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Abstract

We revisit the classic online portfolio selection problem, where at each round a learner selects
a distribution over a set of portfolios to allocate its wealth. It is known that for this problem
a logarithmic regret with respect to Cover’s loss is achievable using the Universal Portfolio
Selection algorithm, for example. However, all existing algorithms that achieve a logarithmic
regret for this problem have per-round time and space complexities that scale polynomially with
the total number of rounds, making them impractical. In this paper, we build on the recent work
by Haipeng et al. 2018 and present the first practical online portfolio selection algorithm with a
logarithmic regret and whose per-round time and space complexities depend only logarithmically
on the horizon. Behind our approach are two key technical novelties of independent interest. We
first show that the Damped Online Newton steps can approximate mirror descent iterates well,
even when dealing with time-varying regularizers. Second, we present a new meta-algorithm
that achieves an adaptive logarithmic regret (i.e. a logarithmic regret on any sub-interval) for
mixable losses.

1 Introduction

In this paper, we consider the problem of online portfolio selection where, at each round t, a learner
chooses a distribution pt ∈ ∆d over a fixed set of d portfolios. Then, the environment reveals a
return vector rt ∈ R

d
≥0, and the learner suffers a loss ℓt(pt) := − ln〈pt, rt〉. The goal of the learner

is to minimize the regret RT (u) :=
∑T

t=1(ℓt(pt)− ℓt(u)) after T ≥ 1 rounds, which is the difference
between the cumulative loss of the learner minus that of any distribution u over portfolios. For
this problem, it is known that Cover’s Universal Portfolio Algorithm (UPA) [Cov91] guarantees
the optimal O(d ln T ) regret bound. One implication of this is that if a distribution u has an
exponential return growth rate with constant λ > 0, i.e.

∏
t∈[T ]〈u, rt〉 ∝ eλT , then the total return

of UPA also has an exponential growth rate with constant at least Ω(λ/d).
The main shortcoming of the UPA is that the expression of its outputs involves multi-variate

integrals that make its implementation impractical. One way of approximating these integrals is
via log-concave sampling as done by [KV02]. The algorithm of the latter has a computational com-
plexity of order O(d4T 15), measured after T rounds. Even though this computational complexity
can be reduced using more modern log-concave sampling methods (see e.g. [NR17, BEL18]), it
remains a large polynomial of T , making these approaches impractical.

It is possible to use other more efficient online learning algorithms for the portfolio selection
problem. Algorithms such as Online Gradient Descent [Zin03], Online Newton Step [HAK07], and
Exponentiated Gradients [HSSW98] all have regret bounds that scale with the largest observed
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Algorithm Regret Run-Time Space Comp. References
Universal Portfolio d lnT d4T 15 dT [Cov91, KV02]

ONS Gd lnT d3.5T d [HAK07]
FTRL G2d ln(dT ) d2.5T 2 dT [AH05]

EG G
√
T ln d dT d [HSSW98]

Soft-Bayes
√
dT ln d dT d [OLL17]

Ada-BARRONS d2 ln4 T d2.5T 2 + d3.5T dT [LWZ18]
AdaMix+ DONS d2 ln5 T d3T ln2 T d ln2 T (this work—Thm. 17)

Table 1: Result comparison.

gradient norm G. One way to ensure that the gradients are bounded in the online portfolio setting
is to mix the outputs of such algorithms with a small amount of uniform distribution. This approach
leads to a regret bound of order d

√
T ln d in the best case (which is not logarithmic in T ), even

after optimizing for the amount of uniform distribution used. The Soft-Bayes algorithm [OLL17]
provides a

√
d improvement over this regret bound. Finally, [AH05] showed that the Follow-the-

Regularized-Leader (FTRL) algorithm achieves a regret bound of order O(G2d ln(dT )), albeit it was
conjectured by [VEVdHKK20] that the dependence in G (the largest gradient norm) may be merely
an artifact of the analysis. Tab. 1 compares the regret bounds and computational complexities of
the different algorithms mentioned here.

Among known algorithms that achieve a logarithmic regret in the online portfolio setting, Ada-
BARRONS [LWZ18] is the best in terms of computational cost (see Tab. 1). Ada-BARRONS consists
of I) a base algorithm that is essentially mirror descent with a log-barrier plus a quadratic regularizer
with a parameter β; and II) a meta-algorithm that implements a clever restart scheme to learn the
parameter β and achieve a logarithmic regret. The algorithmic idea behind Ada-BARRONS can be
traced back to the problem of combining bandit algorithms [ALNS17, WL18], where the use of a
non-decreasing learning rate schedule is used to extract crucial negative terms in the regret analysis
of mirror descent (see §3).

The main drawback of Ada-BARRONS is that its time [resp. space] complexity is quadratic
[resp. linear] in the total number of rounds (see Table 1). Though Ada-BARRONS has a substantially
better computational complexity compared to approaches based on log-concave sampling, it is still
not a practical algorithm when the horizon is large. The main reason for the quadratic time
complexity is the restarts of Ada-BARRONS, which require computing the regularized leader at
each round. [LWZ18] posed the question of whether there exists an algorithm that improves on
either the regret or the computational complexity of Ada-BARRONS without hurting the other.

Contributions. We answer the above question in the positive by presenting an online algorithm
for portfolio selection with a logarithmic regret and that has near constant per-round time and space
complexities. Behind our solution are two techniques of independent interest in online learning. We
first show that one can use the damped Newton steps [N+18] to approximate the mirror descent
iterates in Ada-BARRONS without sacrificing the logarithmic regret. Here, existing results due
to [AHR12] do not apply (due to time-varying regularizers in the mirror descent objective—see
§3.1). Even if they did, they would lead a suboptimal O(

√
T ) regret, and so a new analysis is

needed, which we provide. Using online damped Newton steps confers a O(
√
d) improvement in

the computational cost.
The second and crucial tool we use is a new meta-algorithm that achieves an adaptive [HS07]

logarithmic regret for mixable losses; that is, an algorithm that achieves a logarithmic regret on any
interval I ⊆ [T ], whenever the losses are mixable. Thanks to a novel analysis, we show that using
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such a meta-algorithm removes the need for computing the regularized leader, which is required
by Ada-BARRONS. This further improves the time and space complexities by Õ(T ), leading to our
final algorithm that has O(d3T ln2 T ) and O(d ln2 T ) total time and space complexities, respectively.

The techniques we develop are transferable to another prominent online learning problem; that
of learning linear models with the log-loss [RS15, Section 6].

Outline. In §2, we introduce the notation and definitions we need. We also include some results
on self-concordance that we require in our analysis. In §3, we describe the Ada-BARRONS algorithm
in more detail and highlight the challenges involved in the design of an efficient alternative. There,
we also outline our solution and give a sketch of why it works. Finally, in §4, we present the full
details of our algorithm and its guarantee. The proofs are differed to the appendix.

2 Preliminaries

We define the set Cd−1 := {u ∈ R
d−1
≥0 : 〈1,u〉 ≤ 1}. Throughout, for any v ∈ Cd−1, we denote

v
′ := (1− 1/T )v + 1/(dT ), and v̄ := ed + J⊺

v, where J :=
[
I −1

]
.

We may combine the notation and write v̄′ := (1−1/T )v̄+1/(dT ) and v
′′ := (1−1/T )v′+1/(dT ).

We will be working with Cover’s loss ℓt, which for a return vector rt ∈ R
d
≥0, is given by

∀u ∈ Cd−1, ℓt(u) := − log〈rt, ū〉. (1)

Our goal is to design an efficient algorithm whose outputs (ut) are such that the regret

RegretT (u) :=

T∑

t=1

(ℓt(ut)− ℓt(u)) = ln

∏T
t=1〈rt, ū〉∏T
t=1〈rt, ūt〉

against any comparator u ∈ Cd−1 is bounded by a poly-logarithmic factor in T . Since the regret
is invariant to the scale of (rt), we may assume without loss of generality that (rt) ⊂ [0, 1]d. The
next lemma (taken from [LWZ18, Lemma 10]), implies that a regret against a comparator u ∈ Cd−1

is bounded by the regret against u′ up to an additive factor—this will be useful throughout:

Lemma 1. For any u ∈ Cd−1 and u
′ = (1 − 1

T )u+ 1
dT 1, we have

∑T
t=1 ℓt(u) ≤

∑T
t=1 ℓt(u

′) + 2.

Self-Concordant Functions. We now present some results on self-concordant functions that we
will make heavy use of in the proofs of our results. We start by the definition of a self-concordant
function. For the rest of this section, we let K be convex compact set with non-empty interior
intK. For a twice [resp. thrice] differentiable function, we let ∇2f(u) [resp. ∇3f(u)] be the Hessian
[resp. third derivative tensor] of f at u.

Definition 2. A convex function f : intK → R is called self-concordant with constant Mf ≥ 0, if
f is C3 and satisfies I) f(xk) → +∞ for xk → x ∈ ∂K; and II)

∀x ∈ intK,∀u ∈ R
d, |∇3f(x)[u,u,u]| ≤ 2Mf‖u‖3∇2f(x).

Note that by definition, if f is self-concordant with constant Mf ≥ 0 it is also self-concordant
with any constant M ≥ Mf . Another property that we will use is that if f1 and f2 are self-
concordant functions with constants M1 and M2, respectively, then for any α, β > 0, the function
αf1 + βf2 is self-concordant with constant M1√

α
∧ M2√

β
[N+18, Theorem 5.1.1].
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For a self-concordant function f and x ∈ dom f , the quantity λ(x, f) := ‖∇f(x)‖∇−2f(x), known
as the Newton decrement, will be instrumental in our proofs. The following two lemmas contain
properties of the Newton decrement and Hessians of self-concordant functions, which we will use
repeatedly throughout (see e.g. [NT08, N+18]).

Lemma 3. Let f : intK → R be a self-concordant function with constant Mf ≥ 1. Further, let
x ∈ intK and xf ∈ argminx∈K f(x). Then, I) whenever λ(x, f) < 1/Mf , we have

‖x− xf‖∇2f(xf ) ∨ ‖x− xf‖∇2f(x) ≤ λ(x, f)/(1−Mfλ(x, f));

and II) for any M ≥ Mf , the damped Newton step x+ := x − 1
1+Mλ(x,f)∇−2f(x)∇f(x) satisfies

x+ ∈ K and λ(x+, f) ≤Mλ(x, f)2(1 + (1 +Mλ(x, f))−1).

Lemma 4. Let f : intK → R be a self-concordant function with constant Mf and x ∈ intK. Then,
for any y such that r := ‖y − x‖∇2f(x) < 1/Mf , we have

(1−Mfr)
2∇2f(y) � ∇2f(x) � (1−Mfr)

−2∇2f(x).

A consequence of the latter lemma is the following useful result whose proof is in Appendix B:

Lemma 5. Let f : intK → R be a self-concordant function with constant Mf > 0. Then, for any
w,p ∈ intK such that r := ‖p−w‖∇2f(w) < 1/Mf , we have

‖∇f(w)−∇f(p)‖2∇−2f(w) ≤
1

(1−Mfr)2
‖p−w‖2∇2f(w).

The result of the lemma is reminiscent of the relationship between the Bregman divergence
with respect to a function f and the one with respect to its Fenchel dual f∗; that is, Df (u,v) =
Df∗(∇f(v),∇f(u)) [CBL06, Proposition 11.1].

Mixability. As a by-product of our efficient solution to the portfolio problem, we present an
algorithm that guarantees an adaptive logarithmic regret for mixable losses.

Definition 6. A sequence (ft) ⊂ {f : K → R} of convex functions is said to be η-mixable for η > 0
if for any distribution P on K, there exists u∗ ∈ K such that

∀t ≥ 1, ft(u∗) ≤ −η−1 logEu∼P e
−ηft(u).

Formally, given an algorithm A whose outputs (ut) achieve a logarithmic regret against any
sequence of η-mixable losses, i.e.

∑T
t=1(ℓt(ut)− ℓt(u)) ≤ O(lnT ) for any u ∈ K, we design a meta-

algorithm that aggregates instances of A and generates outputs (wt) that satisfy
∑

t∈I(ℓt(wt) −
ℓt(u)) ≤ O(ln2 T ), for any interval I ⊂ [T ] and u ∈ K.

Additional Notation. For a differentiable convex function f : intK → R, we denote byDf (u,v) :=
f(u)− f(v)− 〈∇f(v),u− v〉 the Bregman divergence between u,v ∈ intK with respect to f . We
use the notation Õ(·) to hide poly-log factors in T and d.

