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Topological Data Analysis

Afra Zomorodian

Abstract. Scientific data is often in the form of a finite set of noisy points,
sampled from an unknown space, and embedded in a high-dimensional space.
Topological data analysis focuses on recovering the topology of the sampled

space. In this chapter, we look at methods for constructing combinatorial
representations of point sets, as well as theories and algorithms for effective
computation of robust topological invariants. Throughout, we maintain a com-
putational view by applying our techniques to a dataset representing the con-

formation space of a small molecule.

1. Introduction

Topological data analysis is a subarea of computational topology that develops
topological techniques for robust analysis of scientific data. To clarify our task, we
begin this chapter by examining the three words that constitute the title. We then
lay out a two-step pipeline around which the rest of the chapter is organized. We
focus on intuition in this section, formalizing the concepts in the remainder of the
chapter.

1.1. Topology. Geometry studies shapes. For instance, we think of the closed
curve in Figure 1(a) as having the same shape as the curve in Figure 1(b), even
though the two curves are not identical pointwise. If we translate the first curve
by about an inch, and rotate it by 30 degrees, we get the second curve. Even
though we have transformed the curve, we believe its shape has not changed. In
this sense, geometry classifies objects according to properties that do not change
under certain permissible transformations. Felix Klein introduced this expansive
definition of geometry in his famous Erlangen Program in 1872 [45]. Restricting to
the group of rigid transformations yields Euclidean geometry. Through its rigidity,
this geometry has a fine granularity when viewed as a classification system. If we
enlarge the group of approved transformations, we may obtain other classifications
that are coarser and may capture more qualitative information about shapes.
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(a) Curve (b) Rigidly moved (c) Deformed (d) Shrunk (e) Cut

Figure 1. The closed curve (a) is transformed under rigid motion
(b), deformed using homeomorphisms (c) including scaling (d),
and finally cut (e). The final transformation changes the curve’s
connectivity as the closed loop becomes a path.

Topology allows the larger group of homeomorphisms that deform an object by
stretching or shrinking, as we do for the curve in Figures 1(c) and (d). Under any
homeomorphism, the curve remains a Jordan curve that divides the plane into two
regions. It is only by cutting the curve that we change its topology from a closed
loop to a path. Neither cutting, nor its inverse, gluing, are permissible in topology
as they change the way an object is connected. Topology, then, classifies a shape
according to its connectivity, such as its number of pieces, loops, or presence of
boundary. The main object of study in topology is a topological space: the most
general form of a space that still retains a notion of connectivity.

1.2. Data. Data is processed mainly on digital computers and communicated
via packet switching. As such, data is stored in a finite representation, such as the
IEEE standard for floating-point arithmetic, resulting in discretization error. More-
over, acquisition devices are usually imperfect, adding noise to data. Therefore, we
think of data as a finite set of discrete noisy samples, such as two-dimensional im-
ages from digital cameras, terrains from satellite observations [61], sampled three-
dimensional surfaces from laser scanners [67], voxelized MRI scans of the human
body [59], or snapshots from simulated protein folding trajectories [32]. Abstract
spaces may also be modeled with discrete samples, as the following example demon-
strates.

Example 1.1 (conformation space). To understand molecular motion, we need
to characterize the molecule’s possible shapes. For instance, consider the molecule
cyclooctane with formula C8H16. Structurally, cyclooctane has a ring of eight car-
bon atoms, each bonded to a pair of hydrogen atoms, as shown in its chemical
diagram in Figure 2(a) [4]. A conformation of a molecule is a potential shape
it may assume. We visualize a conformation of cyclooctane using two models in
Figures 2(b) and (c). To specify a conformation, we need to map every atom in
the molecule to a point in R

3. Since cyclooctane has 24 atoms, each conformation,
such as the one in Figure 2, may be viewed as a single point in R

72. The set of all
physically realizable conformations of a molecule is its conformation space. We may
model this space with a set of finite samples. Figure 3 shows three-dimensional pro-
jections of a dataset of 6,400 samples from the cyclooctane conformation space [4].

1.3. Analysis. Suppose that we are given a set of data points S embedded
in some d-dimensional space Y. We assume that this data is sampled from some
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(a) Chemical Diagram (b) One conformation (Stick) (c) Hard Sphere Model

Figure 2. Cyclooctane: Chemical diagram (a) and two visualiza-
tions of a conformation (b) and (c).

unknown k-dimensional subspace X ⊆ Y, where k ≤ d. Both the geometry and
the topology of X are lost during sampling. Our goal in analysis is recovering
information about X from the given dataset S. Properties of the embedding space
Y are extrinsic, while properties of the unknown space X are intrinsic. For example,
S has extrinsic dimension d, but intrinsic dimension k. In analysis, we try to recover
intrinsic information, given only extrinsic information.

Example 1.2 (spiral). Consider the spiral in Figure 4. The data points (a) are
embedded in R

2, so, the extrinsic dimension is 2. We may use the Euclidean metric
of the embedding space to compute distances between points (b). The points are
sampled, however, from a spiral (c). Since the spiral is a one-dimensional curve, its
intrinsic dimension is 1. Note that the geodesic distance (d) may be very different
from the embedding distance in (b).

Every analysis method makes fundamental assumptions about the unknown
space X. Principal Component Analysis (PCA) assumes that X is a linear subspace,
a flat hyperplane with no curvature [40, 73]. Isomap assumes that X is intrinsically
flat, but is isometrically embedded, like the spiral in Figure 4(c). The method also
assumes that X is a single convex patch with the topology of a disc [24]. The method
of Hessian eigenmaps, a refinement of locally linear embeddings (LLE) [65], also
assumes isometric embedding, but relaxes the restriction on topology [24]. A large
class of methods from computer graphics and computational geometry focus on

Figure 3. Three-dimensional projections of 6,400 samples of the
conformation space of cyclooctane [4].
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(a) Samples in R2 (b) Embedding (c) Spiral (d) Geodesic

Figure 4. Spiral. Two-dimensional samples (a) and extrinsic em-
bedding distance (b). Original spiral (c) and intrinsic geodesic
distance (d).

surface reconstruction from samples. These methods assume that X is a closed
surface without self-intersection. Additionally, they often assume that X is smooth
and that the sampling is sufficiently dense, respecting the unknown local feature
size of the original surface [23].

The methods above are all instances of manifold learning, where the key as-
sumption is that X is a manifold, that is, it is locally Euclidean [60]. But most
real-world point sets are sampled from spaces that violate nearly all the above
assumptions.

Example 1.3 (reconstruction). It is already clear from Figure 3 that the con-
formation space of cyclooctane in Example 1.1 has non-manifold structure, visible as
potential self-intersections in the three-dimensional embeddings. Indeed, the recon-
structed conformation space is a two-dimensional surface with non-manifold struc-
ture [50]. We embed this surface in R

3 using Isomap in Figure 5. Topologically,
the conformation space is the Klein bottle glued to the two-dimensional sphere
along two rings [49].

Note that the conformation space of cyclooctane violates every assumption
made by prior analysis techniques. Reconstructing a surface with non-manifold

Figure 5. The reconstructed conformation space of cyclooctane
is a two-dimensional surface with self-intersections [50]. Topolog-
ically, it is the Klein bottle glued to the sphere along two rings [49].
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(a) Points S (b) Representation K (c) Invariant

Figure 6. Analysis Pipeline. The input is a set of points S (a).
Section 3 describes the first step, the geometric process of going
from (a) to a representation K (b). Sections 4 and 5 describe
the second step, the combinatorial process of going from (b) to a
topological invariant, such as the cycle (c).

structure is a challenging problem in computational geometry [50]. Once we have
the surface, we may also recover the topology of the conformation space. But if we
are only interested in topology, surface reconstruction is excessive as topology is a
much coarser classification system.

Having examined the three words in topological data analysis, we may now
define our task in this chapter.

Definition 1.4 (topological data analysis). Given a finite dataset S ⊆ Y of
noisy points sampled from an unknown space X, topological data analysis recovers
the topology of X, assuming both X and Y are topological spaces.

The assumption here is much weaker than those of geometric analysis tech-
niques: We do not assume manifold structure, smoothness, lack of curvature, or
the existence of a metric. Correspondingly, our goal is modest and coarse.

1.4. Pipeline. Traditional topological analysis uses the two-step pipeline sum-
marized in Figure 6. Given a finite set of points (a):

(1) We first approximate the unknown space X in a combinatorial structure
K, as shown in Figure 6(b). We devote Section 3 to such structures and
the methods for constructing them.

(2) We then compute topological invariants of K, such as the cycle in Fig-
ure 6(c). We devote Section 4 to classic topological invariants and Sec-
tion 5 to modern multiscale invariants.

Topological invariants of K provide approximations to properties of X as finitely
represented by S. While the pipeline is effective, it is not computationally feasible
for large point sets embedded in high dimensions. For this reason, we describe
methods for combining the two steps in Section 6.

Topological data analysis is an applied field, concerned with theory that facili-
tates analysis of real-world datasets. Therefore, we return at the end of each section
to our motivating dataset, the cyclooctane conformation space, applying techniques
toward its analysis and providing empirical results. Throughout this chapter, all
computation is on a 64-bit GNU/Linux machine with a 2.4 GHz dual-core Xeon
processor and 2 GB RAM. Our software is not threaded and uses only one core.
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2. Background

We begin by formalizing topological spaces and describing two topological clas-
sifications. We then introduce simplicial complexes, the primary combinatorial
structure that we will use for representation We end this section by specifying a
general scheme that is the basis for a few of the methods for constructing complexes
in the next section. Throughout, our aim is not to be comprehensive, but pedagog-
ical. Recent surveys on topological analysis include Ghrist [35] and Carlsson [5].
For a broader introduction to computational topology, see [78].

2.1. Topology. Intuitively, a topological space is a set of points, each of whom
knows its neighbors. A topology on a set X is a subset T ⊆ 2X such that:

(1) If S1, S2 ∈ T , then S1 ∩ S2 ∈ T .
(2) If {SJ | j ∈ J} ⊆ T , then ∪j∈JSj ∈ T .
(3) ∅, X ∈ T .

The pair X = (X,T ) is a topological space. A set S ∈ T is an open set and its
complement in X is closed. We often abuse notation by using p ∈ X for p ∈ X
when the topology is clear from context. A subset A ⊆ X with induced topology
TA = {S ∩ A | S ∈ T} is a subspace A of X. A familiar example of a topological
space is the d-dimensional Euclidean space R

d, where we use the Euclidean metric
to measure distances and define open sets. We may also turn any subset of a
Euclidean space into a topological space by using the induced topology.

