Publication Library

Publication Library

ChatCollab Exploring Collaboration Between Humans and AI Agents in Software Teams

Description: We explore the potential for productive team-based collaboration between humans and Artificial Intelligence (AI) by presenting and conducting initial tests with a general framework that enables multiple human and AI agents to work together as peers. ChatCollab's novel architecture allows agents - human or AI - to join collaborations in any role, autonomously engage in tasks and communication within Slack, and remain agnostic to whether their collaborators are human or AI. Using software engineering as a case study, we find that our AI agents successfully identify their roles and responsibilities, coordinate with other agents, and await requested inputs or deliverables before proceeding. In relation to three prior multi-agent AI systems for software development, we find ChatCollab AI agents produce comparable or better software in an interactive game development task. We also propose an automated method for analyzing collaboration dynamics that effectively identifies behavioral characteristics of agents with distinct roles, allowing us to quantitatively compare collaboration dynamics in a range of experimental conditions. For example, in comparing ChatCollab AI agents, we find that an AI CEO agent generally provides suggestions 2-4 times more often than an AI product manager or AI developer, suggesting agents within ChatCollab can meaningfully adopt differentiated collaborative roles. Our code and data can be found at: https://github.com/ChatCollab

Created At: 04 December 2024

Updated At: 04 December 2024

Deep Learning, Machine Learning, Advancing Big Data Analytics and Management

Description: Advancements in artificial intelligence, machine learning, and deep learning have catalyzed the transformation of big data analytics and management into pivotal domains for research and application. This work explores the theoretical foundations, methodological advancements, and practical implementations of these technologies, emphasizing their role in uncovering actionable insights from massive, high-dimensional datasets. The study presents a systematic overview of data preprocessing techniques, including data cleaning, normalization, integration, and dimensionality reduction, to prepare raw data for analysis. Core analytics methodologies such as classification, clustering, regression, and anomaly detection are examined, with a focus on algorithmic innovation and scalability. Furthermore, the text delves into state-of-the-art frameworks for data mining and predictive modeling, highlighting the role of neural networks, support vector machines, and ensemble methods in tackling complex analytical challenges. Special emphasis is placed on the convergence of big data with distributed computing paradigms, including cloud and edge computing, to address challenges in storage, computation, and real-time analytics. The integration of ethical considerations, including data privacy and compliance with global standards, ensures a holistic perspective on data management. Practical applications across healthcare, finance, marketing, and policy-making illustrate the real-world impact of these technologies. Through comprehensive case studies and Python-based implementations, this work equips researchers, practitioners, and data enthusiasts with the tools to navigate the complexities of modern data analytics. It bridges the gap between theory and practice, fostering the development of innovative solutions for managing and leveraging data in the era of artificial intelligence.

Created At: 04 December 2024

Updated At: 04 December 2024

Learning Explainable Treatment Policies with Clinician-Informed Representations A Practical Approach

Description: Digital health interventions (DHIs) and remote patient monitoring (RPM) have shown great potential in improving chronic disease management through personalized care. However, barriers like limited efficacy and workload concerns hinder adoption of existing DHIs; while limited sample sizes and lack of interpretability limit the effectiveness and adoption of purely black-box algorithmic DHIs. In this paper, we address these challenges by developing a pipeline for learning explainable treatment policies for RPM-enabled DHIs. We apply our approach in the real-world setting of RPM using a DHI to improve glycemic control of youth with type 1 diabetes. Our main contribution is to reveal the importance of clinical domain knowledge in developing state and action representations for effective, efficient, and interpretable targeting policies. We observe that policies learned from clinician-informed representations are significantly more efficacious and efficient than policies learned from black-box representations. This work emphasizes the importance of collaboration between ML researchers and clinicians for developing effective DHIs in the real world.

Created At: 04 December 2024

Updated At: 04 December 2024

A Voice-based Triage for Type 2 Diabetes using a Conversational Virtual Assistant in the Home Environment

Description: Incorporating cloud technology with Internet of Medical Things for ubiquitous healthcare has seen many successful applications in the last decade with the advent of machine learning and deep learning techniques. One of these applications, namely voice-based pathology, has yet to receive notable attention from academia and industry. Applying voice analysis to early detection of fatal diseases holds much promise to improve health outcomes and quality of life of patients. In this paper, we propose a novel application of acoustic machine learning based triaging into commoditised conversational virtual assistant systems to pre-screen for onset of diabetes. Specifically, we developed a triaging system which extracts acoustic features from the voices of n=24 older adults when they converse with a virtual assistant and predict the incidence of Diabetes Mellitus (Type 2) or not. Our triaging system achieved hit-rates of 70% and 60% for male and female older adult subjects, respectively. Our proposed triaging uses 7 non-identifiable voice-based features and can operate within resource-constrained embedded systems running voice-based virtual assistants. This application demonstrates the feasibility of applying voice-based pathology analysis to improve health outcomes of older adults within the home environment by early detection of life-changing chronic conditions like diabetes.

Created At: 04 December 2024

Updated At: 04 December 2024

Exploring Long-Term Prediction of Type 2 Diabetes Microvascular Complications

Description: Electronic healthcare records (EHR) contain a huge wealth of data that can support the prediction of clinical outcomes. EHR data is often stored and analysed using clinical codes (ICD10, SNOMED), however these can differ across registries and healthcare providers. Integrating data across systems involves mapping between different clinical ontologies requiring domain expertise, and at times resulting in data loss. To overcome this, code-agnostic models have been proposed. We assess the effectiveness of a code-agnostic representation approach on the task of long-term microvascular complication prediction for individuals living with Type 2 Diabetes. Our method encodes individual EHRs as text using fine-tuned, pretrained clinical language models. Leveraging large-scale EHR data from the UK, we employ a multi-label approach to simultaneously predict the risk of microvascular complications across 1-, 5-, and 10-year windows. We demonstrate that a code-agnostic approach outperforms a code-based model and illustrate that performance is better with longer prediction windows but is biased to the first occurring complication. Overall, we highlight that context length is vitally important for model performance. This study highlights the possibility of including data from across different clinical ontologies and is a starting point for generalisable clinical models.

Created At: 04 December 2024

Updated At: 04 December 2024

First 47 48 49 50 51 52 53 Last