3 Background, Challenges, and Solution Sketch

In this section, we start by describing the algorithm Ada-BARRONS [LWZ18] that we build on. We
then point out key challenges we tackle to design our efficient portfolio selection algorithm. The
analysis we sketch in §3.2 and §3.3 is of independent interest as we discuss below.
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3.1 The Ada-BARRONS Algorithm

The Ada-BARRONS algorithm consists of a base algorithm, BARRONS, and a meta-algorithm that
restarts the former under a certain condition on the sequence of returns and iterates of the algorithm.

Base Algorithm. BARRONS is simply mirror descent with a barrier regularizer. In particular,
if we let ∆̄d := {x ∈ ∆d : xi ≥ 1/T,∀i ∈ [d]}, the outputs (pt) of BARRONS are such that p1 := 1/d
and pt+1 = argmin

p∈∆̄d
〈p,gt〉+DΦt(p,pt), where

Φt(p) :=

d∑

i=1

− ln pi
ηt,i

+
d‖p‖2

2
+
β

2

t∑

s=1

〈∇t,p〉2, ηt,i := η ·max
s∈[t]

e− logT (dps,i), (2)

and ∇t := rt/〈rt,pt〉. Using the standard analysis of mirror descent and the fact that Cover’s loss
is exp-concave, [LWZ18] show that the regret RT (u) =

∑T
t=1(ℓt(pt)− ℓt(u)) against a comparator

u ∈ ∆̄d (competing against comparators in ∆̄d is sufficient—see Lem. 1) is bounded as

RT (u) ≤
T∑

t=1

〈∇t,pt − pt+1〉+
T∑

t=1

(DΦt(u,pt)−DΦt(u,pt+1)− β〈∇t,pt − u〉/2), (3)

as long as β, the parameter in the regularizer in (2), is less than αT (u) :=
1
2 ∧mint∈[T ]

1
8|〈u−pt,∇t〉| .

This condition seems strong since the algorithm does not have access to the sequence of returns
(rt) or the comparator u up-front to ensure that β ≤ αT (u). However, this issue is resolved via a
clever restart scheme as we describe further below.

The fact that the regularizers (Φt) have a quadratic term and a log-barrier ensures that the iter-
ates (pt) are stable. In particular, the first sum on the RHS of (3) can be bounded by O(β−1d lnT ).
However, this term can still be problematic since β−1 may be large; after all, (3) only holds when
β ≤ αT (u) and αT (u) may be as small at 1/(dT ).

Fortunately, terms of the form O(β−1d ln T ) can be canceled by the second sum on the RHS of
(3), thanks to the log-barrier regularizer Ψt(p) :=

∑d
i=1−η−1

t,i ln pi in the definition of Φt and the
non-decreasing nature of the learning rates (ηt,i). In particular, [LWZ18] show that the second sum
in (3) is bounded from above by O

(
η−1d ln T

)
plus

T∑

t=1

(DΨt(u,pt)−DΨt−1(u,pt))≤ − 1

8η lnT

∑

i∈[d]
max
t∈[T ]

ui
pt,i

. (4)

where the inequality follows by [LWZ18, proof of Lem. 6]. Now the RHS of (4) can cancel the
bound O(β−1d lnT ) on the stability term as long as β ≥ αT (u)/2 (see App. E for details).

The Meta-Algorithm. Since the sequence of returns (rt) is not known up-front, it is not pos-
sible for any algorithm to pick β so that the condition αT (u)/2 ≤ β ≤ αT (u) is always satisfied.
Aggregating multiple instances of BARRONS with different β’s also fails since αT (u) depends on
the outputs of the algorithm; and so, changing β changes the target αT (u) for the base algorithm
(see also discussion in [LWZ18]). Instead of aggregating base algorithms, the approach taken by
[LWZ18] consists of restarting the base algorithm on round t if the current estimate for β satisfies
β > αt(ut), where ut is the regularized leader:

ut ∈ argmin
u∈∆̄d

d∑

i=1

− lnui
ηt,i

+
t∑

s=τ

ℓs(u) (5)

and τ is the round where the current instance of the base algorithm was initialized. The technical
reason for why this works is sketched in Appendix E.
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Computational Considerations. The computational complexity is dominated by the compu-
tation of the mirror descent iterates for the base algorithm and the FTRL computation (5) for the
meta-algorithm. Both problems can be solved using an interior point method leading to a compu-
tational cost of Õ(d3.5T + d2.5T 2) after T rounds. We will reduce the computational complexity
to Õ(d3T ) (where the O(d3) is due to the computation of a matrix inverse) by I) avoiding the
expensive FTRL computation in (5) thanks to a new adaptive algorithm for mixable losses; and
II) providing a new analysis for the damped Newton step to approximate mirror descent iterates.
These techniques, which we describe next, are of independent interest.

3.2 Avoiding the FTRL Computation

To avoid computing the regularized leader in (5) that is needed to trigger restarts, we will use
a meta-algorithm that aggregates base algorithms initialized at different rounds (one may think
of these as “restarted” instances of the base algorithm). If the meta-algorithm has a small regret
against any of the base algorithms, then this would emulate the effect of performing restarts, without
the expensive cost of FTRL computations. More formally, if we denote by (uτt ) the outputs of an
instance of the base algorithm Aτ that is initialized at round τ , we can emulate the effect of restarts
if the outputs (ut) of the meta-algorithm satisfy

t∑

s=τ

(ℓs(us)− ℓs(u
τ
s )) ≤ O(poly-log(T )), (6)

for all τ ∈ [T ] and t > τ . A regret bound of this type may be achieved using sleeping experts
algorithms, where in our case the instance Aτ is considered “asleep” during the rounds s < τ
and “awake” for s ≥ τ . There are two challenges that come with using standard sleeping experts
algorithms such as those in [AKCV12, GSVE14]. First, such techniques operate on linearized losses,
which is sufficient when seeking a O(

√
T ) regret. This is not the case in our setting as we are aiming

for a logarithmic regret. Second, if we want a regret bound of the form (6) to hold for all τ ∈ [T ],
a naive sleeping experts strategy would require keeping track of T experts. This would imply a
O(T )-per-round computational complexity in the worst case, which would defeat the purpose of
seeking an efficient alternative to the FTRL computation in (5).

We manage to circumvent these issues by presenting a new meta-algorithm that enjoys a log-
arithmic regret on any subinterval for mixable losses (this subsumes exp-concave losses). The
algorithm is based on the recent work by [ZWTZ19] that focuses on exp-concave online learning.
To reduce the computational complexity, we show that it is sufficient to ensure a low regret against
base algorithms indexed by a small set of geometric intervals [DGSS15], reducing the number of
experts at any round to at most O(lnT ) (this is discussed in §4.2).

3.3 Damped Newton Step for Mirror Descent

Now that we have a way of avoiding the expensive FTRL computations of Ada-BARRONS, it
remains to find a more efficient alternative to the Mirror Descent (MD) computations of its base
algorithm BARRONS. Before describing how we use Damped Newton Steps (DNS) for this purpose,
we first describe the shortcomings of existing approaches.

Shortcomings of previous DNS results. [AHR12] showed how one can use damped Newton
steps to approximate the iterates (pt) of FTRL given by pt+1 ∈ argmin

p∈C ft+1(p) :=
∑t

s=1〈p,gs〉+
Φ(p), where Φ is a self-concordant barrier for some set of interest C. In particular, [AHR12]
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showed that for an appropriate scaling of Φ the damped Newton steps (wt) defined by wt+1 =
wt − 1

1+λ(wt,ft+1)
∇−2ft+1(wt)∇ft+1(wt) are close enough to the FTRL iterates (pt) so that the

regret w.r.t. (wt) is bounded by the regret w.r.t. (pt) up to an additive O(
√
T ).

We note that for a fixed regularizer Φ that is a self-concordant barrier for C, it is known that the
FTRL iterates in the previous paragraph match the MD ones; that is, pt+1 ∈ argmin

p∈C〈p,gt〉 +
DΦ(p,pt), for all t. However, this is no longer the case when dealing with time-varying regularizers
(Φt); that is, when ft+1(·) = 〈·,gt〉 + DΦt(·,pt) (as in the case of BARRONS). This means that
we cannot directly use the analysis of [AHR12] to show that damped Newton steps are good
approximations of MD iterates with varying regularizers. What is more, the damped Newton steps
with respect to (ft) can no longer be computed directly in this case since the gradient ∇ft+1(wt) =
gt + ∇Φt(wt) − ∇Φt(pt) in the expression of the DNS depends on the iterate pt, which is what
we seek to efficiently approximate in the first place. Using wt as an estimator for pt does not
work since the approximation errors accumulate across rounds in an unfavorable way (breaking the
analysis of [AHR12]).

One tempting approach around these issues is to target the FTRL iterates (pt) given by pt+1 =
argmin

p∈C
∑t

s=1〈p,gs〉+ Φt(p) instead of the MD ones. However, we are not aware of an existing
analysis of FTRL that yields negative terms from Bregman divergences in the regret bound as in
(4) (negative terms were needed to cancel the problematic O(β−1d lnT ) term in the regret bound).

Our approach. Our solution consists of approximating FTRL iterates w.r.t. modified gradients
that are chosen in a way to still allow us to use the MD analysis to derive our regret bound (similar
in spirit to the approach by [FGMZ20]). In particular, we consider the objective

ft+1(p) :=
t∑

s=1

p
⊺ (gs −∇Φs(ws) +∇Φs−1(ws)) + Φt(p),

with (ws) being the damped Newton iterates w.r.t. (ft). Under mild conditions on (Φt), the FTRL
iterates (pt ∈ argmin

p∈C ft(p)) can be efficiently approximated by (wt). Despite the fact that the
objective ft+1 does not contain any “unknown” MD iterates, we are still able to take advantage of
the MD analysis and bring back negative terms from Bregman divergences (as in (4)) in the regret
bound. The key fact that enables this is that the FTRL iterates (pt) with respect to (ft) match
the MD iterates with modified gradients (g̃t). In particular, (pt) satisfy

pt+1 ∈ argmin
p

〈g̃t,p〉+DΦt(p,pt), where g̃t := gt −∇φt(pt) +∇φt(wt), (7)

and φt := Φt−1 − Φt. We now give a sketch of how this observation allows us to leverage the MD
analysis and extract negative terms as in (4).

MD analysis for FTRL (a sketch). To illustrate how (7) helps in our analysis, consider the
regularizer Φt in (2), which we write as Φt = Ψt + Θt, where Ψt is the barrier part Ψt(p) :=∑

i∈[d]−η−1
t,i ln pi. We will further define ψt := Ψt−1 − Ψt and note that the fact that (ηt,i) are

non-decreasing, implies that (ψt) are convex, self-concordant functions (the latter fact is all that is
needed to generalize the current analysis). A key step in the analysis of the regret involves bounding
the sum ΣT :=

∑T
t=1〈gt,wt−u〉 of linearized losses. For simplicity of the exposition, suppose that

Θt ≡ 0, for all t; the quadratic terms in Θt present no difficulty when it comes to bounding ΣT (see
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proof of Lem. 10 for a derivation with non-zero (Θt)). In this case, the sum ΣT can be written as

ΣT =

T∑

t=1

(〈gt,wt − pt〉+ 〈g̃t,pt − u〉+ 〈∇ψt(pt)−∇ψt(wt),pt − u〉) ,

=
T∑

t=1

(〈gt,wt − pt〉+ 〈g̃t,pt − pt+1〉)

+

T∑

t=1

(〈g̃t,pt+1 − u〉+Dψt
(u,pt)−Dψt

(u,wt) +Dψt
(pt,wt)),

where we used the definitions of g̃t and the Bregman divergence. Using this, and the facts that
〈g̃t,pt+1 − u〉 ≤ DΦt(u,pt) − DΦt(u,pt+1) − DΦt(pt+1,pt) (by optimality of pt+1—see proof of
[LWZ18, Lem. 5]) and Dψt

(u,pt) = DΦt−1(u,pt)−DΦt(u,pt), we can bound ΣT as

ΣT ≤
T∑

t=1

(〈gt,wt − pt〉+ 〈g̃t,pt − pt+1〉+Dψt
(pt,wt))

+DΦ0(u,p1)−DΦT
(u,pT+1) +

T∑

t=1

(DΦt(u,wt)−DΦt−1(u,wt)). (8)

Thus, one can extract negative terms (as in (4)) from the last sum in (8) to cancel the O(β−1d ln T )
term in the regret bound. The remaining terms in (8) can be shown to be small thanks to I)
(wt) approximate (pt) well, II) stability of the mirror descent iterates, and III) the fact that ψt
is self-concordant together with Lem. 5. Next, we present the full details and guarantee of our
algorithm.