A function f : X→ Y is continuous if for every open set A in Y, f−1(A) is open
in X. A homeomorphism f : X → Y is a bijection such that both f and f−1 are
continuous. Given a homeomorphism f : X → Y, we say that X is homeomorphic
to Y. As homeomorphism is an equivalence relation on topological spaces, we also
say that X and Y have the same topological type, denoted X ≈ Y. The topological
type is the finest level of classification available in topology.

A homotopy is a family of maps ft : X→ Y, t ∈ [0, 1], such that the associated
map F : X× [0, 1]→ Y given by F (x, t) = ft(x) is continuous. Here, X× [0, 1] is a
topological space whose open sets are products of the open sets of X and the open
sets of [0, 1], viewed as a subspace of R [38]. Then, f0, f1 : X → Y are homotopic
via the homotopy ft, denoted f0 ≃ f1. A map f : X→ Y is a homotopy equivalence
if there exists a map g : Y→ X, such that f ◦ g ≃ 1Y and g ◦ f ≃ 1X, where 1X, 1Y
are the identity maps on the respective spaces. Given a homotopy equivalence
f : X → Y, we say that X and Y are homotopy equivalent and have the same
homotopy type, denoted X ≃ Y, as homotopy equivalence is an equivalence relation
on topological spaces. A space with the homotopy type of a point is contractible.
Homotopy type is a coarser classification than topological type. For example, a
disc is contractible, but not homeomorphic, to a point.

2.2. Simplicial Complex. Simplicial complexes are popular in topological
data analysis due to their structural simplicity. Intuitively, a simplicial complex is
similar to a hypergraph, where we represent a relationship between (n + 1) nodes
with a n-dimensional simplex. Formally, a simplicial complex is a set K of finite
sets closed under the subset relation: If σ ∈ K and τ ⊆ σ, then τ ∈ K. Here, σ
is a simplex (plural simplices) and τ is a face of σ, its coface. The (−1)-simplex ∅
is a face of any simplex. A simplex is maximal if it has no proper coface in K. If
σ ∈ K has cardinality |σ| = n+ 1, we call σ a n-simplex of dimension n, denoted
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Figure 7. A set of 8 black points, an open cover of 3 sets, and
the nerve of the cover: a simplicial complex with 3 vertices and 1
edge.

dim(σ) = n. Generalizing, if the maximum dimension of a simplex in K is d, we
call K a d-dimensional complex, dim(K) = d.

Our notion of dimensionality for simplices stems from our ability to realize a n-
simplex geometrically as a n-dimensional subspace of Rd, d ≥ n, namely, the convex
hull of (n+1) affinely-independent points [38]. In this view, an n-simplex is called
a vertex, an edge, a triangle, or a tetrahedron for 0 ≤ n ≤ 3, respectively. A key
property of a realized simplex is that it is contractible. A simplicial complex K may
be embedded in Euclidean space as the union of its geometrically realized simplices
such that they only intersect along shared faces. This union is the underlying space
|K| = ∪σ∈Kσ of K, a topological space. Topological invariants, such as homotopy
type, do not depend on a particular geometric realization of a complex.

Example 2.1. Figure 6(b) displays a geometric realization of a simplicial com-
plex with 8 vertices, 11 edges, and 3 triangles. The triangles and four of the edges
defining the hole are maximal.

A subcomplex is a subset L ⊆ K that is also a simplicial complex. An important
subcomplex is the n-skeleton consisting of simplices in K of dimension less than or
equal to n. The 1-skeleton of a simplicial complex is a graph.

2.3. Cover and Nerve. For the rest of this chapter, we assume we are given
a finite set of data points S, sampled from some unknown space X, and embedded
in some topological space Y, as described in Section 1.3. A key idea in topological
analysis is to approximate X locally using pieces of the embedding space Y. An
open cover of S is

U = {Ui}i∈I , Ui ⊆ Y,

where I is an indexing set, S ⊆ ∪iUi, and Ui are open. The nerve N of U is

(1) ∅ ∈ N , and
(2) If ∩j∈JUj 6= ∅ for J ⊆ I, then J ∈ N .

Clearly, the nerve is a simplicial complex.

Example 2.2. Figure 7 displays a set of 8 black points, an open cover of 3 sets,
and the nerve of this cover: a simplicial complex with 3 vertices and 1 edge.

The union of the sets in an open cover is our approximation of the unknown X.
Its nerve serves as a finite combinatorial representation to be used in computation.
If the sets in the cover do not hide interesting topology, either within themselves or
in their intersection patterns, all topology is exposed within the nerve. Formally,
a cover U is good if all Ui are contractible and so are all their nonempty finite
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(a) Cǫ1
(b) Cǫ2

, ǫ2 > ǫ1

Figure 8. The Čech complex Cǫ is the nerve of a cover of ǫ-balls.
We show the complex at two scales 0 < ǫ1 < ǫ2.

intersections. Clearly, the cover in Figure 7 is not good as the leftmost set is an
annulus, and its intersection with the middle set has two pieces. By Leray’s Nerve
Lemma, the nerve of a good cover is homotopy equivalent to the cover, that is,
the union of the sets in the cover [3, 64]. This lemma is the basis of a few of the
methods for representing point sets in the next section.

3. Combinatorial Representations

In this section, we focus on the first step of the analysis pipeline in Figure 6.
Our input is a finite point set S ⊆ Y. We construct combinatorial representations
K that approximate the space X from which S was sampled. In the remainder
of this section, we assume that Y is a metric space with metric d: Y × Y → R.
A number of the algebraic methods may be extended to non-metric spaces easily,
while the geometric methods, such as the alpha complex, require the Euclidean
metric. As promised, we end this section by constructing a representation for the
cyclooctane dataset.

3.1. Čech Complex. Let Bǫ(x) be the open ball of radius ǫ centered at x.
That is, for ǫ ∈ R and x ∈ Y,

Bǫ(x) = {y ∈ Y | d(x, y) < ǫ}.

Given S ⊆ Y and ǫ ∈ R, we center an ǫ-ball at each point to get a cover:

Uǫ = {Bǫ(x) | x ∈ S}.

The Čech complex Cǫ is the nerve of this cover [38]. Since balls are convex and
convex sets are contractible, the cover is good and its nerve captures the topology
of the cover.

Example 3.1. Figures 8 show covers Uǫ1 and Uǫ2 at two scales 0 < ǫ1 < ǫ2.
The nerve of each cover is drawn above it. Note that each nerve is homotopy
equivalent to its cover: The cover and nerve in (a) both have 3 components and 1
hole, while the cover and nerve in (b) both have 1 component and 1 hole.

We may compute a Čech complex at each scale ǫ. Clearly, C0 = ∅ and C∞ is
an (|S|−1)-simplex. That is, the Čech complex may have a much higher dimension
than the embedding space Y. Since an n-simplex has 2n+1 faces, the complex may
become massive at higher scales.
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(a) Voronoi & Delaunay (b) Restricted Voronoi regions (c) Alpha subcomplex Aǫ2

Figure 9. A dataset, its Voronoi diagram and its nerve, the De-
launay complex (a). The restricted Voronoi regions (b) form a
cover whose nerve is the alpha complex (c), shown as a subcom-
plex of the lighter Delaunay complex.

The Čech complex is not computed in practice due to its computational com-
plexity. The uniform ball radii imply an assumption of uniform sampling on the
input, which is not valid in real-world datasets. We could use non-uniform radii to
form a cover, and this idea has been explored in other methods, such as the alpha
complex described in the next section.

3.2. Alpha Complex. To reduce the size of the complex, we limit its dimen-
sion by using the geometry of the embedding space. Given S ⊆ Y, the Voronoi
region R(x) of a point x ∈ S is the set of points in Y closest to it:

R(x) = {y ∈ Y | d(x, y) ≤ d(x′, y), ∀x′ ∈ S, x′ 6= x}.

The Voronoi diagram is the set of all Voronoi regions for points in S. This diagram
may be viewed as a closed cover for Y. The Delaunay complex is the nerve of
the Voronoi diagram. The Voronoi cover and its nerve are fundamental geometric
objects and have been extensively studied within computational geometry [20].

Example 3.2. Figure 9(a) displays the Voronoi diagram for our example point
set, and overlays its nerve, the Delaunay complex.

We now use the Voronoi diagram to restrict the interactions of the ǫ-ball cover
from the previous section. For each point x ∈ S, we intersect its ǫ-ball and Voronoi
region to get a restricted Voronoi region. The set of all restricted regions forms a
new cover:

Uǫ = {Bǫ(x) ∩R(x) | x ∈ S}.

The alpha complex Aǫ is the nerve of this cover [27, 28]. By construction, A0 = ∅,
A∞ is the Delaunay complex, and Aǫ is a subcomplex of the Delaunay complex,
for any ǫ. Moreover, the alpha and Čech complexes are homotopy equivalent.
Unlike the Čech complex, however, the maximum dimension of the alpha complex is
limited to the embedding dimension, provided S is in general position, a theoretical
assumption that may be enforced computationally [76].

Example 3.3. Figure 9(b) overlays the restricted Voronoi regions for our ex-
ample point set at the two scales used in Figure 8. Figure 9(c) shows the alpha
complex Aǫ2 as a subcomplex of the Delaunay complex. At this scale, the complex
is the same as the Čech complex Cǫ2 in Figure 8(b).
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(a) Graph & Cliques (b) VR complex V2ǫ1

Figure 10. The highlighted maximal cliques of the 2ǫ-
neighborhood graph (a) become the maximal simplices of the the
VR complex V2ǫ1 (b).

We construct alpha complexes by first building the Delaunay complex. For
each simplex of the Delaunay complex, we compute the minimum scale at which the
simplex enters the Alpha complex. Then, we sort the simplices by their minimum
scale to get a partial order of simplices. We may now form the alpha complex at
any scale ǫ using this ordering. Since the Delaunay complex is finite, the alpha
complex may change only at a finite number of critical scales as we increase the
scale ǫ from 0 to infinity.

Using uniform radii implies an implicit assumption of uniform sampling. This
assumption may be removed by generalizing the alpha complex. We may assume,
for instance, that the point set is weighted, where the weight of a point is related to
the local feature size. We may then use the power metric to define a power diagram
cover and its nerve, the regular triangulation [1, 29]. Alternatively, we may define
non-uniform radii using the local density of the point set itself to get the conformal
alpha complex [12].

Efficient algorithms and software exist for computing Delaunay complexes, and
in turn, alpha complexes in 2 and 3 dimensions [14], so the complex is well-suited for
topological analysis in low dimensions. The construction of the Delaunay complex
is difficult in higher dimensions, although progress is being made [2].

