Publication Library
Managing health insurance using blockchain technology
Description: Health insurance plays a significant role in ensuring quality healthcare. In response to the escalating costs of the medical industry, the demand for health insurance is soaring. Additionally, those with health insurance are more likely to receive preventative care than those without health insurance. However, from granting health insurance to delivering services to insured individuals, the health insurance industry faces numerous obstacles. Fraudulent actions, false claims, a lack of transparency and data privacy, reliance on human effort and dishonesty from consumers, healthcare professionals, or even the insurer party itself, are the most common and important hurdles towards success. Given these constraints, this chapter briefly covers the most immediate concerns in the health insurance industry and provides insight into how blockchain technology integration can contribute to resolving these issues. This chapter finishes by highlighting existing limitations as well as potential future directions.
Created At: 13 December 2024
Updated At: 13 December 2024
A Systematic Literature Review on the Use of Blockchain Technology in Transition to a Circular Economy
Description: The circular economy has the potential to increase resource efficiency and minimize waste through the 4R framework of reducing, reusing, recycling, and recovering. Blockchain technology is currently considered a valuable aid in the transition to a circular economy. Its decentralized and tamper-resistant nature enables the construction of transparent and secure supply chain management systems, thereby improving product accountability and traceability. However, the full potential of blockchain technology in circular economy models will not be realized until a number of concerns, including scalability, interoperability, data protection, and regulatory and legal issues, are addressed. More research and stakeholder participation are required to overcome these limitations and achieve the benefits of blockchain technology in promoting a circular economy. This article presents a systematic literature review (SLR) that identified industry use cases for blockchain-driven circular economy models and offered architectures to minimize resource consumption, prices, and inefficiencies while encouraging the reuse, recycling, and recovery of end-of-life products. Three main outcomes emerged from our review of 41 documents, which included scholarly publications, Twitter-linked information, and Google results. The relationship between blockchain and the 4R framework for circular economy; discussion the terminology and various forms of blockchain and circular economy; and identification of the challenges and obstacles that blockchain technology may face in enabling a circular economy. This research shows how blockchain technology can help with the transition to a circular economy. Yet, it emphasizes the importance of additional study and stakeholder participation to overcome potential hurdles and obstacles in implementing blockchain-driven circular economy models.
Created At: 13 December 2024
Updated At: 13 December 2024
HIST-AID Leveraging Historical Patient Reports for Enhanced Multi-Modal Automatic Diagnosis
Description: Chest X-ray imaging is a widely accessible and non-invasive diagnostic tool for detecting thoracic abnormalities. While numerous AI models assist radiologists in interpreting these images, most overlook patients' historical data. To bridge this gap, we introduce Temporal MIMIC dataset, which integrates five years of patient history, including radiographic scans and reports from MIMIC-CXR and MIMIC-IV, encompassing 12,221 patients and thirteen pathologies. Building on this, we present HIST-AID, a framework that enhances automatic diagnostic accuracy using historical reports. HIST-AID emulates the radiologist's comprehensive approach, leveraging historical data to improve diagnostic accuracy. Our experiments demonstrate significant improvements, with AUROC increasing by 6.56% and AUPRC by 9.51% compared to models that rely solely on radiographic scans. These gains were consistently observed across diverse demographic groups, including variations in gender, age, and racial categories. We show that while recent data boost performance, older data may reduce accuracy due to changes in patient conditions. Our work paves the potential of incorporating historical data for more reliable automatic diagnosis, providing critical support for clinical decision-making.
Created At: 13 December 2024
Updated At: 13 December 2024
Quantum Threat in Healthcare IoT Challenges and Mitigation Strategies
Description: The Internet of Things (IoT) has transformed healthcare, facilitating remote patient monitoring, enhanced medication adherence, and chronic disease management. However, this interconnected ecosystem faces significant vulnerabilities with the advent of quantum computing, which threatens to break existing encryption standards protecting sensitive patient data in IoT-enabled medical devices. This chapter examines the quantum threat to healthcare IoT security, highlighting the potential impacts of compromised encryption, including privacy breaches, device failures, and manipulated medical records. It introduces post-quantum cryptography (PQC) and quantum-resistant techniques like quantum key distribution (QKD), addressing their application in resource-constrained healthcare IoT devices such as pacemakers, monitoring tools, and telemedicine systems. The chapter further explores the challenges of integrating these solutions and reviews global efforts in mitigating quantum risks, offering insights into suitable PQC primitives for various healthcare use cases.
Created At: 13 December 2024
Updated At: 13 December 2024
A Framework for Migrating to Post-Quantum Cryptography Security Dependency Analysis and Case Studies
Description: Quantum computing is emerging as a significant threat to information protected by widely used cryptographic systems. Cryptographic methods, once deemed secure for decades, are now at risk of being compromised, posing a massive threat to the security of sensitive data and communications across enterprises worldwide. As a result, there is an urgent need to migrate to quantum-resistant cryptographic systems. This is no simple task. Migrating to a quantum-safe state is a complex process, and many organisations lack the in-house expertise to navigate this transition without guidance. In this paper, we present a comprehensive framework designed to assist enterprises with this migration. Our framework outlines essential steps involved in the cryptographic migration process, and leverages existing organisational inventories. The framework facilitates the efficient identification of cryptographic assets and can be integrated with other enterprise frameworks smoothly. To underscore its practicality and effectiveness, we have incorporated case studies that utilise graph-theoretic techniques to pinpoint and assess cryptographic dependencies. This is useful in prioritising crypto-systems for replacement.
Created At: 13 December 2024
Updated At: 13 December 2024