4 An Efficient Algorithm for Online Portfolio Selection

Our final algorithm (Alg. 3) will consist of a set of base algorithms (instances of Alg. 1) and a meta
algorithm (instance of Alg. 2). We analyze these algorithms separately in the next two subsections
before combining the results in Subsection 4.3.

4.1 Base Algorithm: Damped Online Newton Step (DONS)

To analyze our base algorithm (Alg. 1), we will consider the following sequence of regularizers that
are defined in terms of the iterates (ut) and (wt) in Algorithm 1; the sequence of observed return
vectors (rt); and the gradients (gt) ≡ (Jrt/〈rt, ūt〉):

Φt(u) := Ψt(u) +
βd‖u‖2

8
+
β

8

t∑

s=1

〈gt,u−wt〉2, ∀u ∈ Cd−1. (9)

where Ψt(x) := −
d∑

i=1

− ln x̄i
ηt,i

, ηt,i := η · elogT (ρt,i/d), (10)

and ρt,i is such that ρt,i ∈
[
maxs∈[t](2ūs,i)

−1,maxs∈[t](ūs,i)
−1
]
, for all i ∈ [d], and ρ0 := d1. In

particular, for every i ∈ [d], (ρt,i)t satisfies the recursion

ρt,i = I{2ρt−1,i <
1
ūt,i

} · 1
ūt,i

+ I{2ρt−1,i ≥ 1
ūt,i

} · ρt−1,i. (11)

8



[LWZ18] chose the sequence (ρt,i) such that ρt,i = maxs∈[t] 1/ūs,i, ∀i ∈ [d] and t ∈ [T ]. Using our
new analysis of the damped Newton steps for MD, this choice leads to a regret bound of order
Õ(dm) with m > 2, which is worse than what we are aiming for. Our choice in (11) ensures that
the barrier Ψt changes at most O(d ln T ) times, which is crucial to proving the desired bound.

For any t ∈ [T ], the output ut+1 of Algorithm 1 at round t + 1 is given by ut+1 = w
′
t+1 =

(1− 1/T )wt+1 + 1/(dT ), where wt+1 is the damped Newton step:

wt+1 = wt −
∇−2Φt(wt)∇t

1 + 4
√
eη‖∇t‖∇−2Φt(wt)

, (12)

with ∇t := ∇Φt(wt) +
∑t

s=1 (gs −∇Ψs(ws) +∇Ψs−1(ws)) and w1 = 1/d. In part due to the fact
that domΦt = Cd−1, for all t ≥ 1, the iterates (wt) in Algorithm 1 are only well defined when the
update rule in (12) ensures that wt+1 ∈ Cd−1 for any wt ∈ Cd−1. This is in fact the case as we show
next by leveraging the self-concordant property of Φt. To simplify notation in the proof of the next
lemma (which is in App. B) and in the rest of the paper, we let ϑi : Cd−1 → R be defined by

ϑi(x) := − ln x̄i, ∀i ∈ [d]. (13)

Note that the self-concordant barrier in 10 satisfies Ψt(·) =
∑

i∈[d] ϑi(·)/ηt,i.
Lemma 7. For all t ≥ 1, Φt in (9) is a self-concordant function with constant MΦt ≤

√
ηe.

Algorithm 1 DONS (Base Algorithm): Damped Online Newton Step for Portfolio Selection.

Require: Parameters η, β > 0.
1: Set w1 = 1/d ∈ R

d−1, ρ0 = d1 ∈ R
d, G0 = 0, and V0 = βdI/4 ∈ R

d−1×d−1.
2: for t = 1, 2, . . . do
3: Play ut = (1− 1

T )wt +
1
dT 1 and observe gradient gt = ∇ℓt(ut) = Jrt/〈rt, ūt〉.

4: Set ρt,i = I{2ρt−1,i <
1
ūt,i

} · 1
ūt,i

+ I{2ρt−1,i ≥ 1
ūt,i

} · ρt−1,i, for all i ∈ [d].

5: Define Ψt(x) = −∑d
i=1

ln x̄i
ηt,i

, where ηt,i := η · exp(logT (ρt,i/d)), ∀i ∈ [d].

6: Set Gt = Gt−1 + gt · (1− β〈gt,wt〉/4) −∇Ψt(wt) +∇Ψt−1(wt).
7: Set Vt = Vt−1 + βgtg

⊺

t /4 and ∇t = Gt + Vtwt +∇Ψt(wt) + βdwt/4.
8: Set wt+1 = wt − 1

1+4
√
ηe‖∇t‖(∇2Ψt(wt)+Vt)

−1
(∇2Ψt(wt) + Vt)

−1
∇t.

9: end for

Damped Online Newton Steps as Approximate MD Iterates. A key part of our analysis
consists of showing that the intermediate iterates (wt) on Line 8 of Algorithm 1 are close to the
mirror descent iterates (pt) with respect to the sequence of regularizers (Φt) in (9):

pt+1 ∈ argmin
p∈Cd−1

Ft+1(p) := 〈p, g̃t〉+DΦt(p,pt), where (14)

g̃t := (1 + β〈gt,pt −wt〉/4)gt +
d∑

i=1

(
1

ηt,i
− 1

ηt−1,i

)
(∇ϑi(pt)−∇ϑi(wt)), (15)

and p1 := 1/d (recall (ϑi) from (13)). Next, we formally state this result (recall λ(·, ·) from §2):

Lemma 8. For any β ∈ (0, 1/8) and η ≤ 1/214, the iterates (wt) in Algorithm 1 satisfy,

∀t ≥ 1,
‖wt − pt‖∇2Ft(wt)

24
√
eη

≤ λ(wt, Ft)

23
√
eη

≤ λ(wt−1, Ft)
2 ≤ Cη, (16)

where C := 4e
4−1∨(1−1/T )2

. Further, we have
∑T

t=1 ‖wt − pt‖2∇2Φt−1(wt)
≤ 1 + 15β−1d log T .

9



The next lemma, which will be useful in the proof of Lemma 8, essentially shows that the
mirror descent iterates in (14) match the FTRL iterates with respect to (ft), where ft+1(p) :=∑t

s=1 p
⊺(gs −∇Φs(ws) +∇Φs−1(ws)) + Φt(p) (c.f. discussion in §3.3).

Lemma 9. For all t ∈ [T ], we have ∇Ft+1(wt) = gt +∇Ft(wt) and for all w ∈ Cd−1,

∇Ft+1(w) = ∇Φt(w) +
t∑

s=1

(gs −∇Ψs(ws) +∇Ψs−1(ws)).

Regret Decomposition. We now present the main regret decomposition. In the proof, which
is Appendix C, we follow similar steps as the ones outlined in §3.3.

Lemma 10. Let T > 1, cT := 1 − 1/T , and ψt := Ψt−1 − Ψt. Further let (ut) and (wt) be as in
Algorithm 1 with parameters η, β > 0, and (pt) as in (14). For any sequence of returns (rt) and
u ∈ Cd−1 such that β ≤ 8−1 ∧ |8〈gt,ut − u

′′〉|−1 (recall u′,u′′ from §2), we have, for all t ∈ [T ],

T∑

t=1

ℓt(ut)− ℓt(u)

cT
≤

T∑

t=1

〈g̃t,pt − pt+1〉+
T∑

t=1

(Dψt
(pt,wt) +DΨt(u

′,wt)−DΨt−1(u
′,wt))

+O

(
d lnT

η

)
+

T∑

t=1

〈gt,wt − pt〉+
3β

8
〈gt,wt − pt〉2. (17)

Next, we bound each term in this decomposition starting with
∑T

t=1Dψt
(pt,wt). To show that

this term is small, we rely on the fact that ψt is a self-concordant functions, which holds true by our
choice of “doubling” (ρt,i)’s in (11). This enables us to relate Dψt

(pt,wt) to ‖wt − pt‖∇2Φt−1(wt)

via Lem. 5, which we can then bound using Lem. 8.

Lemma 11. Let (Ψt) be as in (10). Then, the function ψt := Ψt−1 − Ψt is a self-concordant
function with constant

√
eη log2 T . Furthermore, the mirror descent iterates (pt) in (14) and the

iterates (wt) in Algorithm 1 satisfy
∑T

t=1Dψt
(pt,wt) ≤ O(d ln T ).

We move to the stability term
∑T

t=1〈g̃t,pt − pt+1〉, which is the most technical one to bound
due to the modified gradients (g̃t). We will use use Hölder’s inequality and the triangle in-
equality to bound 〈g̃t,pt − pt+1〉 in terms of ‖pt − pt+1‖∇2Φt(wt), ‖gt‖∇−2Φt(wt), and ‖∇ϑi(pt) −
∇ϑi(wt)‖∇−2Φt(wt). Then, we use the self-concordance property in Lem. 5 to relate the latter term
to ‖wt − pt‖∇2Φt(wt), which (thanks to Lem. 8) will allow us to show that the stability term is
small.

Lemma 12. Let T > 1 and (g̃t) be as in (15). If η ≤ 1/214 and β ∈ (0, 1/8), then the iterates (pt)
in (14) satisfy

∑T
t=1〈g̃t,pt − pt+1〉 ≤ 18d lnT

β +O(d ln T ).

We now bound the sum divergences which will allow us to cancel the undesirable O(β−1d ln T )
term in the regret bound as discussed in §3.1.

Lemma 13. Let T > 1 and (ut) be the iterates of Alg. 1 with parameters β ∈ (0, 1/8) and
η ≤ 1/214. For any sequence (rt), the iterates (pt) in (14) satisfy (recall u′ and u

′′ from §2)∑T
t=1(DΨt(u

′,wt)−DΨt−1(u
′,wt)) ≤ −1

16η lnT

∑d
i=1 maxt≤T

ū′′i
ūt,i

+O (d/η), for all u ∈ Cd−1.

It remains to upper bound the sums
∑T

t=1〈gt,wt−pt〉i, for i ∈ {1, 2} which are expected to be
small since (wt) are close to (pt) by Lemma 8:

10



Lemma 14. Let T > 1, cT := 1 − 1/T , and ST := 1 + 4
√
15β−1d lnT . Further, let (wt) be the

iterates in Alg. 1 with parameters β ∈ (0, 1/8) and η ≤ 1/214. For any sequence of returns (rt), the

mirror descent iterates in (14) satisfy
∑T

t=1〈gt,wt − pt〉 ≤ ST and
∑T

t=1〈gt,wt − pt〉2 ≤ 64e2η2

c3
T

ST .

Combining these results, we obtain the following regret bound for our base algorithm:

Theorem 15 (Base Algorithm Regret). Let T > 1, and (ut) be the iterates of Algorithm 1 with
parameters β ∈ (0, 1/8) and η ≤ 1/214. For any sequence of returns (rt) and u ∈ Cd−1 such that,
for all t ∈ [T ], β ≤ 8−1 ∧ |8〈gt,ut − u

′′〉|−1 (recall u′ and u
′′ from §2), we have

T∑

t=1

(ℓt(ut)− ℓt(u)) ≤ O

(
d ln T

η

)
+

34d ln T

β
− 1

32η lnT

d∑

i=1

max
t≤T

ū′′i
ūt,i

.

The regret bound in Theorem 15 is the same as that of BARRONS up to constant factors. We
are now going to describe our adaptive meta-algorithm which allows us to emulate the effect of
restarts in Ada-BARRONS, as discussed in §3.2.

4.2 Adaptive Meta-Algorithm for Mixable Losses (AdaMix)

Let I be the geometric covering intervals I :=
⋃
i,k∈N

{
[2ki, 2k(i+ 1)− 1]

}
suggested by [DGSS15].