3.3. Vietoris-Rips Complex. The Vietoris-Rips complex is popular in topo-
logical analysis due to the ease of its construction even in higher dimensions. Unlike
the previous complexes, it is based on a graph, instead of a cover. Given S ⊆ Y

and ǫ ∈ R, let Gǫ = (S,Eǫ) be the ǫ-neighborhood graph on S, where

Eǫ = {{u, v} | d(u, v) ≤ ǫ, u 6= v ∈ S}.

A clique in a graph is the subset of vertices that induces a complete subgraph [18]. A
clique ismaximal if it cannot be made any larger. The clique complex, also called the
flag complex, has the maximal cliques of a graph as its maximal simplices [46]. The
Vietoris-Rips complex Vǫ is the clique complex of the ǫ-neighborhood graph [37, 74].
We refer to the complex as the VR complex for brevity.

Example 3.4. Figure 10 shows the construction of a VR complex for our
point set. We begin with a 2ǫ1-neighborhood graph (a) so that the VR complex
is comparable to Čech and alpha complexes at scale ǫ1. The graph has 5 maximal
cliques, highlighted by gray ovals. Each maximal clique becomes a maximal simplex
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in the VR complex V2ǫ1 (b). Note that the VR complex is different than the Čech
complex Cǫ1 in Figure 8(a).

As the example illustrates, the VR complex is not always homotopy equiv-
alent to the Čech complex, so we may view it as an approximation. Clearly,
Cǫ ⊆ V2ǫ. Moreover, the Čech and VR complexes can be shown to be related
homologically [36]. We will describe this classification level of topology in Sec-
tion 4.

Like its Čech counterpart, the VR complex may be as large as a (|S| − 1)-
dimensional simplex. This extremity occurs whenever the neighborhood graph is
complete. In practice, we usually only require and construct a n-skeleton for some
n ≤ |S|. We also compute the VR complex Vǫ̂ at some maximum scale ǫ̂ ∈ R.
For each simplex σ ∈ Vǫ̂, we compute the minimum ǫ at which the simplex enters
the VR complex, with the vertices entering at ǫ = 0 and the edges at their length.
We then sort the simplices according to this value, extracting the VR complex for
any 0 < ǫ ≤ ǫ̂ as a prefix of this ordering. As for the alpha complex, since the
VR complex is finite, there is only a finite number of critical scales at which the
complex changes.

For analysis of small point sets in low dimensions, the VR complex is usually
computed using ad-hoc methods. For an in-depth study of its construction for large
point sets in higher dimensions, see [79]. Public software for building VR complexes
is available [56, 66]. Currently, the VR complex is one of the few practical methods
for topological analysis in high dimensions.

3.4. Witness Complex. Since the VR complex may be massive, we try to
approximate it with smaller number of vertices. We motivate the complex in this
section by reinterpreting the Delaunay complex from Section 3.2.

Example 3.5. Consider the spiral point set in Figure 11(a). The triangle is in
the Delaunay complex because the Voronoi regions of its three vertices intersect in
the white Voronoi vertex. The white vertex is equidistant from the three vertices
of the triangle.

Given S ⊆ Y, a strong witness w ∈ Y is equidistant from the points in σ ⊆ S,
witnessing the creation of a Delaunay simplex σ, such as the triangle in the example.
We are motivated to search for strong witnesses within Y to construct the Delaunay
complex, but this approach is not feasible as the set of strong witnesses has measure
zero. So, we relax the definition of a witness: A weak witness w ∈ Y is closer to
points in σ ⊆ S than S − σ. The set of weak witnesses for a n-simplex form its
region in the order-(n + 1) Voronoi diagram of S and has positive measure [20].
Moreover, if a simplex and all its faces have weak witnesses, the simplex also has a
strong witness [21].

We may build the Delaunay complex on a sample set S ⊆ Y, allowing witnesses
to be anywhere in Y. The resulting Delaunay complex captures the topology of Y.
But we are interested in the unknown space X with our only knowledge being the
set of samples S ⊆ Y. Therefore, we mimic the process above and replace Y with
S. Let L ⊆ S be the set of landmarks and the remaining points, W = S−L be the
set of potential witnesses. For ǫ ∈ R, the ǫ-witness graph is the graph G = (L,Eǫ),
where {l1, l2} ∈ Eǫ if there exists a weak witness w ∈ W that is closer to li than
any other landmark, and d(w, li) ≤ ǫ for i = 1, 2. The (weak) witness complex Wǫ

is the clique complex of this ǫ-witness graph.



12 AFRA ZOMORODIAN

(a) Strong witness (b) ∞-witness graph (c) Witness complex W∞

Figure 11. The triangle in (a) is Delaunay as the Voronoi regions
of its vertices intersect in the white vertex. The witness graph (b)
is built on the gray landmark points, with the remaining black
points acting as witnesses. The witness complex (c) is the clique
complex of this graph.

Example 3.6. Figure 11(b) shows the witness graph for the spiral point set
with ǫ = ∞. The graph is built on the gray landmarks, with the remaining black
points acting as potential witnesses for the edges. The witness complex W∞ in
Figure 11(c) is the clique complex of this graph.

It is clear that the witness complex depends on the chosen landmarks. The
choice and size of the landmark set remains an art rather than a science. For
analysis, it is best to bootstrap by choosing multiple sets of landmark points and
seeing if the result is replicable.

The weak witness complex is the simplest of a family of witness complexes [21].
The software package JPlex [66] can compute several types of witness complexes.
The witness graph is easily constructable by computing the |L| × |S| distance ma-
trix using k-nearest neighbors [57]. Since it is a clique complex, the weak witness
complex may be expanded from this graph using the algorithms designed for the
Vietoris-Rips complex [79]. Currently, the witness complex is one of the few prac-
tical methods for topological analysis of large datasets.

3.5. Cubical Complex. A cubical complex is another type of combinato-
rial structure used in topological analysis. Informally, a cubical complex is a cell
complex, where the cells are now cubes of different dimensions, rather than sim-
plices [38]. A n-cube is called a vertex, an edge, a square, or a cube for 0 ≤ n ≤ 3,
respectively. Like a geometrically realized simplicial complex, a pair of cubes in
a cubical complex only intersect along shared faces, which are lower-dimensional
cubes.

Given S ⊆ Y, where Y is a d-dimensional Euclidean space, we may easily
construct a cubical complex at scale ǫ by covering Y with a grid of d-dimensional
cubes with side ǫ. The cubical complex Qǫ is simply the rasterization of S on this
grid: If an ǫ-cube c contains any point s ∈ S, then c ∈ Qǫ. The cubical complex is
dependent on the orientation of the grid. Also, all cubes are maximal and of the
same dimension, so the complex is pure.

Alternatively, we may view a cubical complex as a cover, taking the nerve to
get a simplicial complex. However, there is no need to do this, as all algorithms
that require a simplicial complex as input extend easily to other cell complexes,
such as the cubical complex.
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(a) Qǫ1
(b) Q2ǫ1

Figure 12. Cubical complexes Qǫ on top of grids for our point set
at scales ǫ1 and 2ǫ1. Compare with Čech, alpha, and VR complexes
in Figures 8, 9(c), and 10(b), respectively.

Example 3.7. Figure 12 shows cubical complexes Qǫ1 and Q2ǫ1 extracted from
conforming grids. While the cubical complexes are not comparable to simplicial
complexes combinatorially, they may capture similar topological features. The
cubical complex Qǫ1 has the same homotopy type as the VR complex V2ǫ1 in Fig-
ure 10(b), and the cubical complex Q2ǫ1 has the same homotopy type as the Čech
complex Cǫ2 in Figure 8(b), as well as the alpha complex Aǫ2 in Figure 9(c).

Cubical complexes arise naturally in analysis of two- and three-dimensional
rasterized images, such as in the discrete simulation of dynamical systems [42].
Thresholding a grayscale image, we get an black and white image, where we may
interpret the set of black pixels or voxels as a cubical complex. Since these com-
plexes are based on grids, each cube may only be connected to neighboring cubes.
This regularity in connectivity allows for tailored algorithms and heuristics to com-
pute topological invariants of cubical complexes [15, 63]. We recommend the chap-
ter by Marian Mrozek in this volume as an introduction to current techniques in
dynamical systems and cubical homology.

3.6. Analysis. We have now provided multiple structures and methods for
the first step of the analysis pipeline depicted in Figure 6. We end this section
by completing this step for our motivating dataset of the cyclooctane conformation
space from Example 1.1. Recall that the cyclooctane has 8 carbon and 16 hydrogen
atoms. The locations of the carbons determine the locations of the hydrogens
through energy minimization, so we limit our parameterization to the coordinates
of the carbons [4]. Therefore, the cyclooctane dataset S is a set of 6,400 points
embedded in Y = R

24.
We use the VR complex from Section 3.3 as S is not too large and is embedded

in a high-dimensional Euclidean space [79]. To get an idea of scale in S, we compute
the maximum interpoint distance between closest pairs of points. This distance is
0.18, so we set the maximum scale to be ǫ̂ = 0.4. We first build the neighborhood
graph at this scale in 0.29 seconds. With 6,400 vertices and 76,657 edges, the
graph is sparse with only 0.4% of the possible edges. We construct the 4-skeleton
of the VR complex in 10.83 seconds using the Incremental-VR algorithm [79].
The resulting complex has 3,034,973 simplices, but only 66,179 critical ǫ values at
which the complex grows. As described in Section 3.3, we may now extract the
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Figure 13. Number of n-simplices in the 4-skeleton of the VR
complex Vǫ for the cyclooctane dataset, with 0 ≤ n ≤ 4 and
0 ≤ ǫ ≤ 0.4.

complex Vǫ for any 0 < ǫ ≤ 0.4. Figure 13 plots the number of n-simplices in this ǫ
range for 0 ≤ n ≤ 4. The size of the complex grows exponentially with dimension,
as expected.

4. Topological Invariants

We now assume that we have a combinatorial representation K, such as a
simplicial or cubical complex. In this section, we start on the second step of the
analysis pipeline depicted in Figure 6: Computing topological invariants. We begin
by formally defining an invariant. We then introduce two classic topological invari-
ants: the Euler characteristic and homology. We conclude the section by returning
to the cyclooctane dataset, analyzing the VR complex just built in the previous
section.

4.1. Definition. Recall from Section 2.1 that homeomorphisms provide the
finest level of classification under topology. The Homeomorphism Problem asks
whether topological spaces X and Y are homeomorphic. This problem is undecid-
able even when restricted to manifolds of dimension greater than three [48]. Since
we remain interested in analyzing real-world datasets, we need effective algorithms,
so we must lower our expectations and look for partial solutions. These partial
solutions come in the form of topological invariants.

