenario that has some historical ex-
perience to support its plausibility, is that ”lighter” and more
inchoate forms of regulation may generate lessons applica-
ble to regulatory reform. A range of governance propos-

als and regimes have already emerged for AI and founda-
tion models. Regulation of foundation models is trending
toward the adoption of registration and reporting require-
ments, and there are many aspects of these regimes, too,
that suffer from adaptability and feasibility problems (Guha
et al. 2023). Several of the challenges are similar and may
offer applicable lessons, including establishing definitions
of regulated systems (Schuett 2023; Bommasani 2023), con-
ducting informative tests, establishing mechanisms for over-
sight of development, and limiting non-compliant activities.
In some sense, there is relevant experimentation right now.

In addition, early forms of foundation model regulation
can precipitate the development of similar regimes in other
jurisdictions. Such patterns have already emerged with in-
stitutions focused at least in part on frontier AI gover-
nance—the establishment of the UK AI Safety Institute (De-
partment for Science, Innovation & Technology 2024) was
followed by the establishment of similar institutions in at
least the U.S. (U.S. Department of Commerce 2023), Japan
(Shimbun 2023), and Canada (Cass-Beggs 2024). Indeed,
with pharmaceutical regulation, there have been adaptations
of FDA-like regulatory frameworks adopted across national
and regional settings. These patterns can increase interna-
tional coordination and facilitate more experimentation, al-
though more experimentation across national contexts trades
off against harmonization and creates risks of regulatory
’races to the bottom’.

European societies were long accustomed to apply less
stringent approval regulation to pharmaceuticals than in the
United States. The reduced stringency took several forms:
(1) weaker experimental standards entailing less costly ex-
periments that observed fewer dimensions of efficacy and
risk, (2) weaker requirements on dossiers such that experi-
mental data were summarized and not fully reported, and, fi-
nally, (3) easier approval standards. Counter-intuitively from
the perspective of regulatory “races to the bottom,” it is Eu-
rope that moved in the direction of the United States, not
vice versa (Carpenter 2010, Chapter 12). Many observers
now consider European biopharmaceutical regulation to be
more stringent than in the United States.

5.2 Learning from AI Evaluation and Testing
Methods for model evaluation and testing are being devel-
oped and iterated upon both in the context of emerging reg-
ulatory regimes, as well as within the AI research commu-
nity more broadly (Chang et al. 2024; Birhane et al. 2024).
These developments include novel benchmarks (Srivastava
et al. 2023; Li et al. 2024b), methodologies and tools (Kin-
niment et al. 2023; Ojewale et al. 2024; Hubinger et al.
2024), taxonomies of risks (Weidinger et al. 2023; OpenAI
2023; Critch and Russell 2023; Shevlane et al. 2023; An-
thropic 2023), and documentation practices for communi-
cating results (Gilbert et al. 2023; Kolt et al. 2024; Clymer
et al. 2024). Thus far, evaluation practices for frontier mod-
els have been largely unstandardized (Feffer et al. 2024), but
they have produced key learnings (Ganguli et al. 2023), and
there are nascent efforts to increase standardization of eval-
uation practices (METR 2024; U.S. Department of Com-
merce 2024; AI Safety Institute and Department for Science,



Innovation & Technology 2024).
One possibility is that a set of potentially governable risks

and tools to measure them might be adduced as they emerge
in either experimentation or in real-world behavior. This is
in the spirit of reporting requirements and incident report-
ing systems (McGregor 2021; The National Artificial Intel-
ligence Advisory Committee 2023). The many decades of
experience with adverse event reporting systems in biomed-
ical innovation suggest that it will take considerable time and
institutional investment to develop standardized frameworks
for evaluation.

The scope of this nascent evaluation and risk detection
industry is beyond the ambit of this paper. An important
question for those proposing approval regulation regimes
(Stein and Dunlop 2023), a variety of “FDA-like” insti-
tutions (Tutt 2016) or even “adverse event reporting sys-
tems” (The National Artificial Intelligence Advisory Com-
mittee 2023), however, is whether a standardized framework
for threat detection and risk evaluation can emerge from
these scattered efforts. One may wish for a less standard-
ized approach, but a true “system”-based approach to reg-
ulation will, sooner or later, seek to aggregate across dif-
ferent datasets and analyses.6 In the biomedical regulation
world, there have been decades of calls for “harmonization”
of regulatory requirements and standards across nations. The
prima facie logic inspiring these proposals seems defensible,
but given that federalism is itself a form of experimentation
(Volden, Ting, and Carpenter 2008; Callander and Harstad
2015), one worries that learning value is surrendered when
regulatory harmonization develops into strong uniformity.

One final problem with an experimental and incremen-
tal approach to regulation is that the materialization of the
most severe risks may create conditions from which it is
hard to escape. The most “catastrophic” risks from founda-
tion model development may call for more stringent regu-
lation in the first place (Stein and Dunlop 2023; Weil 2024;
Cohen et al. 2024).

6 Conclusion
This paper joins other calls for circumspection in the ap-
plication of regulatory models to generative artificial intel-
ligence, in particular calling for more careful consideration
of the feasibility of “FDA-like” approval regulation regimes
to the regulation of frontier AI models and the catastrophic
risks they may pose. The greatest impediments to such a
model, in our judgment, are (1) enforceability of rigorous
testing requirements and development/deployment restric-
tions and, perhaps most important, (2) the inapposite map-
ping between AI evaluation and the world of large samples
and well-defined risks in which approval regulation oper-
ates, due to the lack of well-established indicators of catas-
trophic risk. However, we propose viewing these obstacles
through the lens of policy learning, where the emergence

6Another way of putting the question here is whether any uni-
fied regulatory regime should exist at all, as opposed to a range of
less centralized arrangements operating in communication, but not
stringent coordination, with each other. This is quite different from
calls for self-regulation or no regulation at all.

of a regulatory regime that achieves fit within its domain de-
pends upon adaptation and incorporation of new information
from both regulatory experience and exogenous factors.

Regulatory change, of course, implies neither regulatory
evolution in a “fitness” sense nor monotonic improvement.
Yet in a range of domains, it is at least plausible that regula-
tion has been transformed due to criticism, scientific analy-
sis, benefit-cost analysis and more rational forms of political
oversight (McCraw 1986). This may not rise to the level of
the culture championed by Greenstone (2009), but that does
not mean that useful information cannot be yielded by such
learning, nor does it mean that a less formally experimental
approach is worse. Learning about policies from prospec-
tively designed experiments alone may be difficult over the
long run, and recent arguments suggest that a purely exper-
imental approach may be wrong for optimization of poli-
cies in different domains (Stevenson 2023). Whatever the
preferred mode of policy learning, it would be essential to
approach such inferences prospectively and retrospectively,
and to consider hybrid forms of regulation, given the rapidly
changing nature of foundation models in AI and the often
unquantifiable nature of their dangers.

Our point is not that approval regulation is a neces-
sary component or end point of a comprehensive regula-
tory regime, or that other forms of regulation are necessar-
ily insufficient or instrumental. There is, of course, no law
that stipulates (and certainly no evidence consistent with any
law that suggests) that regulation evolves in any monotonic
fashion from less to more efficient. Yet regulatory reform
and deregulation have occurred in many domains (Green-
stone 2009). There is no unidirectionality to regulation. Nor
is there any systematic historical or empirical evidence for
any such unidirectionality.
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