We further define the “restriction” of I to [T ] as I|T := {I∩ [T ] : I ∈ I}∪{[T ]}. To build our final
meta algorithm, we introduce a new algorithm (Alg. 2) that can achieve an adaptive, logarithmic
regret in the expert setting with mixable losses (see Def. 6). That is, we present an algorithm that
enjoys a logarithmic regret on any interval I ⊆ [T ] when the losses are mixable. Alg. 2 takes in
a set of base algorithms/experts (Aβ,I), where for expert Aβ,I , β represents a parameter in some
predefined grid G ⊂ R and I ∈ I|T represents the interval on which the expert is active; in this
case, expert Aβ,I is initialized at round t = min I and terminates after round t = max I. We will
state the guarantee of Alg. 2 when the substitution function Υ:

⋃
J⊆I|T ∆(G ×J )×U |G|×|J | → U ,

for the losses ft : U → R, satisfies, for all J ⊆ I|T , Q ∈ △(G × J ), and U := (uβ,I) ∈ U |G|×|J |,

ft(Υ(Q,U)) ≤ −η−1 log
∑

β∈G,I∈J
Qβ,Ie−ηft(u

β,I),∀t ≥ 1. (18)

Such a substitution function is guaranteed to exist when the losses (ft) are η-mixable (see Def. 6).
For the case of Cover’s loss (1), which is 1-mixable (in fact 1-exp-concave), we will set the substi-
tution function to Υ(Q,U) =

∑
β,I Q

β,IUβ,I , which satisfies (18) with U = Cd−1 and (ft) ≡ (ℓt).

Proposition 16. Let η > 0 and G be a set s.t. |G| ≤ M . Further, let (uβ,It )t∈I , β ∈ G and I ∈ I,
be the outputs of the subroutine Aβ,I within Alg. 2 in response to a sequence of η-mixable losses (ft).
Then, the outputs (ut) of Algorithm 2 with a substitution function Υ satisfying (18), guarantee

∑

s∈I∩[t]
(fs(us)− fs(u

β,I
s )) ≤ (2 ln t+ lnM)/η, for all I ∈ I, β ∈ G, and t ∈ I. (19)

Now, an adaptive, logarithmic regret for mixable losses follows easily from this proposition. To
see this, let J be any interval in [T ]. Then, by [DGSS15] we know that there exist disjoint sets
I1, . . . , IN ∈ I such that

⋃
i∈[N ] Ii = J and |N | ≤ O(lnT ). Now, if any subroutines Aβ,I achieves

a logarithmic regret Rβ
I (u) ≤ O(η−1lnT ) within the interval I against any comparator u, (19)

implies that
∑

s∈J(fs(us)− fs(u)) ≤ 1
η (2|N | ln T + |N | lnM) +

∑
i∈[N ]R

β
Ii
(u) ≤ O( ln

2 T
η ).
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Algorithm 2 AdaMix: Adaptive Meta-Algorithm for Mixable Losses.

Require: I) Grid G of β values, horizon T , and η > 0; II) Instances (Aβ,I)β∈G,I∈I|T , where A
β,I is

active during I; III) a substituting function Υ:
⋃

J⊆I|T ∆(G ×J )×U |G|×|J | → U for the losses
(ft : U → R).// The substitution function Υ will be chosen to satisfy (18).

Set J0 = ∅.
for t = 1, . . . , T do

Identify the set of newly active intervals J̃t = {I ∈ I|T : min I = t}.
Set Fβ,I

t−1 = 0 for all β ∈ G and I ∈ J̃t.
Update the set of active intervals Jt = Jt−1 ∪ J̃t.
Receive u

β,I
t ∈ U from each Aβ,I such that β ∈ G and I ∈ Jt.

Set qβ,It−1 = e−ηF
β,I
t−1/Zt for β ∈ G and I ∈ Jt, where Zt =

∑
β∈G,I∈Jt

e−ηF
β,I
t−1 .

Play ut = Υ(Qt−1, Ut), where Qt−1 := (qβ,It−1)β∈G,I∈Jt
and Ut := (uβ,It )β∈G,I∈Jt

.

Observe ft and set Fβ,I
t = Fβ,I

t−1 + ft(u
β,I
t )− ft(ut), for all β ∈ G and I ∈ Jt.

Send ft to each Aβ,I such that β ∈ G and I ∈ Jt.
Update the set of active intervals Jt = Jt \ {I ∈ I|T : max I = t}.

end for

4.3 Finally Algorithm and Guarantee

Next, we will instantiate Alg. 2 with Cover’s loss and the base algorithms (Aβ,I) set as instances
of Alg. 1 with η = 1/(2862d ln3 T ) and β ∈ G, where G := { 1

d2i+3 : i ∈ [⌈log2 T ⌉]}. Furthermore, we

Algorithm 3 AdaMix+ DONS: Adaptive Meta-Algorithm for Online Portfolio Selection.

Instantiate Alg. 2 with I) (ft) ≡ (ℓt) (ℓt as in (1)) with U = Cd−1; II) (Aβ,I) set as instances of
Alg. 1 with η = 1

2862d ln3 T
, β ∈ G, and I ∈ I|T ; and III) Υ(Q,U) =

∑
β,I Q

β,IUβ,I .

will set the substitution function to Υ(Q,U) =
∑

β,I Q
β,IUβ,I , which satisfies (18) with U = Cd−1

and (ft) ≡ (ℓt). In particular, the outputs (ut) of Alg. 2 in this setting can be written as

ut :=

∑
β,I : t∈I exp(−Lβ,It−1)u

β,I
t∑

β,I : t∈I exp(−Lβ,It−1)
, where Lβ,It :=

∑

s∈I∩[t]
(ℓs(u

β,I
s )− ℓs(us)). (20)

Since the regret of DONS is the same as that of BARRONS (see discussion after Thm. 15), and the
adaptive regret enabled by Alg. 2 allows us to emulate the restarts of Ada-BARRONS (see §3.2),
the regret of our final Alg. 3 will be the same as that of Ada-BARRONS up to log factors.

Theorem 17. The regret of Algorithm 3 is bounded by O(d2 ln5 T ). Furthermore, the algorithm
runs is O(d3 ln2 T ) per round and requires O(d ln2 T ) total space.
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A Technical Lemmas

Lemma 18. Let Ψ(x) := −∑d
i=1 ln x̄i and f(w) := − log〈r, w̄〉, for r ∈ [0, 1]d, and x,w ∈ Cd−1.

Then, for all µ ∈ (0, 1) and w̃ ∈ Cd−1, we have

∇f(w)∇f(w)⊺ � (1− µ)−2∇2Ψ(w̃), where w := (1− µ)w̃ + µ1/d. (21)

Furthermore, ‖∇f(w)‖2∇−2Ψ(w̃) ≤ (1− µ)−2.

Proof. Since ‖∇f(w)‖2∇−2Ψ(w̃) = ∇f(w)⊺∇−2Ψ(w̃)∇f(w), the second claim follows from (21).

Thus, it suffices to show that ∇f(w)∇f(w)⊺ � (1 − µ)−2∇2Ψ(w̃). Letting r̃ := (r1, . . . , rd−1), we
have

∇f(w)∇f(w)⊺ = (r̃ − rd1)(r̃ − rd1)
⊺/〈r, w̄〉2,

=
(
r̃r̃

⊺ + r2d11
⊺ − rdr̃1

⊺ − rd1r̃
⊺
)
/〈r, w̄〉2,

�
(
r̃r̃

⊺ + r2d11
⊺
)
/〈r, w̄〉2,

�
(
r̃r̃

⊺ + r2d11
⊺
)
/〈r, w̄〉2,

� r̃r̃
⊺/〈r̃,w〉2 + 11⊺/w2

d,

� r̃r̃
⊺/〈r̃,w〉2 + (1− µ)−211⊺/w̃2

d. (22)

We will now show that r̃r̃⊺/〈r̃,w〉2 � diag(1/w2
1 , . . . , 1/w

2
d−1). For this, it suffices to show that for

any vector u ∈ R
d, we have (

∑d−1
i=1 riui)

2/(
∑d−1

i=1 riwi)
2 ≤∑d−1

i=1 u
2
i /w

2
i . This is indeed the case; by

Cauchy Schwarz, we have

(
d−1∑

i=1

riui

)2

≤
(
d−1∑

i=1

r2iw
2
i

)(
d−1∑

i=1

u2i /w
2
i

)
,

≤
(
d−1∑

i=1

riwi

)2(d−1∑

i=1

u2i /w
2
i

)
,

where the last inequality follows by the fact that ri, wi ≥ 0 for all i. Therefore, we have r̃r̃⊺/〈r̃,w〉2 �
diag(1/w2

1 , . . . , 1/w
2
d−1). Plugging this into (22) implies that

∇f(w)∇f(w)⊺ � diag(1/w2
1 , . . . , 1/w

2
d−1) + (1− µ)−211⊺/w̃2

d � (1− µ)−2∇2Ψ(w̃).

Lemma 19. Let β ≤ 1/8 and η ∈ (0, 1). If T > 1, then the iterates (wt) and (ut) in Alg. 1, satisfy

T∑

t=1

‖gt‖2∇−2Ft(wt)
≤ 16d ln T

β
,

where (Ft) are as in (14) and gt = ∇ℓt(ut).

Proof. Let cT := 1 − 1/T . First note that by Lemma 18, we have c2Tgtg
⊺

t � ∇2Ψ(wt), where

Ψ(x) := −∑d
i=1 ln x̄i. Combining this with the fact that ηt ∈ [η, ηe] and the range assumptions on

β, η, and T , we get

‖gt‖2∇−2Ft(wt)
= g

⊺

t

(
∇2Ψt(wt) + βQt−1/4

)−1
gt ≤ 4β−1

g
⊺

tQ
−1
t gt. (23)
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where Qt := dI +
∑t

s=1 gsg
⊺

s . Thus, by (23) and [HAK07, Lemma 11], we have

‖gt‖2∇−2Ft(wt)
≤ 4

β

T∑

t=1

g
⊺

tQ
−1
t gt ≤

4

β
ln

|QT |
|Q0|

≤ 4d ln(1 + T 3)

β
≤ 16d ln T

β
,

where the second inequality uses the fact ln |Q0| = d ln d and by AM-GM inequality ln |QT | ≤
d ln Tr(QT )

d ≤ d ln
(
d+

∑T
t=1‖gt‖22/d

)
≤ d ln(d+ dT 3) since

‖gt‖22 ≤ d2T 2

∑d
i=1 r

2
t,i(∑d

i=1 rt,i

)2 ≤ d2T 2.

This completes the proof.

Lemma 20. Suppose that T > 1 and define cT := 1−1/T and αT := 1+βeηc−2
T /4. If η, β ∈ (0, 1),

then the iterates (wt) and gradients (gt) in Algorithm 1, and the regularizers (Φt) in (9) are such
that, for all t ∈ [T ],

∇2Φt(wt) � αT∇2Φt−1(wt), ‖gt‖2∇−2Φt(wt)
≤ eη

c2T
, and

t∑

s=1

‖gt‖2∇−2Φt(wt)
≤ 16d ln T

β
.

Proof. By Lemma 18, we have ∇2Ψ(wt) � c2Tgtg
⊺

t , where Ψ(x) := −∑d
i=1 ln x̄i. Using this and

the fact that (ηt,i) ⊂ [η, ηe], we get that βgtg
⊺

t /4 ≤ βeηc−2
T ∇2Ψt−1(wt)/4 � βeηc−2

T ∇2Φt−1(wt)/4.
Thus, adding ∇2Ψt−1(wt) on both sides and using that αt = 1 + βeηc−2

T /4, we get that

αT∇2Φt−1(wt) � βgtg
⊺

t /4 +∇2Φt−1(wt) � ∇2Φt(wt),

where the last inequality follows by the fact that ηt,i ≥ ηt−1,i, for all i ∈ [d]. The remaining
inequalities follow from Lemmas 18 and 19.

Lemma 21. Let u,w ∈ Cd−1. For any r ∈ [0, 1]d and f(x) := − log〈r, x̄〉, we have

|〈∇f(w),u−w〉| ≤ 1 ∨max
i∈[d]

ūi
w̄i
.

Proof. We have

〈∇f(w),u−w〉 = 〈r, w̄〉−1〈J⊺
r,u−w〉 = 〈r, w̄〉−1〈r, ū− w̄〉 = 〈r, ū〉

〈r, w̄〉 − 1.