Formally, a topological invariant is a map f that assigns the same object to
homeomorphic spaces, that is:

X ≈ Y =⇒ f(X) = f(Y)

Note that an invariant is only useful through its contrapositive,

f(X) 6= f(Y) =⇒ X 6≈ Y,
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Table 1. Cell complexes K that are homotopy equivalent to the
1-sphere S

1 have Euler characteristic χ(K) = 0.

# n-cells
Figure K type

0 1 2
χ(K)

8(b) Cǫ2 Čech 8 11 3 0
11(c) W∞ witness 8 9 1 0
12(b) Q2ǫ1 cubical 15 22 7 0

as the converse of an implication is not true. Therefore, the trivial invariant that
assigns the same object to all spaces is useless. On the other hand, the com-
plete invariant that assigns different objects to non-homeomorphic spaces solves the
homeomorphism problem. Most invariants are incomplete, falling in the spectrum
between these two extremes. An incomplete topological invariant is a classification
that is coarser than, but respects, the topological type. In general, the more pow-
erful an invariant, the harder it is to compute it. Naturally, we look for invariants
that assign finitely representable objects, as we intend to store them on computers.

We have already seen one topological invariant: homotopy equivalence. Since
it is an invariant, we have X ≈ Y =⇒ X ≃ Y. Unfortunately, the general problem
of homotopy equivalence is also intractable [48], so we must look for less powerful
invariants.

4.2. Euler Characteristic. Our first invariant assigns a single integer to a
topological space. Let K be any cell complex, such as a simplicial or a cubical
complex. The Euler characteristic χ(K) is

(4.1) χ(K) =
∑

σ∈K

(−1)dimσ =

dimK
∑

n=0

(−1)ncn,

where cn is the number of n-dimensional cells in K. The Euler characteristic is
an integer invariant for |K| up to homotopy type, so we get the same integer for
different complexes whose underlying spaces are homotopy equivalent. That is, for
cell complexes K1,K2, |K1| ≃ |K2| =⇒ χ(K1) = χ(K2).

Example 4.1 (S1). The 1-dimensional sphere (1-sphere) S
1 is a space that is

homeomorphic to a circle, such as any closed curve in Figure 1. The 1-sphere has
Euler characteristic χ(S1) = 0. Table 1 lists three complexes from the previous
section that are homotopy equivalent to the 1-sphere. It also verifies that their
Euler characteristic is zero using Equation (4.1).

4.3. Simplicial Homology. Instead of an integer, the homology invariant as-
signs a group to a topological space. Homology is quite popular in topological data
analysis as it is effectively computable. We define homology for simplicial com-
plexes, but the theory extends to arbitrary topological spaces, and the algorithms
extend to arbitrary cell complexes, such as cubical complexes [38].

LetK be a simplicial complex, and suppose we fix an order on its set of vertices.
An orientation of a n-simplex σ = {v0, v1, . . . , vn} ∈ K, is an equivalence class of
orderings on its vertices, where (v0, v1, . . . , vn) ∼ (vτ(0), vτ(1), . . . , vτ(n)) if the parity
of the permutation τ is even. An oriented simplex is a simplex with an orientation,
denoted as sequence [σ]. For notation brevity, we list oriented simplices as strings
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Figure 14. A 2-dimensional simplicial complex for Example 4.2.

rather than sequences, so [v0, v1, v2] ≡ v0v1v2. The nth chain group Cn(K) of K is
the free Abelian group on K’s set of oriented n-simplices. We will abuse notation
by dropping K in the notation when the complex is clear from context. An element
c ∈ Cn is an n-chain, c =

∑

i ci[σi], with n-simplices σi ∈ K and coefficients
ci ∈ Z. Given such a chain c, the boundary homomorphism ∂n : Cn → Cn−1 is a
homomorphism defined linearly by its action on any oriented simplex in c:

∂n[v0, . . . , vn] =
∑

i

(−1)i[v0, . . . , v̂i, . . . , vn],

where v̂i indicates that vi is deleted from the vertex sequence. We also define
∂0 ≡ 0. A fundamental property of the boundary operator is that ∂n ◦∂n+1 ≡ 0 for
all n ≥ 0. The boundary operator connects the chain groups into a chain complex
C∗:

· · · → Cn+1
∂n+1

−−−→ Cn
∂n−→ Cn−1 → · · · .

Given any chain complex, the nth homology group Hn is:

(4.2) Hn = ker ∂n / im ∂n+1,

where ker and im are the kernel and image of a linear operator, respectively. An
n-chain z is an n-cycle if z ∈ ker ∂n; it is also an n-boundary if z ∈ im ∂n+1.
Since ∂n ◦ ∂n+1 ≡ 0, all boundaries are cycles and im ∂n+1 forms a subgroup of
ker ∂n. Two cycles in the same homology class are homologous. Homology is a
invariant for |K| up to homotopy type. That is, for simplicial complexes K1,K2,
|K1| ≃ |K2| =⇒ Hn(K1) = Hn(K2) for all n ≥ 0.

Example 4.2. Consider the simplicial complex with labeled vertices in Fig-
ure 14. We place the alphabetic ordering on the vertices. The triangle {a, b, f} has
two orientations: [a, b, f ] = −[b, a, f ], or abf = −baf using our string notation. The
1-chain ab + bc has boundary

∂1(ab + bc) = ∂1(ab) + ∂1(bc) = (b− a) + (c− b) = c− a,

so the 0-chain c− a is a 0-boundary as it is in im ∂1. The boundary of the 1-chain
h = bc+ce+ef −bf is 0, so h ∈ ker ∂1 is a 1-cycle. Since h does not bound a 2-chain,
h belongs to a non-trivial homology class. The 1-cycle h′ = bc + cd + de + ef − bf
is homologous to h as their difference is the boundary cd + de − ce. Both cycles
describe the single hole in the complex.

In order to understand the structure of algebraic invariants, such as homology,
we use the following three-step approach:

(1) Correspondence,
(2) Classification, and
(3) Parameterization.
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In the first step, we identify the algebraic structure. In the second step, we obtain
a complete classification of the structure, up to isomorphism. In the third step, we
parameterize the classification. We follow this approach for homology of a simplicial
complex [26, 38]:

(1) Correspondence: The nth homology Hn of a simplicial complex is a group,
or equivalently, a Z-module, where Z is the ring of coefficients. We may,
instead, construct modules over other rings R. Since the complex K is
finite, Hn becomes a finitely generated R-module.

(2) Classification: Suppose R is a principle ideal domain (PID), such as Z.
Any finitely generated R-module decomposes uniquely into the form:

βn
⊕

i=1

R ⊕
m
⊕

j=1

R/tjR,

for integers βn ≥ 0 and nonzero nonunit elements tj ∈ R, such that tj |tj+1.
(3) Parameterization: The left direct sum is the free submodule and is char-

acterized by its Betti number βn = rankHn. The right direct sum is
the torsion submodule and is characterized by its torsion coefficients tj .
The set of m + 1 elements {βn} ∪ {tj}j is the parameterization. Over a
field k of coefficients, Hn simplifies to a k-vector space with dimension
βn = dimHn, so the parameterization is simply the integer βn.

There is a one-to-one correspondence between the parameterization and finitely
generated R-modules, so this parameterization is a complete invariant up to iso-
morphism. We have a full characterization of homology, provided we compute over
PIDs.

The invariance of the Euler characteristic is derived from the invariance of
homology. For a topological space X, the Euler-Poincaré formula states that

(4.3) χ(X) =
∑

n

(−1)nβn.

Compare the formula with the previous definition in Equation (4.1) in Section 4.2.
This formula emphasizes that χ can be defined purely in terms of homology and
depends only on the homotopy type of X. That is, χ(X) is independent of the choice
of cell complex representing X.

For torsion-free spaces in three-dimensions, the Betti numbers have intuitive
meaning as a consequence of the Alexander Duality : β0 counts the number of
connected components ; β1 is the rank of any basis for the tunnels ; β2 counts the
number of enclosed spaces or voids.

Example 4.3. Table 2 lists the Betti numbers for some of the topological
spaces and cell complexes that we have seen so far. For instance, the reconstructed
surface has one component, one tunnel, and two voids. The table also lists the Euler
characteristics for the spaces, this time computed by Equation (4.3). We see that
homology is a more refined invariant than the Euler characteristic. For example,
the surface and Cǫ1 have the same χ, but different β0 and β2. We can distinguish
the two spaces with homology, but not with the Euler characteristic.

Having characterized homology, we next turn to its computation. Since the
boundary operator ∂n : Cn → Cn−1 is linear, it has a matrix Mn in terms of a
choice of bases for Cn and Cn−1. We may use oriented n-simplices as a basis for Cn
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Table 2. Topological spaces and cell complexes, and their Betti
numbers βn and Euler characteristics χ.

Figure Space β0 β1 β2 χ
1(a) curve 1 1 0 0
4(c) spiral 1 0 0 1
5 surface 1 1 2 2
8(a) Cǫ1 3 1 0 2
8(b) Cǫ2 1 1 0 0
10(b) V2ǫ1 3 0 0 3
11(c) W∞ 1 1 0 0
12(a) Qǫ1 3 0 0 3
12(b) Q2ǫ1 1 1 0 0
14 complex 1 1 0 0

in each dimension. Computing the kernel and image in Equation (4.2) is equivalent
to computing the null space of the matrix for ∂n, and the range space of the matrix
for ∂n+1, respectively.

Over PIDs, the reduction algorithm reduces each matrix to the Smith normal
form, from which the parameterization may be read [26]. Over Z, neither the size
of the matrix entries nor the number of operations in Z is polynomially bounded
for reduction. There are sophisticated polynomial algorithms based on modular
arithmetic [69], although reduction is still preferred in practice [25].

Over fields, Cn is a vector space in each dimension and we compute its di-
mension with Gaussian elimination matches that of matrix multiplication [72]. In
practice, topological analysis nearly always uses the field of two elements Z2 = Z/2Z
for coefficients, which simplifies computation even further. Each simplex is its own
inverse so there is no need for orientation. The matrices have 0 or 1 entries, so
the columns may be stored sparsely as lists of simplices with coefficient 1. We use
only elementary column operations in Gaussian elimination to reduce the matrix
to column echelon form and read off the dimension.

Example 4.4. Over Z2, the matrix for ∂1 for the complex in Figure 14 is:




















ab bc cd de ef af bf ce

a 1 0 0 0 0 1 0 0
b 1 1 0 0 0 0 1 0
c 0 1 1 0 0 0 0 1
d 0 0 1 1 0 0 0 0
e 0 0 0 1 1 0 0 1
f 0 0 0 0 1 1 1 0





















,

where we augment the matrix to show the bases for C1 and C0. Applying Gaussian
elimination, we reduce the matrix to column echelon form:





















ab bc cd de ef z1 z2 z3

a 1 0 0 0 0 0 0 0
b 1 1 0 0 0 0 0 0
c 0 1 1 0 0 0 0 0
d 0 0 1 1 0 0 0 0
e 0 0 0 1 1 0 0 0
f 0 0 0 0 1 0 0 0





















,
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Figure 15. The Betti numbers βn of the VR complex Vǫ for the
cyclooctane dataset S, with 0 ≤ n ≤ 2 and 0 ≤ ǫ ≤ 0.4.

where the basis elements

z1 = af + ab + bc + cd + de + ef ,

z2 = bf + ab + bf ,

z3 = ce + cd + de,

are the generators of ker ∂1, so dim(ker ∂1) = 3. Note that the three generators form
a vector space of cycles in the 1-skeleton of the complex in Figure 14. Repeating
the process for ∂2, we get dim(im ∂2) = 2. Therefore,

dimH1 = dim(ker ∂1)− dim(im ∂2) = 3− 2 = 1,

and homology has captured the central hole in the complex.

4.4. Single-Scale Analysis. We have now looked at two topological invari-
ants for the second step of the analysis pipeline. We end this section by completing
this step for the cyclooctane dataset S using the 4-dimensional VR complex built
in Section 3.6.

We compute homology over Z2 coefficients in 13.35 seconds using the persis-
tence algorithm that we will encounter in Section 5.2. Figure 15 graphs the Betti
numbers βn for Vǫ, 0 ≤ ǫ ≤ 0.4 and 0 ≤ n ≤ 2. The Betti number β3 is identi-
cally zero and is not plotted. We also do not consider β4, as homology requires
5-simplices to determine if a 4-cycle is a boundary, but we only provide the 4-
skeleton. As expected, the complex becomes connected starting at ǫ = 0.18, the
maximum interpoint distance of closest points. The Betti numbers of the complex
match those of the conformation space surface for all ǫ ≥ 0.3391. Since we do
not know the correct scale, however, we would not be able to determine the Betti
numbers of the conformation space from this graph alone. But the complexes at
different scales are related to each other. Our success in topological analysis re-
quires analysis across scale to determine the topological features of the unknown
space.



20 AFRA ZOMORODIAN

a

b

c
d

e

f

(0,2)

(0,1)

(0,0)

(1,2)

(1,1)

(1,0)

(3,2)

(3,1)

(3,0)

(2,2)

(2,1)

(2,0)

a

f b

ce

ce

bf af ab

bc

cdde
d

ef

cde

abf

Figure 16. A bifiltration of the complex in Figure 14, now with
coordinate (3, 2). Simplices are highlighted and named at their
critical coordinates.

5. Multiscale Invariants

In this section, we provide multiscale solutions for the second step of the analysis
pipeline. We extend our combinatorial representation to approximate the unknown
space at multiple scales. We then introduce three modern multiscale invariants
that analyze the topology of the resulting multiscale structure, identifying robust
features that persist across scale. We conclude, as usual, by applying our multiscale
tools to the analysis of cyclooctane dataset.

5.1. Multifiltration Model. Our first model is based on notions from Morse
theory [52]. Let N ⊆ Z be the set of non-negative integers. For vectors in N

d

or R
d, we say u ≤ v if ui ≤ vi for all 1 ≤ i ≤ d. The relation ≤ forms a

partial order on N
d and R

d. A cell complex K is multifiltered if we are given a
family of subcomplexes {Ku}u, where u ∈ R

d, so that Ku ⊆ Kv whenever u ≤ v.
Intuitively, a multifiltered complex only grows with increasing coordinate, so the
model describes a monotonically growing space. We call the family of subspaces
{Ku}u a multifiltration. A one-dimensional multifiltration is a filtration. All the
simplicial methods in Section 3 give rise to filtrations with increasing ǫ, but cubical
complexes do not as the vertices change at different scales.

A critical coordinate u for cell σ ∈ K is a minimal coordinate, with respect to
the partial order ≤, such that σ ∈ Ku. A multifiltered complex K where each cell
σ has a unique critical coordinate uσ is one-critical [9].

Example 5.1. Figure 16 shows a two-dimensional multifiltration, a bifiltration,
of the complex in Figure 14. The bifiltration is one-critical, with each simplex being
highlighted and named at its unique critical coordinate.

A one-critical multifiltration is a natural model for scientific data. Suppose a
sampled dataset S ⊆ Y is augmented with d − 1 real-valued functions fj : S → R
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with d > 1. The functions measure information about the unknown space X at
each point.

Example 5.2 (graphics). In computer graphics, one approach to rendering
surfaces is to construct a digitized model. A three-dimensional object is sampled
by a range scanner that employs multiple cameras to sense the surface position as
well as normals and textures [71]. Here, S is the set of positions, while the functions
fj are surface attributes, such as normal and texture, sampled at S.

We begin by approximating S with a filtered complex K, using any method
that yields a filtration, such as the simplicial methods in Section 3. Suppose each
cell σ ∈ K enters the complex at scale ǫ(σ). To incorporate the functions fj
into topological analysis, we first extend them to the cells in the complex. For
σ ∈ K and fj , let fj(σ) be the maximum value fj takes on σ’s vertices; that is,
fj(σ) = maxv∈σ fj(v), where v ∈ S. This extension defines d − 1 functions on the
complex, fj : K → R. We combine all filtration functions into a d-variate function
F : K → R

d, where

F (σ) = (f1(σ), f2(σ), . . . , fd−1(σ), ǫ(σ)) .

We multifilter K via the sublevel sets {Ku}u of F for u ∈ R
d:

Ku = {σ ∈ K | F (σ) ≤ u}.

Each simplex σ enters Ku at u = F (σ) and remains in the complex for all u ≥ F (σ).
Equivalently, F (σ) is the unique critical coordinate at which σ enters the filtered
complex. That is, the multifiltrations built by this process are always one-critical.

Finally, since complex K is finite, there are a finite number of critical coordi-
nates in each dimension where the complex grows in the multifiltration. Restricting
to the Cartesian product of these critical values, we parameterize the resulting dis-
crete grid using N in each dimension. This parameterization gives us coordinates
in N

d for a multifiltration, as shown for the bifiltration in Figure 16 [10].

5.2. Persistent Homology. We are now interested in the homology of our
multiscale model for representing data. That is, we want to know the homology of
the complexes at all scales, as well as the relationship between their homologies.
Suppose we are given a multifiltration {Ku}u, u ∈ N

d. For each pair u, v ∈ N
d with

u ≤ v, Ku ⊆ Kv by definition, so Ku →֒ Kv. Since homology is a functor, this
inclusion induces a linear map

ιn(u, v) : Hn(Ku)→ Hn(Kv)

that maps an n-dimensional homology class within Ku to the one that contains it
within Kv [38]. The nth persistent homology is im ιn, the image of ιn for all pairs
u ≤ v ∈ N

d [10].
For characterization and computation, we begin with one-parameter multifiltra-

tions (filtrations). We follow the same algebraic approach we used for characterizing
homology in Section 4.3. For a filtration, we have [81]:

(1) Correspondence: The nth persistent homology of a filtration over ring
R is a graded R[t]-module, where R[t] is the ring of polynomials with
indeterminate t over R.
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(2) Classification: Over fields k, k[t] is a PID, and any graded k[t]-module
decomposes uniquely into:

ℓ
⊕

i=1

Σαik[t] ⊕
m
⊕

j=1

Σγjk[t]/(tδj ),

where Σα denotes an α-shift upward in grading, and αi, γj , δj ∈ N.
(3) Parameterization: The classification gives us ℓ half-infinite intervals [αi,∞)

and m finite intervals [γj , γj + δj). The persistence barcode is the multiset
of these ℓ+m intervals and forms the parameterization [11].

There is a one-to-one correspondence between the parameterization and finitely
generated graded k[t]-modules, so this parameterization is a complete invariant, up
to isomorphism. Note that while Z is a PID, Z[t] is not, so the classification above
does not extend to integer coefficients.

The barcode intervals have a natural interpretation. By the theory of persis-
tent homology, each n-simplex either creates an n-dimensional homology class, or
destroys an (n − 1)-dimensional class by merging it with a class created earlier.
For each class, persistence pairs its creator σ ∈ K with the destroyer τ ∈ K, if
one exists. We may also pair the grades at which σ and τ enter the filtration to
get an interval representing each class. This barcode interval is the lifetime of the
homology class within the filtration. A half-infinite interval [αi,∞) represents a
class that is created at αi and still exists within the completed complex. A finite
interval [γj , γj + δj) represents a class that is created at γj and lives only δj grades
in the filtration, at which point it merges with the boundary class. Alternatively,
we may form intervals using the ǫ at which the two simplices enter the filtration,
getting a barcode that describes homology with respect to scale.

Example 5.3. In a multifiltration, any path with monotonically increasing co-
ordinates is a filtration, such as the bottom row in the bifiltration in Figure 16. The
filtered complex at coordinate (3, 0) has 5 vertices and 3 edges. Figure 17 graphs
β0 for this filtration above the x-axis, where the unit is filtration grade. Below the
axis, we see the β0 barcode. Each interval is the lifetime of a connected compo-
nent in this filtration. The left endpoint is labeled with the simplex that created
the component. The right endpoint is labeled with the simplex that destroyed the
component, if such a simplex exists. The component created by simplex d and
destroyed by simplex cd immediately has zero lifetime, so we do not draw it. The
barcode deconstructs the β0 graph into a set of intervals. We may recover the β0

6β0 -
4 6

-
O 1 2 3 ∞

b r -
c r -

dee br

eff br

Figure 17. Above the x-axis, β0 is plotted for the bottom row
filtration of Figure 16. Below is the labeled β0 barcode. Since the
vertical arrow intersects three intervals at x = 1.5, β0 = 3 at that
x. The axis unit is filtration grade.



TOPOLOGICAL DATA ANALYSIS 23

graph by sweeping a vertical line from left to right and counting the number of
intervals that the line intersects, as demonstrated by the vertical arrow at x = 1.5
in the figure.

Persistence barcodes have been quite useful in topological data analysis. Sup-
pose that a geometric process constructs a filtration so that the lifetime of a homol-
ogy class denotes its significance. Then, we may use barcodes to separate topological
noise from features. We have applied barcodes successfully in a number of areas,
including shape description [17], biophysics [43], and computer vision [8].