Now since the function r 7→ 〈r,ū〉
〈r,w̄〉 is quasi-convex [BBV04, Example 3.32], its maximum is reached

at the boundary of [0, 1]d. Thus, the previous display implies that

|〈∇f(w),u−w〉| ≤ 1 ∨ sup
r̃∈[0,1]d

〈r̃, ū〉
〈r̃, w̄〉 ≤ 1 ∨max

i∈[d]

ūi
w̄i
.
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B Proof of Lemmas 5, 7, 8, and 9

Proof of Lemma 5. Since ∇f(w)−∇f(p) =
∫ 1
0 ∇2f(wµ)(w−p)dµ, where wµ := µw+(1−µ)p,

we have,

‖∇f(w)−∇f(p)‖2∇−2f(w)

=(∇f(w)−∇f(p))⊺∇−2f(w)(∇f(w)−∇f(p)),

=(w − p)⊺
(∫ 1

0
∇2f(wµ)dµ

)⊺

∇−2f(w)

(∫ 1

0
∇2f(wν)dν

)
(w − p). (24)

On the other hand, since f is self-concordant with constant Mf and r := ‖p −w‖∇2f(w) ≤ 1/Mf

by assumption, we have (see e.g. [N+18, Corollary 5.1.5])

(1−Mfr + 1/3M2
f r

2)∇2f(w) � H � 1

1−Mfr
∇2f(w), (25)

where H :=
∫ 1
0 ∇2f(wµ)dµ. Since ∇2f(w) is definite positive for all w, (25) further implies that

H � (1−Mfr)∇2f(w). Combining these facts with (24), we get that

‖∇f(w)−∇f(p)‖2∇−2f(w) �
1

(1−Mfr)2
‖p−w‖2∇2f(w).

Proof of Lemma 7. We prove the claim by induction. We start with the base case t = 1. For t =
1, we have w1 = 1/d ∈ Cd−1. We now check that Φ1 is self-concordant with constant

√
eη. For any

i ∈ [d], the function ϑi : x → − ln x̄i defined on Cd−1 is self-concordant with constant 1. Furthermore,
the function Θ1 : u 7→ Φ1(u) − Ψ1(u) is self-concordant with constant 0 (since it is a quadratic).
Thus, by [N+18, Theorem 5.1.1] and the fact that Φ1(·) = Θ1(·) + Ψ1(·) = Θ1(·) +

∑d
i=1 ϑi(·)/η1,i,

we have that Φ1 is self-concordant with constant less than 0 ∨maxi∈[d]
√
η1,i =

√
η ≤ √

ηe.
Now, suppose the claim of the lemma holds for all t ≤ s. We will show that it holds for t = s+1.

Since Φs is self-concordant with constant MΦs ≤
√
ηe and ws ∈ Cd−1 (by the induction hypothesis),

we have that the Dikin ellipsoid

Ws := {x ∈ R
d−1 : ‖x−ws‖∇2Φs(ws) < 1/

√
ηe}

is contained within domΦs = Cd−1 (see e.g. [N+18, Thm. 5.1.5]). Thus, to show that ws+1 ∈ Cd−1,
it suffices to show that ws+1 ∈ Ws. By definition of ws+1, we have

‖ws+1 −ws‖∇2Φs(ws) =
‖∇−2Φs(ws)∇s‖∇2Φs(ws)

1 + 4
√
ηe‖∇s‖∇2Φs(ws)

=
‖∇s‖∇2Φs(ws)

1 + 4
√
eη‖∇s‖∇2Φs(ws)

<
1√
ηe
,

where ∇s is as in (12). This shows that ws+1 ∈ Ws and so ws+1 ∈ Cd−1. As a consequence,
the output us+1 of Algorithm 1 satisfies ūs+1,i ≥ 1/(dT ), for all i ∈ [d], which in turn implies
that ηs+1,i ∈ [η, eη], for all i ∈ [d]. Using this and [N+18, Theorem 5.1.1], we have that Φs+1(·) =
Φs+1(·)−Ψs+1(·)+

∑d
i=1 ϑi(·)/ηs+1,i is self-concordant with constant less than 0∨maxi∈[d]

√
ηs+1,i ≤√

ηe.

Proof of Lemma 8. For any twice differentiable function F : W → R and w ∈ W, we recall the
definition of the Newton decrement λ(w, F ) := ‖∇F (w)‖∇−2F (w) which will be useful in this proof.
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First, note that if T = 1, then the result holds trivially since w1 = p1 = 1/d. Assume that T > 1
and let cT := 1− 1/T . Next, we will show by induction that

1

16
√
eη

‖ws − ps‖∇2Fs(ws) ≤
1

8
√
eη
λ(ws, Fs) ≤ λ(ws−1, Fs)

2 ≤ Cη, (26)

for all s ≥ 1, where C := 4e/c2T with the convention that w0 = 1/d. The base case follows trivially
since ∇F1(w0) = ∇F1(w1) = 0 and w1 = p1. Suppose that (26) holds for s = t. We will show that
it holds for s = t+ 1. By Lemma 9, we have ∇Ft+1(wt) = gt +∇Ft(wt), and so by the fact that
(a+ b)2 ≤ 2a2 + 2b2, we get

λ(wt, Ft+1)
2 = ‖∇Ft+1(wt)‖2∇−2Ft(wt)

,

≤ 2‖∇Ft(wt)‖2∇−2Ft(wt)
+ 2‖gt‖2∇−2Ft+1(wt)

,

= 2λ(wt, Ft)
2 + 2‖gt‖2∇−2Φt(wt)

, (27)

≤ 27eC2η3 + 2eη/c2T ≤ Cη, (28)

where in the penultimate inequality we used the induction hypothesis in (26) for s = t and the
bound on ‖gt‖2∇−2Φt(wt)

from Lemma 20. The last inequality in (28) uses the range assumptions

on η. Now, by the expression of ∇Ft+1(wt) in Lemma 9, one can verify that the iterate wt+1 in
Algorithm 1 satisfies

wt+1 = wt −
1

1 + 4
√
eηλ(wt, Ft+1)

∇−2Ft+1(wt)∇Ft+1(wt),

which is the damped Newton step with respect to the function Ft+1. Therefore, by Lemma 3 and
the fact that λ(wt, Ft+1) ≤ 1/(8

√
eη) (which follows from (28) and the range assumption on η),

we have λ(wt+1, Ft+1) ≤ 8
√
eηλ(wt, Ft+1)

2. Furthermore, since pt+1 is the minimizer of Ft+1 and
λ(wt+1, Ft+1) ≤ 1/(2

√
eη), we have ‖wt+1−pt+1‖∇2Ft+1(wt) ≤ 2λ(wt+1, Ft+1) (by Lemma 3 again).

Combining these facts with (28), implies (26) for s = t + 1, which concludes the induction. This
shows (16).

We now use (26) together with (27) to bound the sum
∑T

t=1 ‖wt − pt‖2∇2Φt−1(wt)
. Using that

λ(wt+1, Ft+1) ≤ 8
√
eηλ(wt, Ft+1)

2 (as argued above) and (27), we get

λ(wt+1, Ft+1) ≤ 16
√
eηλ(wt, Ft)

2 + 16
√
eη‖gt‖2∇−2Φt(wt)

. (29)

Summing (29), for t = 1, . . . , T , rearranging, and using that λ(wT+1, FT+1) ≥ 0, we get

T∑

t=2

(
λ(wt, Ft)− 16

√
eηλ(wt, Ft)

2
)
≤ 16

√
eηλ(w1, F1)

2 + 16
√
eη

T∑

t=2

‖gt‖2∇−2Φt(wt)
.

Using (27) and the range assumption on η, we have 0 ≤ 16
√
eηλ(wt, Ft) ≤ 27eCη2 ≤ 1/4. Therefore,

we have

3

4

T∑

t=1

λ(wt, Ft) ≤ λ(w1, F1) + 16
√
eη

T∑

t=2

‖gt‖2∇−2Φt(wt)
,

≤ 1

16
+ 16

√
eη

T∑

t=1

‖gt‖2∇−2Φt(wt)
≤ 3

8
+

45d ln T

8β
,

where the last inequality follows by Lemma 20 and the range assumption on η. Now, using the fact
that pt is the minimizer of Ft, we have ‖wt − pt‖∇2Ft(wt) ≤ 2λ(wt, Ft). Combining this with the
previous display, we get the desired result.
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Proof of Lemma 9. Let t ∈ [T ], ϑi : x 7→ − ln x̄i, and δt,i := (1/ηt,i − 1/ηt−1,i) with η0 = η1, for
all i ∈ [d]. We will first show that ∇Ft+1(w) = g̃t(w) +∇Ft(w), where

g̃t(w) := gt · (1 + β〈gt,w −wt〉/4) +
d∑

i=1

δt,i(∇ϑi(w)−∇ϑi(wt)).

By definition of (Ft) and (pt), we have

∇Ft+1(w) = g̃t +∇Φt(w)−∇Φt(pt),

= g̃t + βgt · (〈gt,w −wt〉 − 〈gt,pt −wt〉)/4 +
d∑

i=1

δt,i(∇ϑi(w)−∇ϑi(pt))

+∇Φt−1(w)−∇Φt−1(pt),

= gt · (1 + β〈gt,w −wt〉/4) +
d∑

i=1

δt,i(∇ϑi(w)−∇ϑi(wt))

+ gt−1 +∇Φt−1(w)−∇Φt−1(pt−1), (30)

= gt · (1 + β〈gt,w −wt〉/4) +
d∑

i=1

δt,i(∇ϑi(w)−∇ϑi(wt)) +∇Ft(w), (31)

where (30) follows by definition of g̃t in (15) and the fact that 0 = ∇Ft(pt) = gt−1 +∇Φt−1(pt)−
∇Φt(pt−1). Setting w = wt in (31) shows the first equality of the lemma. Now, by induction, we
get

∇Ft+1(w) =
t∑

s=1

gs · (1 + β〈gs,w −ws〉/4) +
t∑

s=1

d∑

i=1

δs,i(∇ϑi(w)−∇ϑi(ws)) +∇F1(w),

=
t∑

s=1

gs · (1 + β〈gs,w −ws〉/4) +∇Ψt(w)−
t∑

s=1

d∑

i=1

δs,iϑi(ws) + βdw/4.

Using that ∇Φt(w) = βdw/4 +
∑t

s=1 βgs · 〈gs,w −ws〉/4 +∇Ψt(w) completes the proof.

C Proof of Theorem 15 (Regret of Base Algorithm)

We present the proof of Theorem 15 before proving Lemmas 10-14.

Proof of Theorem 15. Our starting point is the regret decomposition in Lemma 10. Using Lem-
mas 11, 12, and 13 to bound the first two sums on the RHS of the regret decomposition (17), we
get

T∑

t=1

(ℓt(ut)− ℓt(u
′′)) ≤ 18d ln T

β
+O

(
d ln T

η

)
− 1

32η lnT

d∑

i=1

max
t≤T

ū′′i
ūt,i

+ cT

T∑

t=1

〈gt,wt − pt〉+
3β

8

T∑

t=1

〈gt,wt − pt〉2. (32)

Now using Lemma 14 to bound the last two sums in (32), we get the desired result.
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In addition to Lemmas 10-14 in the main body, we also need the following result (which follows
from the proof of [LWZ18, Lemma 5]) to prove Theorem 15:

Lemma 22. Let (pt) and (g̃t) be as in (14) and (15), respectively. Then, ∀t ∈ [T ],∀u ∈ Cd−1,

T∑

t=1

〈g̃t,pt+1 − u
′〉 ≤ O

(
d ln T

η

)
+

T∑

t=1

(
β

8
〈gt,pt − u

′〉2 +DΨt(u
′,pt)−DΨt−1(u

′,pt)

)
.

Proof. In this proof, we let Θt := Φt−Ψt, for all t ≥ 1. Since pt+1 is the minimizer of Ft+1, which
is a self-concordant barrier for the set Cd−1, we have 0 = ∇Ft+1(pt+1) = g̃t+∇Φt(pt+1)−∇Φt(pt).
Therefore, we have

〈g̃t,pt+1 − u
′〉 ≤ 〈∇Φt(pt+1)−∇Φt(pt),u

′ − pt+1〉,
= DΦt(u

′,pt)−DΦt(u
′,pt+1)−DΦt(pt+1,pt), (33)

≤ DΦt(u
′,pt)−DΦt(u

′,pt+1), (34)

= DΨt(u
′,pt)−DΨt(u

′,pt+1) +DΘt(u
′,pt)−DΘt(u

′,pt+1), (35)

where (33) follows by the definition of the Bregman divergence, and (34) follows by the positivity
of the Bregman divergence. Summing (35) for t = 1 to T , we get

T∑

t=1

〈g̃t,pt+1 − u〉 ≤ DΨ0(u
′,w1) +DΘ0(u

′,w1) +

T∑

t=1

(DΘt(u
′,pt)−DΘt−1(u

′,pt))

+

T∑

t=1

(DΨt(u
′,pt)−DΨt−1(u

′,pt)),

= DΨ0(u
′,w1) +DΘ0(u

′,w1) +
T∑

t=1

β

8
〈gt,pt − u

′〉2

+

T∑

t=1

(DΨt(u
′,pt)−DΨt−1(u

′,pt)). (36)

By definition of u′ and w1, we have DΨ0(u
′,w1) +DΘ0(u

′,w1) ≤ O(η−1d lnT ), which combined
with (36) implies the desired result.