Having characterized persistent homology, we next turn to its computation.
Since k[t] is a PID, the reduction algorithm for homology extends naturally to
persistent homology. The matrix for a boundary operator now has polynomial
entries from k[t] that encode the filtration ordering. While the field homology of
any single complex in a filtration is a vector space, the persistent homology of the
filtration has torsion. This means that the reduction algorithm will require both
row and column operations to reduce each matrix to Smith normal form.

Example 5.4. For the filtration in Example 5.3, we use the n-simplices at their
critical coordinates as a basis for the chain group Cn. Over Z2[t], the matrix for ∂1
of the filtration is:

















cd de ef

b 0 0 0
c t 0 0
d 1 1 0
e 0 t t2

f 0 0 t2

















.

For instance, ∂1(cd) = t · c + 1 · d, as c enters the filtration one grade earlier than
d. We may now reduce this matrix with the reduction algorithm as for regular
homology.

Alternatively, we may utilize the persistence algorithm, which computes directly
on matrices with field entries [81]. The algorithm takes advantage of the filtration
ordering to require only elementary column operations, allowing it to represent
matrices as columns and reduce them to column echelon form. There is a wonderful
relationship between the reduction and persistence algorithms [81]. The latter has
been refined over the years. For its most recent distillation, see [78]. The algorithm
is implemented in several publicly available software packages [56, 66].

Finally, both the reduction and persistence algorithms may also generate de-
scriptions of generators for homology classes, as we do in Example 4.4 by aug-
menting the boundary matrix. Traditionally, these descriptions are not generated
as the focus is on the algebraic characterization of the homology groups. The
generators are useful, however, within geometric applications of computational
topology [30, 82]. We recommend Jeff Erickson’s chapter in this volume for an
introduction to current results on geometrically optimal generators.

5.3. Multidimensional Persistence. Our success in characterizing homol-
ogy of filtrations motivates us to move to higher dimensional multifiltrations. Once
again, we follow our algebraic approach. For a multifiltration, we have [10]:
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(1) Correspondence: The nth homology of a multifiltration over field k is an
n-graded An-module M , where An = k[x1, . . . , xn] is the n-graded module
of polynomials with n indeterminates over k.

(2) Classification: Unlike its one-dimensional counterpart, An is not a PID
and An-modules have no structure theorem. Nevertheless, we establish a
full classification of this structure in terms of three invariants. The first
invariant, ξ0(M) is the multiset of generators for the free approximation of
M . The second invariant, ξ1(M) is the multiset of generators for the free
hull of M . These invariants have intuitive meaning as analogs of the left
and right endpoints of intervals in a barcode, respectively. Unfortunately,
there is no way to match these endpoints consistently as the remaining
invariant corresponds to the set of orbits in a set under group action.

(3) Parameterization: The third invariant corresponds to the set of orbits of
an algebraic group action on an algebraic variety. Unfortunately, such a
set is not, in general, an algebraic variety. The number of orbits may be
uncountable, giving us a continuous invariant.

To summarize, no complete invariant exists for persistent homology of multifil-
trations, in dimension higher than 1. The discrete invariants ξ0, ξ1 above do not
capture persistence information, which is contained in the intervals, not their end-
points.

Instead, we may use an incomplete invariant. Recall that persistence is the
image of the map ιn(u, v) : Hn(Ku)→ Hn(Kv). The nth rank invariant is

ρn(u, v) = rank ιn(u, v),

for all pairs u ≤ v ∈ N
d [10]. The rank invariant is equivalent to the persistent

barcode in the one-dimensional case, so it is complete when it can be. Unlike the
barcode, the rank invariant extends to higher dimensions as an incomplete invariant.

We next turn to the computation of multidimensional persistence. We assume
we are given a d-dimensional multifiltration of a cell complex K with m cells. Any
pair u ≤ v ∈ N

d defines a two-level one-dimensional filtration, where we map u to
0 and v to 1. We may compute the barcodes for this filtration in Θ(m3) time using
the persistence algorithm in Section 5.2. We then read ρn(u, v) directly from the
βn-barcode: It is the number of intervals that contain both 0 and 1. To compute
the full rank invariant, we need to consider all distinct pairs of complexes in a
multifiltration that are comparable by the partial order ≤. Unfortunately, there
are constructions with Θ(md) distinct complexes, implying Θ(m2d) comparable
pairs, and a Θ(m2d+3) running time. To store the rank invariant, we also require
Θ(m2d) space [9]. This is clearly not a feasible method.

For one-critical multifiltrations, described in Section 5.1, we can use more so-
phisticated algorithms. The n-graded chain modules Cn for one-critical multifiltra-
tions are free, as each cell enters the complex only once. The boundary operator
∂n : Cn → Cn−1, in turn, is a homomorphism between free multigraded modules
and may be written as a matrix with polynomial entries.

Example 5.5. For the bifiltration in Figure 16, we use n-simplices in their
critical coordinates as a basis for chain group Cn. Over A2 = Z2[x1, x2], the matrix
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for ∂1 of the multifiltration is:




















ab bc cd de ef af bf ce

a x2 0 0 0 0 x1 0 0
b x1x

2
2 x2

1x
2
2 0 0 0 0 x2

2 0
c 0 x2

1x
2
2 x1 0 0 0 0 x2

d 0 0 1 1 0 0 0 0
e 0 0 0 x1 x2

2 0 0 x2

f 0 0 0 0 x2
1 x1x

2
2 x2

2 0





















.

Recall from Equation 4.2 that the nth homology group isHn = ker ∂n / im ∂n+1.
To compute homology, we have three tasks, all of which may be recast into problems
in computational commutative algebra [19].

(1) Compute the boundary module (im ∂n+1): This is the submodule mem-
bership problem. We first compute a Gröbner basis using the Buchberger
algorithm. We then check membership using the division algorithm for
multivariate polynomials.

(2) Compute the cycle module (ker ∂n): The problem is equivalent to com-
puting the syzygy submodule using Schreyer’s algorithm.

(3) Compute the quotient Hn: We need to test whether the generators of the
syzygy submodule are in the boundary submodule. But this is simply an
instance of our first task.

While the above solution is theoretically sound, it is practically infeasible. The SMP
problem is a generalization of the polynomial ideal membership problem at the ring
level, and PIMP is already Expspace-complete, requiring exponential space and
time [54]. The Buchberger algorithm is doubly-exponential, although impractical
singly-exponential versions do exist.

We can exploit the structure provided by a multigrading, however, to derive
polynomial-time algorithms. The key insight is that we ensure that the matrix en-
tries are always homogeneous monomials, as in Example 5.5. The resulting multi-
graded algorithms run in worst-case O(m3) space and O(m7) time, where m is the
size of the multifiltration [9]. Empirically, the time bound seems to be tight. While
the reduction in complexity is theoretically significant, this time bound still implies
that multiparameter topological analysis is out of reach for large datasets.

5.4. Zigzag Persistence. We end our discussion of topological invariants
with recent developments for extracting persistent information for yet another
model for scientific data. A primary characteristic of our model in the section
so far is that it is monotonically increasing as in a multifiltration {Ku}u, subcom-
plexes nest: Ku ⊆ Kv whenever u ≤ v. But we have nonmonotonicity in a number
of application areas.

Example 5.6 (molecular rigidity). Flexible docking models biological macro-
molecules, such as protein-protein complexes, by allowing flexibility near active
sites. We would like to identify flexible regions of a protein algorithmically. Based
on the molecular conjecture [70], now a theorem [44], we model a protein by a
multigraph, where covalent bonds, hydrogen bonds, salt bridges, and hydrophobic
contacts or tethers are represented as edges [39]. The program First partitions
this multigraph into flexible and rigid regions by extending the pebble game to
three-dimensions [31]. Covalent bonds, however, have picosecond vibrations that
cause noncovalent bonds to be unstable, resulting in the flickering of edges in the
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associated multigraph [47]. Flickering edges can be modeled by adding and delet-
ing edges from a dynamically changing cell complex. The resulting history of the
complex, however, is no longer a filtration.

Instead, we model nonmonotinicity as a sequence of topological spaces {Yi}i ∈
N that are not necessarily nested. Since any pair of spaces Yi, Yj include into their
union Yi ∪ Yj , we use unions of consecutive spaces from the sequence to build the
following diagram:

Y0 ∪ Y1 Y1 ∪ Y2
. . .

Y0 Y1 Y2

, �
::ttt 2 R

ddJJJ , �
::ttt 2 R

ddJJJ , �
::tttt

where all maps are inclusions. Let X2n = Yn and X2n+1 = Yn ∪ Yn+1 for n ∈ N to
rewrite the diagram as:

X1 →֒ X2 ←֓ X3 →֒ X4 ←֓ · · ·Xm,

where we have assumed that the resulting sequence has m terms. If our spaces
are cell complexes, the right arrows here indicate cell addition, and the left arrows
indicate cell deletion. We generalize this model further by allowing the maps to be
homomorphisms:

(5.1) X1 → X2 ← X3 → X4 ← · · · → Xm,

Since some maps could be identities, the general model is a family of complexes
with forward or backward homomorphisms in any order. Due to the alternating
directions of the maps, Diagram (5.1) is called a zigzag [6]. Note that if we only
have arrows to the right in this diagram, and the arrows are inclusions, we get a
diagram for a filtration:

(5.2) X1 → X2 → X3 → X4 → · · · → Xm,

Over a field k, the homology of each complex is a k-vector space. Applying the nth
homology functor to Diagram (5.1), we get

(5.3) V1 → V2 ← V3 → V4 ← · · · → Vm,

where Vj = Hn(Xj) is the nth homology of the jth space and the maps are induced
maps at the homology level. Diagrams such as (5.3) are the objects of study in
representation theory [22, 34]. A quiver is a pair Q = (Q0, Q1), where Q0 is a
finite set of vertices and Q1 is a finite set of arrows (directed edges) between them.
That is, a quiver is a directed graph. The quiver for Diagram (5.3) is

(5.4) • • • • · · · •// oo // oo //

A quiver has an underlying undirected graph. This graph is a path for our quiver:

(5.5) • • • • · · · •

A representation V for a quiver Q is a collection {Vx | x ∈ Q0} of finite-dimensional
k-vector space together with a collection {Vab : Va → Vb | ab ∈ Q1} of k-linear
maps. Diagram (5.3) is a representation for quiver (5.4). Given representation V ,
the dimension vector dV : Q0 → N is dV (x) = dimk(Vx) for all x ∈ Q0; that is,
dV (x) is the dimension of the vector space at node x.