Proof of Lemma 11. Denote by T ∈ [T ] the subset of rounds t where any of (ρt,i)i∈[d] change.
For t 6∈ T , we have ψt ≡ 0, which is self-concordant with any constant. Now, let t ∈ T . Since ψt is
the sum of self-concordant functions, we have by [N+18, Theorem 5.1.1] that ψt is a self-concordant
function with constant less than

max
i∈[d]

√(
1

ηt−1,i
− 1

ηt,i

)−1

= max
i∈[d]

√
ηt,i

elogT (ρt,i/ρt−1,i) − 1

(∗)
≤ max

i∈[d]

√
eη

logT (ρt,i/ρt−1,i)

(∗∗)
≤
√
eη log2 T ,

where (∗) follows by the fact that ex − 1 ≥ x, for all x ∈ R, and that ρt,i > 2ρt−1,i since t ∈ T .
This shows the first claim of the lemma. We now show the second claim. Let t ∈ T and define
wt,µ := µpt + (1− µ)wt, for µ ∈ [0, 1]. By Lemmas 4, 7, and 8, we have

(1−√
eηrt)

2∇−2Φt−1(wt,µ) � ∇−2Φt−1(wt) � (1−√
eηrt)

−2∇−2Φt−1(wt,µ), (37)
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where rt := ‖wt − pt‖∇2Φt−1(wt). By Taylor’s theorem, there exists µ∗ ∈ [0, 1] such that

Dψt
(pt,wt) =

1

2
‖pt −wt‖2∇2ψt(wt,µ∗)

≤ 1

2
‖pt −wt‖2∇2Φt−1(wt,µ∗)

, (38)

≤ 1

2(1 −√
eηrt)2

‖pt −wt‖2∇2Φt−1(wt)
. (39)

where (38) follows by the fact that ∇2ψt � ∇2Ψt−1 � ∇2Φt−1 and the last inequality follows by (37).
Plugging the bound on rt = ‖pt−wt‖2∇2Φt−1(wt)

≤ 64(eη)3/2/c2T (from Lemma 8) into (39) and using

the facts that I) |T | ≤ O(d lnT ) (by definition of (ρt,i) in (11) and the fact that (ūt,i) ⊂ [1/(dT ), 1]);

and II) Dψt
(pt,wt) = 0 if t 6∈ T , we get that

∑T
t=1Dψt

(pt,wt) ≤ O(η3/2d lnT ) ≤ O(d ln T ).

Proof of Lemma 10. Let cT := 1 − 1/T and u be as in the lemma’s statement and recall the
definition of (g̃t) from (15). First, we note that by Lemma 1, we have

∑T
t=1 ℓt(u) ≤

∑T
t=1 ℓt(u

′′)+4,
and so it suffices to bound the regret against u

′′. Let ĝt := gt(1 + β〈gt,pt − wt〉/4). Using that
Cover’s loss is 1-exp-concave and β ≤ 8−1 ∧ |8〈gt,ut −u

′′〉|−1, for all t ≥ 1, we have (see e.g. proof
of [LWZ18, Lemma 5] for the first inequality)

T∑

t=1

(ℓt(ut)− ℓt(u
′′))

≤
T∑

t=1

〈gt,ut − u
′′〉 − β

2

T∑

t=1

〈gt,ut − u
′′〉2,

≤
T∑

t=1

〈ĝt,ut − u
′′〉+ β

4

T∑

t=1

|〈gt,wt − pt〉〈gt,ut − u
′′〉| − β

2

T∑

t=1

〈gt,ut − u
′′〉2,

≤
T∑

t=1

〈ĝt,ut − u
′′〉+ β

8

T∑

t=1

〈gt,wt − pt〉2 −
3β

8

T∑

t=1

〈gt,ut − u
′′〉2,

=cT

T∑

t=1

〈ĝt,wt − u
′〉+ β

8

T∑

t=1

〈gt,wt − pt〉2 −
3c2Tβ

8

T∑

t=1

〈gt,wt − u
′〉2,

=cT

T∑

t=1

〈ĝt,wt − pt〉+
β

8

T∑

t=1

〈gt,wt − pt〉2 −
3c2Tβ

8

T∑

t=1

〈gt,wt − u
′〉2

+ cT

T∑

t=1

〈ĝt,pt − u
′〉,

≤cT
T∑

t=1

〈gt,wt − pt〉 −
3c2Tβ

8

T∑

t=1

〈gt,wt − u
′〉2 + cT

T∑

t=1

〈ĝt,pt − u
′〉, (40)

where in the last inequality we used the fact that 〈ĝt,wt − pt〉 = 〈gt,wt − pt〉 − β〈gt,wt − pt〉2/4
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and cT ≥ 1/2. We now focus on the last sum in (40). By definition of (g̃t) and (ĝt), we have

T∑

t=1

〈ĝt,pt − u
′〉 =

T∑

t=1

〈g̃t,pt − u
′〉

+

T∑

t=1

d∑

i=1

(
1

ηt,i
− 1

ηt−1,i

)
〈∇ϑi(wt)−∇ϑi(pt),pt − u

′〉,

=

T∑

t=1

d∑

i=1

(
1

ηt,i
− 1

ηt−1,i

)
(Dϑi(u

′,wt)−Dϑi(u
′,pt)−Dϑi(pt,wt))

+

T∑

t=1

〈g̃t,pt − pt+1〉+
T∑

t=1

〈g̃t,pt+1 − u
′〉, (41)

=

T∑

t=1

〈g̃t,pt − pt+1〉+
T∑

t=1

〈g̃t,pt+1 − u
′〉

+

T∑

t=1

d∑

i=1

(
1

ηt−1,i
− 1

ηt,i

)
Dϑi(pt,wt)

+

T∑

t=1

(DΨt(u
′,wt)−DΨt−1(u

′,wt)−DΨt(u
′,pt) +DΨt−1(u

′,pt)).

where (41) uses the definition of the Bregman divergence. Plugging in the bound on
∑T

t=1〈g̃t,pt+1−
u
′〉 from Lemma 22 and letting ψt : p 7→∑d

i=1

(
1

ηt−1,i
− 1

ηt,i

)
ϑi(p), we get

T∑

t=1

〈ĝt,pt − u
′〉 ≤

T∑

t=1

〈g̃t,pt − pt+1〉+
T∑

t=1

Dψt
(pt,wt) +

T∑

t=1

(DΨt(u
′,wt)−DΨt−1(u

′,wt))

+O

(
d lnT

η

)
+

T∑

t=1

β

8
〈gt,u′ − pt〉2. (42)

Now, by the fact cT ≥ 1/2 and that (a+ b)2 ≤ 3/2a2 + 3b2, for all T ≥ 1, we get

T∑

t=1

β

8
〈gt,u′ − pt〉2 ≤

3cTβ

8
〈gt,u′ −wt〉2 +

3β

8
〈gt,pt −wt〉2.

By combining this with (42), (40), and the fact that
∑T

t=1 ℓt(u) ≤
∑T

t=1 ℓt(u
′′) + 4 (see beginning

of the proof), we obtain the desired result.

Proof of Lemma 12. Let (Ft) be as in (14) and αT := 1 + βeηc−2
T /4, where cT := 1 − 1/T . We

start by bounding the Newton decrement λ(pt, Ft+1) = ‖∇Ft+1(pt)‖∇−2Ft+1(pt). Since Ft+1 is equal
to a linear function plus Φt, Lemma 7 implies that Ft+1 is

√
eη-self-concordant. On the other hand,

by Lemmas 20 and Lemma 8, we have

‖wt − pt‖∇2Φt(wt) ≤
√
αT ‖wt − pt‖∇2Φt−1(wt) ≤

26
√
αT (eη)

3/2

c2T
<

1

2
√
eη
, (43)
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where the last inequality follows by the range assumptions on η and β. This, together with the fact
that Ft+1 is

√
eη-self-concordant and Lemma 5, we have

‖∇Ft+1(pt)−∇Ft+1(wt)‖∇−2Ft+1(wt) ≤
‖wt − pt‖∇2Φt(wt)

1−√
eη‖wt − pt‖∇2Φt(wt)

≤ 27
√
αT

c2T (eη)
−3/2

. (44)

Thus, by the triangle inequality, we get that

‖∇Ft+1(pt)‖∇−2Ft+1(wt) ≤ ‖∇Ft+1(wt)‖∇−2Ft+1(wt) + ‖∇Ft+1(pt)−∇Ft+1(wt)‖∇−2Ft+1(wt),

= λ(wt, Ft+1) + ‖∇Ft+1(pt)−∇Ft+1(wt)‖∇−2Ft+1(wt),

≤ 2
√
eη/cT + 27

√
αT (eη)

3/2/c2T ,

where the last inequality follows by (44) and Lemma 8. Now, by (43) and Lemma 4, we have

(1−√
eηrt)

2∇−2Ft+1(pt) � ∇−2Ft+1(wt) � (1−√
eηrt)

−2∇−2Ft+1(pt), (45)

where rt := ‖wt − pt‖∇2Φt(wt), and so

‖∇Ft+1(pt)‖∇−2Ft+1(pt) ≤ (1−√
eη‖wt − pt‖∇2Φt(wt))

−1‖∇Ft+1(pt)‖∇−2Ft+1(wt),

≤ 4
√
eη/cT + 28

√
αT (eη)

3/2/c2T ≤ 1

2
√
eη
, (46)

where the last inequality follows by the range assumption on η and β. Combining (46) with the fact
that pt+1 is the minimizer of Ft+1 (which is

√
eη-self-concordant as we argued above) and Lem. 3,

we get

r̃t := ‖pt − pt+1‖∇2Ft+1(pt) ≤ 2λ(pt, Ft+1) ≤
8
√
eη

cT
+

29
√
αT (eη)

3/2

c2T
<

1

2
√
eη
, (47)

where the last inequality follows by the range assumption on η and β. Thus, using Lemma 4 again,
we get that

(1−√
eηr̃t)

2∇2Ft+1(pt) � ∇2Ft+1(pt+1) � (1−√
eηr̃t)

−2∇2Ft+1(pt). (48)

Using this and (47), we have

‖pt − pt+1‖∇2Ft+1(pt+1) ≤
‖pt − pt+1‖∇2Ft+1(pt)

1−√
eηr̃t

≤ 16
√
eη

cT
+

214
√
αT (eη)

3/2

c2T
. (49)

The RHS of (49) is at most 1/2 due to the range assumptions on η and β. This, combined with
[N+18, Theorem 5.1.8] and the optimality of pt+1 implies that for ω(x) := x− ln(1 + x), we have

Ft+1(pt)− Ft+1(pt+1) ≥ ∇Ft+1(pt+1)
⊺(pt − pt+1) + ω(‖pt − pt+1‖∇2Ft+1(pt+1)),

≥ 1

3
‖pt − pt+1‖2∇2Ft+1(pt+1)

,

where the last inequality follows by the fact that ω(x) ≥ x2/3, for x ∈ [0, 1/2]. On the other hand,
by the definition of Ft+1, non-negativity of Bregman divergence, and Hölder inequality,

Ft+1(pt)− Ft+1(pt+1) = 〈pt − pt+1, g̃t〉 −DΦt(pt+1,pt),

≤ ‖pt − pt+1‖∇2Ft+1(pt+1)
· ‖g̃t‖∇−2Ft+1(pt+1)

.
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Combining the above two inequalities we get

‖pt − pt+1‖∇2Ft+1(pt+1)
≤ 3‖g̃t‖∇−2Ft+1(pt+1)

.

Using this and Hölder’s inequality leads to

〈g̃t,pt − pt+1〉 ≤ ‖g̃t‖∇−2Ft+1(pt+1)
· ‖pt − pt+1‖∇2Ft+1(pt+1)

≤ 3‖g̃t‖2∇−2Ft+1(pt+1)
,

≤ 4‖g̃t‖2∇−2Ft+1(wt)
, (50)

where the last inequality follows by (48), (45), and the range assumptions on η and β. Let ψt :=
Ψt−1 −Ψt and recall the definition of (ϑi) in (13). Let ψt := Ψt−1 −Ψt. By the definition of g̃t in
(15), the fact that (a+ b)2 ≤ (1 + γ)a2 + (1 + 1/γ)b2, for all γ > 0, and (50), we have

〈g̃t,pt − pt+1〉 ≤ 9(1 + β〈gt,pt −wt〉/4)2 · ‖gt‖2∇−2Ft+1(wt)
/8

+ 9

∥∥∥∥∥

d∑

i=1

(
1

ηt−1,i
− 1

ηt,i

)
(∇ϑi(pt)−∇ϑi(wt))

∥∥∥∥∥

2

∇−2Ft+1(wt)

,

≤ 9(1 + β‖gt‖∇−2Φt−1(wt) · ‖pt −wt‖∇2Φt−1(wt)/4)
2 · ‖gt‖2∇−2Φt(wt)

/8

+ 9e‖∇ψt(pt)−∇ψt(wt)‖2∇−2ψt(wt)
, (51)

where in the last inequality we used Hölder’s inequality and the fact that e∇2Ft+1 � ∇2Ψt−1 �
∇2ψt (since ηt,i ∈ [η, ηe], for all i ∈ [d] and t ∈ [T ]). On the other hand, since ∇2ψt � ∇2Ψt−1 �
∇2Φt−1, we have ‖wt − pt‖2∇2ψt(wt)

≤ ‖wt − pt‖2∇2Φt−1(wt)
. Using this, (43), and Lemmas 11 and

5, we get

‖∇ψt(pt)−∇ψt(wt)‖2∇−2ψt(wt)
≤ I{ρt,i 6= ρt−1,i}

‖wt − pt‖2∇2ψt(wt)

(1−
√
eη log2 T‖wt − pt‖∇2ψt(wt))

2
,

≤ I{ρt,i 6= ρt−1,i}
‖wt − pt‖2∇2Φt−1(wt)

(1−
√
eη log2 T‖wt − pt‖∇2Φt−1(wt))

2
,

≤ 214I{ρt,i 6= ρt−1,i}(eη)3/c4T , (52)

where the last two inequalities follow by (43) and the range assumptions on η and β. Since∑T
t=1 I{ρt,i 6= ρt−1,i} ≤ O(d ln T ) (by definition of (ρt,i) in (11) and the fact that (ūt,i) ⊂ [1/(dT ), 1]),

(52) implies that
∑T

t=1 ‖∇ψt(pt) − ∇ψt(wt)‖2∇−2ψt(wt)
≤ O(η3d lnT ) ≤ O(d ln T ). Using this to-

gether with (43), (51), and Lemma 20 (and the range assumptions on η and β), we get

T∑

t=1

〈g̃t,pt − pt+1〉 ≤
18d ln T

β
+O(d ln T ).

This completes the proof.

Proof of Lemma 14. Let cT := 1− 1/T . By Cauchy Schwarz inequality and Lemmas 8 and 19,

T∑

t=1

〈gt,pt −wt〉 ≤
T∑

t=1

|〈gt,pt −wt〉| ≤

√√√√
T∑

t=1

‖gt‖2∇−2Φt−1(wt)

√√√√
T∑

t=1

‖pt −wt‖2∇2Φt−1(wt)
,

≤
√

42dβ−1 lnT ·
√

1 + 15dβ−1 lnT ,

≤ 1 + 4
√
15dβ−1 lnT. (53)

25



On the other hand, by Hölder’s inequality, we have

|〈gt,pt −wt〉| ≤ ‖gt‖∇−2Φt−1(wt) · ‖pt −wt‖∇2Φt−1(wt) ≤ 64e2η2/c3T ,

where the last equality follows by Lemmas 8 and 20. Combining this with the range assumptions
on η and β, we get

T∑

t=1

〈gt,pt −wt〉2 ≤
64e2η2

c3T

T∑

t=1

|〈gt,pt −wt〉| ≤
64e2η2

c3T

(
1 + 4

√
15dβ−1 lnT

)
,

where the last inequality follows by (53).

Proof of Lemma 13. Let cT := 1− 1/T . We have

T∑

t=1

(DΨt(u
′,wt)−DΨt−1(u

′,wt)) =

T∑

t=2

d∑

i=1

(
1

ηt,i
− 1

ηt−1,i

)
h

(
ū′i
w̄t,i

)
,

where h(x) := x− 1− lnx and (ηt,i) are defined in (10). Fix i ∈ [d] and let T := {t : ρt,i 6= ρt−1,i}.
First, suppose that ūt,i ≥ 1

2d ∧(cT ū
′
i), for all t ∈ [T ]. In this case, we have maxt∈[T ]

ū′i
ūi,t

≤ 2dū′i+c
−1
T .

Therefore, by positivity of h and the fact that ηt+1,i ≥ ηt,i, we have

T∑

t=2

(
1

ηt,i
− 1

ηt−1,i

)
h

(
ū′i
w̄t,i

)
≤ 0 ≤ c−1

T + 2dū′i −max
t∈[T ]

u′i
ūt,i

. (54)

Now, assume that ūt,i ≤ 1
2d ∧ (cT ū

′
i). Note that this implies that T 6= ∅ (due to ūt,i ≤ 1/(2d) and

the definition of (ρt,i)). Let τ := max T . For notational convenience, we let

u := ū′i, uτ := ūτ,i, wτ := w̄τ,i, and ητ := ητ,i.

By definition of (ηt,i), we have ητ = η exp(− logT duτ ) ≤ η exp(logT T ) = ηe. Thus, by the positivity
of h, we have

T∑

t=2

(
1

ηt,i
− 1

ηt−1,i

)
h

(
ū′i
w̄t,i

)
≤
(

1

ητ
− 1

ητ−1

)
h

(
u

wτ

)
,

=
1− elogT (uτ−1/uτ )

ητ
· h
(
u

wτ

)
,

≤
− logT

uτ−1

uτ

ητ
· h
(
u

wτ

)
,

≤ −
log2

uτ−1

uτ

eη ln2 T
· h
(
u

wτ

)
,

By definition of (ut,i), we have

uτ
wτ

=
1/(Td) + (1− 1/T )wτ

wτ
≥ 1− 1

T
= cT . (55)
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Hence, h(u/wτ ) ≥ h(cTu/uτ ), since cTu/uτ ≥ 1 by assumption and h is positive and decreasing on
[1,+∞[. On the other hand, by construction of (ρt,i) and the definition of τ , we have uτ ≤ uτ−1/2,
which implies that − log2(uτ−1/uτ ) ≤ −1. Plugging these bounds into (55), we get that

T∑

t=2

(
1

ηt,i
− 1

ηt−1,i

)
h

(
ū′i
w̄t,i

)
≤ − 1

eη log2 T
h

(
cTu

uτ

)
,

= − 1

eη log2 T

(
cTu

uτ
− 1− ln

(
cTu

uτ

))
,

= − cT
eη log2 T

max
t∈[T ]

ū′i
ūt,i

+O
(
ln(dT ū′i)
η lnT

)
, (56)

Thus, by (54), (56), and the fact that ū′′i ≤ 2ū′i, for all i ∈ [d], we get the desired result after
summing over i ∈ [d].

D Proof of Theorem 17 (Meta-Algorithm Regret)

Proof of Proposition 16. The proof of the proposition follows from an extension of the proof of
[ZWTZ19, Lemma 6].

In this proof, we denote by At the set of active experts at round t; that is, At := {Aβ,I : I ∈
Jt, β ∈ G}. For notational convenience, we will write

∑
Aβ,I∈At

to mean
∑

β∈G,I∈Jt
. By the

assumption on the substitution function in (18), we have

e−ηft(ut) = e−ηft(Υ(Qt−1,Ut)) ≥
∑

Aβ,I∈At

qβ,It−1e
−ηft(wβ,I

t ), (57)

where Qt−1 = (qβ,It−1)β∈G,I∈Jt
, Ut = (uβ,It )β∈G,I∈Jt

, and

qα,Jt−1 =
e−ηF

α,J
t−1

∑
Aβ,I∈At

e−ηF
β,I
t−1

.

for any J ∈ I|T and α ∈ G. Rearranging (57) we get

∑

Aβ,I∈At

e−ηF
β,I
t =

∑

Aβ,I∈At

e−ηF
β,I
t−1 · eηft(ut)−ηft(wβ,I

t ) ≤
∑

Aβ,I∈At

e−ηF
β,I
t−1 . (58)

Summing (58) over t = 1, . . . , s, we have

s∑

t=1

∑

Aβ,I∈At

exp(−ηFβ,I
t ) ≤

s∑

t=1

∑

Aβ,I∈At

exp(−ηFβ,I
t−1)

which can be rewritten as

∑

Aβ,I∈As

exp(−ηFβ,I
s ) +

s−1∑

t=1




∑

Aβ,I∈At\At+1

exp(−ηFβ,I
t ) +

∑

Aβ,I∈At∩At+1

exp(−ηFβ,I
t )




≤
∑

Aβ,I∈A1

exp(−ηFβ,I
0 ) +

s∑

t=2




∑

Aβ,I∈At\At−1

exp(−ηFβ,I
t−1) +

∑

Aβ,I∈At∩At−1

exp(−ηFβ,I
t−1)



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implying

∑

Aβ,I∈As

exp(−ηFβ,I
s ) +

s−1∑

t=1

∑

Aβ,I∈At\At+1

exp(−ηFβ,I
t )

≤
∑

Aβ,I∈A1

exp(−ηFβ,I
0 ) +

s∑

t=2

∑

Aβ,I∈At\At−1

exp(−ηFβ,I
t−1)

=
∑

Aβ,I∈A1

exp(0) +
s∑

t=2

∑

Aβ,I∈At\At−1

exp(0)

=|A1|+
s∑

t=2

|At \ At−1|.

(59)

Note that |A1| +
∑s

t=2 |At \ At−1| is the total number of experts created until round s. From the
structure of geometric covering intervals and the fact that |G| ≤M , we have

|A1|+
s∑

t=2

|At \ At−1| ≤Ms (⌊log2 s⌋+ 1) ≤Ms2. (60)

From (59) and (60), we have

∑

Aβ,I∈As

exp(−ηFβ,I
s ) +

s−1∑

t=1

∑

Aβ,I∈At\At+1

exp(−ηFβ,I
t ) ≤Ms2.

Thus, for any interval I ∈ I and s ∈ I, we have

exp(−ηFβ,I
s ) = exp


η

∑

t∈I∩[s]
(ft(ut)− ft(u

β,I
t ))


 ≤Ms2,

which completes the proof.

D.1 Proof of Theorem 17

To prove Theorem 17, we define

u∗ ∈ argmin
u∈Cd−1

T∑

t=1

ℓt(u), and αβ,It := 8−1 ∧ min
s∈I∩[t],i∈[d]

(ūβ,It,i /(8ū
′′
∗,i)). (61)

With this, we start by stating a regret guarantee against u∗ for the subroutines of Algorithm 3,
which follows from Lemma 8 and the base algorithm’s regret bound in Theorem 15.

Lemma 23. Let I ∈ I, β ∈ G, and (uβ,It )t∈I be the outputs of the subroutine Aβ,I within Algo-
rithm 3 in response to Cover’s losses (ℓt). Further, let u∗ be as in (61). If there exists t ∈ I∩ [T −1]

such that αβ,It ≥ β > αβ,It+1, and t > min I then,

∑

s∈I∩[t]
(ℓs(u

β,I
s )− ℓs(u∗)) ≤ O

(
d2 ln4 T

)
− 204d ln2 T

β
. (62)

Otherwise, if αβ,It ≥ β for all t ∈ I, then
∑

s∈I∩[T ](ℓs(u
β,I
s )− ℓs(u∗)) ≤ O

(
d2 ln4 T

)
+ 34d lnT

β .
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For the proofs of Lemma 23 and Theorem 15, we need the following Corollary to Lemma 8:

Corollary 24. In the setting of Lemma 8, the iterate of (wt) in Alg. 1 and (pt) in (14) satisfy:

∀i ∈ [d],∀t ∈ [T ], 1− 64(eη)2 ≤ p̄t,i
w̄t,i

≤ 1 + 64(eη)2,
3

4
≤ w̄t+1,i

w̄t,i
≤ 5

4
, and

ūt,i
ūt+1,i

≤ 4

3
.