As with finitely-generated modules in Section 4.3 or finitely-generated graded
R[t]-modules in Section 5.2, quivers have a classification theorem stipulating that
every representation has a unique decomposition into a direct sum of indecomposable
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representations, up to isomorphism and permutations of components. A quiver has
finite type if it decomposes into a finite number of indecomposables. Gabriel’s
Theorem states that a quiver is of finite type iff the underlying undirected graph is
a disjoint union of the following graphs [33]:

(5.6)

•

Am • • • • • • Dm • • • • •

• • •

E6 • • • • • E7 • • • • • •

•

E8 • • • • • • •

�����

??
??

?

Kac’s Theorem states that the set of dimension vectors of indecomposable repre-
sentations of a quiver Q does not depend on the orientation of the arrows [41].
Following our algebraic approach, we have [6]:

(1) Correspondence: The nth homology of a zigzag of length m over a field is
a representation of a quiver in Diagram (5.4).

(2) Classification: The zigzag quiver has an underlying undirected graph in
Diagram (5.5), which is a path of length m, equivalent to type Am in
Diagram (5.6). By Gabriel’s theorem, the zigzag quiver has finite type.

(3) Parameterization: By Kac’s theorem, the invariant depends only on the
underlying undirected graph. The model for one-dimensional persistence
in Diagram (5.2) also gives a quiver of finite type Am. We already know
that persistent homology has barcodes as invariants. Therefore, as a corol-
lary of Kac’s theorem, zigzag persistence is parameterizable by barcodes.

Having characterized zigzag persistence, we next turn to its computation. From
representation theory, one may derive a general scheme for computing zigzag per-
sistence from of a representation, that is, given the set of vector spaces and linear
maps as input. Given a topological space X and a Morse function f : X → R de-
fined on it, one may compute the persistent homology of the level sets f−1(c) of
this space using zigzag persistence [7]. Finally, a recent result gives an algorithm
for computing zigzag persistence of a simplicial complex with a sequence of n ad-
ditions and deletions in O(M(n) + n2 log n) time, where M(n) denotes the cost of
multiplying two n× n matrices [55]. In this approach, a simplex with multiplicity
is treated as multiple different simplices.

5.5. Multiscale Analysis. We have now looked at three multiscale invariants
for the second step of the analysis pipeline. We end this section by completing this
step for the cyclooctane dataset S using the 4-dimensional VR complex built in
Section 3.6. The complex is already filtered by ǫ, as described in Section 3.3 and
we have a filtration without any additional computation. Given a filtration, the
natural model for analysis is persistent homology from Section 5.2.

We have already computed persistence barcodes in Section 4.4, as we used the
persistence algorithm to compute homology, reading off the Betti numbers using
the technique in Figure 17. Once again, there is no need for further computation.
Figure 18 draws the 3,475 non-empty intervals of the β1-barcode of this filtration.
Most 1-cycles have short lifetimes: The average lifetime is 0.0382 with a standard
deviation of 0.0260. But there is one cycle with a half-infinite interval, meaning
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Figure 18. Cyclooctane β1-barcode for the filtered VR complex
Vǫ, 0 ≤ ǫ ≤ 0.4, built in Section 3.6. There are 3,475 non-empty
intervals, one of which is half-infinite.

that the cycle’s homology class still exists at the maximum scale ǫ̂ = 0.4. Even at
this scale, this 1-cycle has had a life time of 0.2545, more than 8 standard deviations
away from the average. Recall that the VR complex method from Section 3.3 is
a geometric process that is based on local distances. Therefore, we are confident
that this outlier is a topological feature and β1 = 1 for this complex. By a similar
procedure, we determine β0 = 1 and β2 = 2. Our results match the Betti numbers
computed from the reconstructed surface of this dataset, as listed in Table 2.

We have now successfully completed a multiscale analysis of the 24-dimensional
cyclooctane conformation space dataset containing 6,400 samples. Topological data
analysis, using the two-step pipeline in Figure 6, only required 24.47 seconds on
a desktop machine. By comparison, geometric reconstruction of the surface using
a specialized algorithm is numerically challenging and requires domain knowledge,
such as the intrinsic dimension of the unknown space and its types of non-manifold
structure [50].
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6. Reduced Representations

So far, this chapter has been organized around the full implementation of the
two-step pipeline in Figure 6. The division of topological analysis into two steps,
while useful, stems from a geometric point of view and is somewhat artificial. From
an algebraic point of view, the two steps are very much interrelated. Homology is
defined on a chain complex, as described in Section 4.3. In our pipeline, the chain
complex is always derived from a cell complex built in step one, but this derivation
is not a requirement. If we can obtain a chain complex without building a cell
complex explicitly, we may still compute homology. Such an approach is desirable
given the massive size of the cell complexes that we are now able to build with
the methods in Section 3. For example, the simplicial complex representing the
cyclooctane dataset has more than three million simplices defined on only 6,400
points.

In this section, we attempt to reduce the size of our representations by combin-
ing the two steps of the pipeline. We begin by describing reduction methods that
maintain the category of a cell complex, yielding complexes with fewer cells. For
even further reduction, we switch category to the simplicial set, a combinatorial
structure that allows for collapsed simplices. We next use simplicial sets to define
tidy sets, a method for computing homology of any clique complex without its full
construction. We end the section by analyzing the cyclooctane dataset using tidy
sets.

6.1. Reductions. The traditional approach to dealing with massive com-
plexes has been to reduce the size of the complex before computing homology.
This approach is somewhat justified since the reduction algorithm in Section 4.3
has supercubical complexity in the size of the complex over integers, retaining qua-
dratic space and cubic time complexity over fields [68]. It is a reasonable to search
for heuristics that reduce the size of the complex, while preserving its topology. To
be useful, the heuristics must be simple and fast.

There have been a number of reduction techniques proposed for different cat-
egories of complexes. For simplicial complexes, the earliest, and perhaps simplest
method, is elementary contraction, proposed by Whitehead in defining the simple
homotopy type [75]. Let K be a simplicial complex. A simplex σ ∈ K has a free
face τ ⊆ σ if τ has no other cofaces in K. The pair (σ, τ), then, is a free pair.
An elementary contraction removes a free pair (σ, τ) from a complex K. Since an
elementary contraction is a deformation retraction, a type of homotopy equivalence,
the resulting smaller complex K − {σ, τ} has the same homotopy type as K [38].
But while deformation retractions are continuous, elementary contractions are com-
binatorial, involving only the deletion of simplices. Elementary contractions may
be extended to other cell complexes, such as cubical complexes. Another heuristic
is the recent LC-reduction [16] that produces not only a homotopic, but isomorphic
complex [51].

Example 6.1 (contraction). Figure 19 displays six elementary contractions in
two steps for the complex in (a). In the first step, the three highlighted triangles and
their dashed edges form free pairs and are removed in (b). In the second step, the
three dashed edges and their highlighted vertices form free pairs and are removed.
The final complex in (c) has the same homotopy type as the original complex in
(a). It is minimal with respect to elementary contraction.
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(a) (b) (c)

Figure 19. Elementary contractions. The three highlighted tri-
angles and dashed edges (a) form free pairs and are removed in
(b). Then, the dashed edges and highlighted vertices form free
pairs and are removed, resulting in a minimal complex (c), homo-
topy equivalent to (a).

The key property of both heuristics is that the reduced complex remains in
the initial category. For instance, elementary contractions on a simplicial complex
always yield a simplicial complex. Due to the popularity of simplicial complexes
in computational topology, the techniques have been used widely. For cubical com-
plexes, the CHomP project has examined a large number of heuristics over the
years, resulting in an array of homology engines [15, 63].

A stronger reduction is to collapse a cell into a point, as all cells are contractible
by design. Such collapses, however, may change the category type of the structure.

Example 6.2 (collapse). Figure 20 shows that collapsing edge bc in triangle
abc (a) results in a 2-gon ad (b), which is not a simplicial complex as its two edges
are both named ad .

a

b c

(a) 3-gon abc

a

d

(b) 2-gon ad

Figure 20. The simplicial collapse of edge bc of the triangle
abc (a) yields a 2-gon ad (b) that is no longer a simplicial complex.

6.2. Simplicial Sets. To allow for simplicial collapses, we move into the cate-
gory of simplicial sets. Intuitively, a simplicial set models a well-behaved topological
space. One such space is a simplicial complex within which any simplex may be
collapsed, and any subset of vertices may be identified.

Let K be a simplicial complex with n-simplices Kn. We define the simplicial
set X corresponding to K to be a collection of sets {Xn}n together with maps:

di : Xn → Xn−1,

si : Xn → Xn+1,
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a

b c

a

d

m (3, 3, 1) (2, 2, 1) (1, 1, 1) (1, 0, 1)
β (1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 1)

m (2, 3, 1) (1, 2, 1) (1, 3, 1)
β (1, 1, 0) (1, 1, 0) (1, 2, 0)

Figure 21. The 7 possible 2-simplices in a simplicial set. The
triangle abc is the only one allowed in a complex. The rest have
collapsed edges (top row), identified vertices (bottom row), or both.
The vector m counts the non-degenerate simplices and the vector
β holds the Betti numbers.

where di is the ith face operator and si is the ith degeneracy operator defined as
follows:

di([v0, . . . , vn]) = [v0, . . . , v̂i, . . . , vn],

si([v0, . . . , vn]) = [v0, . . . , vi, vi, . . . , vn].

That is, the ith face operator di deletes the ith vertex, and the ith degeneracy op-
erator si repeats it. We now define Xn inductively using the degeneracy operators:

X0 = K0,

Xn = Kn ∪ ∪
n
i si(Xn−1), n > 0.

It is easy to verify that {X}n together with these operators satisfy the axioms for
a simplicial set [53]. A simplex σ ∈ X such that σ = si(τ) for some τ ∈ X is
degenerate and σ 6∈ K. Otherwise, σ is non-degenerate and σ ∈ K.

Example 6.3 (triangle). Figure 21 gives the seven possible 2-simplices in a
simplicial set, in contrast to the only possible 2-simplex in a simplicial complex,
namely the triangle abc on the top left. We now represent the 2-gon from Ex-
ample 6.2 as well as spaces with different topological types, such as the 2-sphere
on the top right corner. For each simplex, the vectors m and β hold the number
of non-degenerate simplices and the Betti numbers, respectively. As a simplicial
complex K, abc has

K0 = {a, b, c},

K1 = {ab, bc, ac},

K2 = {abc}.
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As a simplicial set X, abc has

X0 = {a, b, c},

X1 = {ab, bc, ac, aa, bb, cc},

X2 = {abc, aab, abb, bbc, bcc, aac, acc, aaa, bbb, ccc},

where the setXn isKn augmented with degenerate simplices, such as abb, a triangle
with one collapsed edge.

Since simplicial sets are capable of representing collapsed simplices, we now
incorporate this reduction into the model. Given a simplicial set X and an n-
simplex σ ∈ X, the collapse of σ identifies σ to a single point, giving us a new
simplicial set X ′ = X/σ. To construct X ′, we introduce a new vertex v and replace
σ, its faces, and its degeneracies, with appropriate degeneracies of v. We first gather
σ’s non-degenerate k-faces inductively for k ≥ 0:

F̄k(σ) =







∅, if k > n,
{σ}, if k = n,

∪k+1
i=0 di(F̄k+1(σ)), if k < n.

By adding the degenerate faces, we get all the faces of σ:

Fk(σ) =

{

F̄0(σ), if k = 0,

F̄k(σ) ∪
⋃k−1

i=0 si(Fk−1(σ)), if k > 0.

We replace these faces with degeneracies of v:

X ′

k = (Xk − Fk(σ)) ∪ {s
k
0(v)},

where sk0 denotes applying the degeneracy operator k times. To complete the defi-
nition of X ′ as a simplicial set, we now define the operators for any τ ∈ X ′:

d′i(τ) =

{

di(τ), if di(τ) 6∈ Fi−1(σ),

si−1
0 (v), otherwise.

s′i(τ) =

{

si(τ), if si(τ) 6∈ Fi+1(σ),

si+1
0 (v), otherwise.

Example 6.4 (2-gon). In Example 6.3, we listed the n-simplices of the triangle
abc in Figure 21 as a simplicial set X. We now collapse edge bc to a new vertex d
to get the 2-gon X ′ = ad in the figure. We have

F̄2(bc) = ∅,

F̄1(bc) = {bc},

F̄0(bc) = F0(bc) = {b, c},

F1(bc) = {bc, bb, cc},

F2(bc) = {bbc, bcc, bbb, ccc},

X ′

0 = {a, d},

X ′

1 = {ab, ac, aa, dd},

X ′

2 = {abc, aab, abb, aac, acc, aaa, ddd}.

The operators follow easily, e.g. d′0(abc) = dd .
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To extend simplicial homology from Section 4.3 to simplicial sets, we just need
a chain complex. Let X be a simplicial set. The nth chain group Cn(X) of X is
the free Abelian group on K’s set of oriented, non-degenerate, n-simplices. The
boundary homomorphism ∂n : Cn → Cn−1 is the linear extension of

∂n =

n
∑

i=0

(−1)idi,

where di are the face operators and a degenerate face is treated as 0. The boundary
homomorphism connects the chain groups into a chain complex, and homology
follows.

Example 6.5 (collapsed boundary). The face operators for our collapsed set
in Example 6.4 give us the correct boundary. For instance, we have d0(abc) = dd ,
d1(abc) = ac, and d2(abc) = ab, giving us ∂2(abc) = −ac+ ab, as dd is degenerate.
Taking another boundary, we have

∂1∂2(abc) = ∂1(−ac) + ∂1(ab) = −(d− a) + (d− a) = 0.

After the collapse, the simplex abc represents the 2-gon, and its boundary is still a
1-cycle.

We may now collapse simplices in a simplicial complex to get a smaller simplicial
set to represent the unknown space of our point set. In practice, however, computing
homology of geometric complex with the persistence algorithm exhibits linear time
behavior [77]. For the cyclooctane dataset, constructing the complex of more than
3 million simplices takes 11.12 seconds in Section 3.6, while computing homology
takes 13.35 seconds in Section 4.4. For larger complexes, we spend most of the time
building and storing the complex, not computing its homology. We need reduction
during construction, not after.

6.3. Tidy Sets. Tidy sets are clique complexes that are reduced during con-
struction. Recall from Sections 3.3 and 3.4 that the VR and witness complexes are
both clique complexes and are popular in topological analysis. Clique complexes,
therefore, present an excellent model for reduction using simplicial sets.

Generally, we construct skeletons of clique complexes using bottom-up algo-
rithms, as we did for the cyclooctane dataset in Section 3.6. Alternatively, we may
compute the maximal cliques directly as they become maximal simplices in the
clique complex [79]. Maximal simplices are a minimal description for a simplicial
complex as their closure under the subset operation enumerates the full complex.
We would need the full description for computing homology, but we may also reduce
the complex via top-down reduction first.

Let Q and C be disjoint sets of maximal sets, and X (Q,C) be the simplicial set
having the sets in Q as maximal simplices and the sets in C as collapsed maximal
simplices. We use the tuple (Q,C) to denote X (Q,C). Initially, a clique complex
is the simplicial set K = X (Q, ∅). A simplicial set X is acyclic if H0(X) ∼= Z

and Hn(X) ∼= {0} for n > 0. Contractible spaces, such as simplices in a simplicial
complex, are acyclic.

Given a clique complex represented as a tuple (Q,C), we perform two types of
reductions that we will describe informally. A leaf is a simplex in a simplicial com-
plex that has an acyclic intersection with the rest of the complex, the intersection
being its “stem”. The notion of a leaf may also be extended naturally to simplicial
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1

2

(a) Cliques

3

4

5

6

(b) Trimmed (c) Tidy Set

Figure 22. Starting with the cliques (a), we trim cliques 1 and
2, and thin cliques 3 through 6 (b) to get the tidy set (c), which is
homotopy equivalent to the clique complex (a).

sets. Our first reduction is removing leaves, which preserves homology while keep-
ing a simplicial complex in its category. For cubical complexes, removing leaves is
called shaving for full-dimensional cubes [62]. Our second reduction is collapsing
acyclic simplices, which also preserves homology, but may change the category to
a simplicial set. Given tuple (Q,C) with σ ∈ Q, we have two reductions that we
may perform easily.

trim: (Q,C) 7→ (Q− {σ}, C) σ, a leaf
thin: (Q,C) 7→ (Q− {σ}, C ∪ {σ}) σ, acyclic

Thinning is closely related to the construction of acyclic subspaces for homology
computation [58]. A tidy set is a trimmed, then thinned, simplicial complex [80].
A tidy set is minimal with respect to trimming and thinning.

Example 6.6. Figure 22 illustrates the construction of the tidy set for a small
complex. We start with the set of maximal cliques (a), rendered as maximal sim-
plices. The intersection of clique 1 with the rest of the cliques is the dashed edge
with white vertices. Since this intersection is acyclic, clique 1 is a leaf and is
removed. Clique 2 is similarly trimmed. Clique 3 (b), however, intersects the re-
maining cliques in the two white vertices, so it is not a leaf and cannot be trimmed.
Instead, we thin cliques 3 through 6 in order to get the tidy set (c), a loop with
one vertex and one edge. The tidy set has the homotopy type of the complex in
(a). Compare with elementary contractions in Figure 19.

Example 6.7. Figure 23 shows projections of the 1-skeletons of three ho-
mologous structures: A clique complex defined by 331 maximal cliques (a), its
trimmed complex (b) with 88 remaining cliques, and its tidy set with 23 uncol-
lapsed cliques (c).

We have algorithms for computing tidy sets, based on greedy trimming, and
thinning in both simplicial complex and set categories [80]. Testing whether a
simplex is acyclic or a leaf involves homology, and much of the algorithmic design
involves postponing homology computation as long as it is possible.

6.4. Tidy Analysis. Having described tidy sets as an alternative to our two-
step pipeline, we now analyze our cyclooctane dataset S once again. We begin
with the neighborhood graph built in Section 3.6. Recall that the maximum scale
is ǫ̂ = 0.4 and the graph has 76,657 edges.
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(a) Cliques (b) Trimmed

(c) Tidy Set

Figure 23. A clique complex (a) is trimmed (b) and thinned (c),
resulting in its tidy set. We project 1-skeletons only.

We enumerate the maximal cliques in the neighborhood graph in 1.17 seconds
using the IK-GX algorithm [13]. There are 23,279 maximal cliques, with the average
size of a clique being about 8.68 and the maximum being 16, implying that the full
VR complex is 15-dimensional.

Since we only built a 4-skeleton in Section 3.6, we first construct the 4-skeleton
of the tidy set for comparison. From the maximal cliques, the tidy set algorithm
trims 20,246 (87%) and collapses another 1,860 (8%). The remaining 1,173 cliques
(5%) give rise to a 4-dimensional tidy set with 155,202 simplices, as compared to the
4-dimensional VR complex with more than 3 million simplices constructed earlier.
The entire construction process, including clique enumeration, is 11.73 seconds. In
another 0.36 seconds, we compute homology using the persistence algorithm. We
find β0 = 1, β1 = 1, β2 = 2, matching our earlier analysis results in Sections 4.3
and Section 5.5. But the tidy set is about 5% of the size of the VR complex, and
our total analysis time drops from 24.47 to 12.09 seconds.

The reduction in size motivates us to construct the full tidy set instead of a
low-dimensional skeleton. The largest uncollapsed clique in the tidy set has size
12, and we construct the full 11-dimensional tidy set in 11.99 seconds with 202,406
simplices. That is, we only require 0.26 seconds to construct an additional 47,204
simplices. By comparison, the 15-dimensional VR complex has more than 13 million
simplices, requiring a computer with large memory for its construction, and even
larger memory for its homology computation. Since our tidy set is 66 times smaller,
we compute homology groups in all 11 dimensions in only another 0.52 seconds.
We find β0 = 1, β1 = 1, β2 = 2, as before, but also βn = 0 for all 3 ≤ n ≤ 11.
The triviality of homology in all higher dimensions is a strong indication that
the cyclooctane dataset has intrinsic dimension 2, which indeed is the case [50].
Although our only assumption is that the unknown space is topological, our analysis
is yielding information about the intrinsic dimension of the dataset.
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Due to the size of simplicial complexes, topological analysis has been limited to
low dimensional features, such as components [17], tunnels [8], and voids [43]. The
tidy set is the first method that enables topological analysis in higher dimensions.
On the other hand, this method does not yield filtrations, so we cannot analyze
tidy sets at multiple scales using persistent homology. There are several approaches,
however, for multiscale analysis using tidy sets, such as zigzag persistence.

7. Conclusion

With its focus on qualitative information, topological data analysis is the first
step toward a robust understanding of data. In this chapter, we looked at current
multiscale structures and invariants for computing the topology of data. Swift ad-
vances in technology allow us to acquire high-resolution data, transmit it through
fast networks, and store it on distributed cloud infrastructure. We are engulfed
in heterogeneous scientific data without theory or algorithms for its analysis. To
extract information from these massive datasets, we need multiscale, nonmono-
tonic, probabilistic models to represent their structure, as well as randomized and
streaming algorithms for their analysis.
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