The proofs of Lemma 23 and Corollary 24 are in Appendix D.2.

Proof of Theorem 17. Recall that G := { 1
d2i+3 : i ∈ [⌈log2 T ⌉]}. We note that the outputs of

(uβ,It ) of the base algorithms are all in the set

C̄d−1 := {u ∈ Cd−1 : ūi ≥ 1/(dT ),∀i ∈ [d]}.

This is because of the mixing with the uniform distribution on Line 3 of Algorithm 1. By (20), the

outputs (ut) of Algorithm 3 are convex combinations of (uβ,It ), and so (ut) ⊂ C̄d−1. This fact will
be useful below.

For any β ∈ G, we define the set

J β := {t ∈ [T ] : αβ,I0t < β, I0 := [T ]}.

Note that I0 = [T ] ∈ I|T , by definition, where I|T is the set of intervals indexing the base algorithms

of Alg. 3. Furthermore, for β′ = minG, we have J β′

= ∅ since β′ ≤ 1
8dT

(∗)
≤ αβ

′,I
t for any I ∈ I|T

and t ≥ 1, where (∗) follows by the fact that all the outputs (uβ
′,I
t ) are in the set C̄d−1. If Jβ = ∅,

for all β ∈ G, then by Proposition 16 and the second inequality in Lemma 23, instantiated with
β0 := maxG = 1

24d
and I0 = [T ], we get

T∑

t=1

(ℓt(u)− ℓt(u∗)) ≤
T∑

t=1

(ℓt(u
β0,I0
t )− ℓt(u∗)) +O(ln T ) ≤ O(β−1

0 d lnT ) = O(d2 lnT ),

which implies the desired regret bound. Now, suppose that there exists β ∈ G such that J β 6= ∅
and let β∗ := min{β ∈ G : J β 6= ∅} and τ := minJ β∗ . By the definition of the base Algorithm 1,

we have u
β∗,I0
1 = 1/d, and thus,

2β0 =
1

23d
≤ αβ∗,I01 and β∗ ≤ β0 ≤ αβ∗,I02 ,

where the last inequality follows by the fact that 2β0 ≤ αβ∗,I01 and the bound on ū1,i/ū2,i for i ∈ [d]

from Corollary 24. Therefore, by definition of τ we must have that τ > 2 and αβ∗,I0τ−1 ≥ β∗ > αβ∗,I0τ .
Thus, by invoking Proposition 16 and Lemma 23 (in particular (62)), we get

τ−1∑

t=1

(ℓt(ut)− ℓt(u∗)) ≤
τ−1∑

t=1

(ℓt(u
β∗,I0
t )− ℓt(u∗)) +O(lnT ),

≤ O
(
d2 ln4 T

)
− 204d ln2 T

β∗
. (63)

Now, let β′ := β∗/2 and S = S([τ + 1, T ]) ⊂ I denote any disjoint partition of [τ + 1, T ] that
contains at most 2 log2 T elements in I; this is guaranteed to exists by [DGSS15, Lemma 5]. The
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fact that J β′

= ∅ together with Proposition 16 and the second inequality in Lemma 23 implies

T∑

t=τ+1

(ℓt(ut)− ℓt(u∗)) ≤
∑

I∈S

∑

t∈I
(ℓt(u

β′,I
t )− ℓt(u∗)) +O(|S| lnT ),

≤ O
(
|S|d2 ln4 T

)
+

34|S|d ln T
β′

,

≤ O
(
d2 ln5 T

)
+

204d ln2 T

β∗
,

where the last inequality, we used the fact that β′ = β∗/2 and |S| ≤ 2 ln2 T ≤ 3 ln T . Combining
this with (63) and using the fact that ℓτ (uτ ) − ℓτ (u∗) ≤ ln(dT ) (since uτ ∈ C̄d−1) completes the
proof.

D.2 Proofs of Lemma 23 and Corollary 24

Proof of Corollary 24. We start by the first inequality. By Lemma 8, we have

‖wt − pt‖∇2Ft(wt) ≤ 64(eη)3/2. (64)

Note also that for any i ∈ [d−1], we have ∇2Ft(wt) � ∇2Ψt(wt) � eie
⊺

i /(ηew
2
t,i), since ηt,i ∈ [η, ηe].

Therefore, (64) implies that (wt,i − pt,i)
2/(ηew2

t,i) ≤ 642(eη)3. Rearranging this implies the bounds

on p̄t,i/w̄t,i for the case where i ∈ [d−1]. Also, we have that ∇2Ft(wt) � ∇2Ψt(wt) � 11⊺/(ηew̄2
t,d).

Therefore, (64) implies that

642(eη)3 ≥ (〈wt,1〉 − 〈pt,1〉)2/(ηew̄2
t,d) = (w̄t,d − p̄t,d)

2/(ηew̄2
t,d).

Rearranging this inequality yields the desired bounds on p̄t,i/w̄t,i for i = d. We now bound
w̄t+1,i/w̄t,i for i ∈ [d]. By definition of wt+1, we have

‖wt+1 −wt‖∇2Ψt(wt) ≤ ‖wt+1 −wt‖(∇2Ψt(wt)+Vt),

=

∥∥∥∥∥
(∇2Ψt(wt) + Vt)

−1
∇t

1 + 4
√
eη‖∇t‖(∇2Ψt(wt)+Vt)−1

∥∥∥∥∥
(∇2Ψt(wt)+Vt)

=
‖∇t‖(∇2Ψt(wt)+Vt)−1

1 + 4
√
eη‖∇t‖(∇2Ψt(wt)+Vt)−1

≤ 1

4
√
eη
.

Thus, since ∇2Ψt(wt) � eie
⊺

i /(ηew̄
2
t,i), for all i ∈ [d], we get that (as we did above)

(w̄t+1,i − w̄t,i)
2

ηew̄2
t,i

≤ 1

16ηe
, ∀i ∈ [d].

Thus, after rearranging, we obtain the desired bounds on w̄t+1,i/w̄t,i. Finally, we have

ūt,i
ūt+1,i

=
(1− 1/T )w̄t,i + 1/(dT )

(1− 1/T )w̄t+1,i + 1/(dT )
≤ 1 ∨ w̄t,i

w̄t+1,i
≤ 4

3
,

where the last inequality follows by the fact that 3/4 ≤ w̄t+1,i/w̄t,i ≤ 5/4.
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Proof of Lemma 23. Let u∗ be as in (61). We first show (62). Since β ≤ αβ,It , Lemma 21 implies
that

β ≤ 8−1 ∧ |8〈gβ,Is ,u′′
∗ − u

β,I
s 〉|−1,

for all s ∈ I ∩ [t], where g
β,I
s := ∇ℓs(uβ,Is ). Therefore, by the assumption that t > min I and

Theorem 15, we have

∑

s∈I∩[t]
(ℓs(u

β,I
s )− ℓs(u∗) ≤ O

(
d ln T

η

)
+

34d ln T

β
− at

32η lnT
, (65)

where at := maxs∈I∩[t]
∑d

i=1 ū
′′
∗,i/ūs,i. Now the fact that β > αβ,It+1 implies

1

β
≤ 8 ∨ max

s∈I∩[t+1],i∈[d]

8ū′′∗,i
ūs,i

≤ 8at+1 + 8 ≤ 32at/3 + 8,

where the last step follows by the bound on ūt,i/ūt+1,i from Corollary 24. Further, combining this
with (65), we get that

t∑

s∈I∩[t]
(ℓs(u

β,I
s )− ℓs(u∗)) ≤ O

(
d lnT

η

)
+

34d ln T

β
− 1

32η lnT

(
3

32β
− 3

4

)
,

≤ O
(
d2 ln4 T

)
− 204d ln2 T

β
.

where we used that η = 1/(2862d ln3 T ). When, β ≤ αβ,It , for all t ∈ I, we can simply invoke (65)
and discard the negative term to obtain the second claimed bound of the lemma.

E Why the Ada-BARRONS Restarts Work

Before discussing the Ada-BARRONS restarts, we first give some more details on the regret bound
of the base algorithm. In particular, we highlight that the RHS of (4) (which is a bound on the sum
of divergences in the regret bound of BARRONS) can cancel the bound O(β−1d ln T ) on the stability
term as long as β ≥ αT (u)/2 and η ≤ O(1/(d ln T )). This is because αT (u) ≥ 1

8 ∧mini∈[d],t∈[T ]
pt,i
8ut,i

.

In fact, by choosing η small enough and as long as αT (u)/2 ≤ β ≤ αT (u) on can ensure that what
remains in the regret bound of BARRONS is

RT (u) ≤ Õ(d2)− Cd ln2 T

β
,

for some C > 0. Before discussing how one might ensure that αT (u)/2 ≤ β ≤ αT (u), we reit-
erate that what enables the cancellation of the term O(β−1d ln T ) is the sum

∑T
t=1(DΦt(u,pt) −

DΦt(u,pt+1)) in (3) that comes out of the mirror descent analysis. This idea of canceling terms
thanks to negative Bregman divergence terms originated from the work by [ALNS17] on combining
Bandit algorithms. [FGMZ20] recently showed that on can use FTRL with slightly modified gra-
dients instead of mirror descent to achieve the same goal in a Bandit setting. The approach of the
latter fails to lead to an efficient algorithm in our setting since it is not possible to show that the
Newton decrement of the damped Newton step is small on rounds where the iterates (ut,i) reach
new minima.

As we already discussed in §3.1, since the sequence of returns (rt) is not known up-front, it is not
possible for any algorithm to pick β so that the condition αT (u)/2 ≤ β ≤ αT (u) is always satisfied.
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Aggregating multiple instances of BARRONS with different β’s also fails since αT (u) depends on
the outputs of the algorithm; and so changing β changes the target αT (u) for the base algorithm
(see also discussion in [LWZ18]). Instead of aggregating base algorithms, the approach taken by
[LWZ18] consists of restarting the base algorithm on round t if the current estimate for β satisfies
β > αt(ut), where ut is the regularized leader:

ut ∈ argmin
u∈∆̄d

d∑

i=1

− lnui
ηt,i

+
t∑

s=τ

ℓs(u).

and τ is the round where the current instance of the base algorithm was initialized. By stability
of the iterates (ut) and (pt) it is possible to show that αt−1(ut−1) ≥ β ≥ αt−1(ut−1)/2, and so
invoking the regret bound of the base algorithm for the current epoch yields

∑t−1
s=τ (ℓt(pt)−ℓt(ut)) ≤

O(d2 ln2 T )−Cβ−1d lnT . When there are no restarts, the regret bound of the algorithm is simply∑t−1
s=τ (ℓt(pt)− ℓt(ut)) ≤ O(d2 lnT ) + Cβ−1d ln2 T . Starting with β = β0 and halving β every time

there is a restart and letting τi [resp. βi] be the start round [resp. the β] of epoch i and M be the
total number of epochs, the regret of the meta-algorithm is bound by

RT (u) ≤
M∑

i=1

|ℓτi(pτi)− ℓτi(u)|+
M∑

i=1

τi+1−1∑

t=τi+1

(ℓt(pt)− ℓt(u)),

≤
M∑

i=1

|ℓτi(pτi)− ℓτi(u)|+
M∑

i=1

τi+1−1∑

t=τi+1

(ℓt(pt)− ℓt(ut)),

≤
M−1∑

i=1

Õ(1) +

M−1∑

i=1

(
Õ(d2)− Cd ln2 T

βi

)
+ Õ(d2) +

Cd ln2 T

βM
, (67)

= Õ(d2)−
M−1∑

i=1

Cd ln2 T

21−iβ0
+
Cd ln2 T

21−Nβ0
= Õ(d2) +

Cd ln2 T

β0
, (68)

where (67) follows from the regret bound of the base algorithm and the fact that pt,u ∈ ∆̄d, for
all t (the latter ensures that ℓt(pt)− ℓt(u) ≤ Õ(1)), and the last inequality follows by the fact that
M ≤ O(lnT ) since inf

u∈∆̄d
αT (u) ≥ 1/(dT ) (also because (pt) ⊂ ∆̄d). By choosing β0 = Ω(1), (68)

leads to the desired regret bound.
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