Publication Library
Protecting Multiple Types of Privacy Simultaneously in EEG-based Brain-Computer Interfaces
Description: A brain-computer interface (BCI) enables direct communication between the brain and an external device. Electroencephalogram (EEG) is the preferred input signal in non-invasive BCIs, due to its convenience and low cost. EEG-based BCIs have been successfully used in many applications, such as neurological rehabilitation, text input, games, and so on. However, EEG signals inherently carry rich personal information, necessitating privacy protection. This paper demonstrates that multiple types of private information (user identity, gender, and BCI-experience) can be easily inferred from EEG data, imposing a serious privacy threat to BCIs. To address this issue, we design perturbations to convert the original EEG data into privacy-protected EEG data, which conceal the private information while maintaining the primary BCI task performance. Experimental results demonstrated that the privacy-protected EEG data can significantly reduce the classification accuracy of user identity, gender and BCI-experience, but almost do not affect at all the classification accuracy of the primary BCI task, enabling user privacy protection in EEG-based BCIs.
Created At: 04 December 2024
Updated At: 04 December 2024
Hybrid Quantum Deep Learning Model for Emotion Detection using raw EEG Signal Analysis
Description: Applications in behavioural research, human-computer interaction, and mental health depend on the ability to recognize emotions. In order to improve the accuracy of emotion recognition using electroencephalography (EEG) data, this work presents a hybrid quantum deep learning technique. Conventional EEG-based emotion recognition techniques are limited by noise and high-dimensional data complexity, which make feature extraction difficult. To tackle these issues, our method combines traditional deep learning classification with quantum-enhanced feature extraction. To identify important brain wave patterns, Bandpass filtering and Welch method are used as preprocessing techniques on EEG data. Intricate inter-band interactions that are essential for determining emotional states are captured by mapping frequency band power attributes (delta, theta, alpha, and beta) to quantum representations. Entanglement and rotation gates are used in a hybrid quantum circuit to maximize the model's sensitivity to EEG patterns associated with different emotions. Promising results from evaluation on a test dataset indicate the model's potential for accurate emotion recognition. The model will be extended for real-time applications and multi-class categorization in future study, which could improve EEG-based mental health screening instruments. This method offers a promising tool for applications in adaptive human-computer systems and mental health monitoring by showcasing the possibilities of fusing traditional deep learning with quantum processing for reliable, scalable emotion recognition.
Created At: 04 December 2024
Updated At: 04 December 2024
Active learning of neural population dynamics using two-photon holographic optogenetics
Description: Recent advances in techniques for monitoring and perturbing neural populations have greatly enhanced our ability to study circuits in the brain. In particular, two-photon holographic optogenetics now enables precise photostimulation of experimenter-specified groups of individual neurons, while simultaneous two-photon calcium imaging enables the measurement of ongoing and induced activity across the neural population. Despite the enormous space of potential photostimulation patterns and the time-consuming nature of photostimulation experiments, very little algorithmic work has been done to determine the most effective photostimulation patterns for identifying the neural population dynamics. Here, we develop methods to efficiently select which neurons to stimulate such that the resulting neural responses will best inform a dynamical model of the neural population activity. Using neural population responses to photostimulation in mouse motor cortex, we demonstrate the efficacy of a low-rank linear dynamical systems model, and develop an active learning procedure which takes advantage of low-rank structure to determine informative photostimulation patterns. We demonstrate our approach on both real and synthetic data, obtaining in some cases as much as a two-fold reduction in the amount of data required to reach a given predictive power. Our active stimulation design method is based on a novel active learning procedure for low-rank regression, which may be of independent interest.
Created At: 04 December 2024
Updated At: 04 December 2024
A Markovian Model for Learning-to-Optimize
Description: We present a probabilistic model for stochastic iterative algorithms with the use case of optimization algorithms in mind. Based on this model, we present PAC-Bayesian generalization bounds for functions that are defined on the trajectory of the learned algorithm, for example, the expected (non-asymptotic) convergence rate and the expected time to reach the stopping criterion. Thus, not only does this model allow for learning stochastic algorithms based on their empirical performance, it also yields results about their actual convergence rate and their actual convergence time. We stress that, since the model is valid in a more general setting than learning-to-optimize, it is of interest for other fields of application, too. Finally, we conduct five practically relevant experiments, showing the validity of our claims.
Created At: 04 December 2024
Updated At: 04 December 2024
Modeling Low-Resource Health Coaching Dialogues via Neuro-Symbolic Goal Summarization and Text-Units-Text Generation
Description: Health coaching helps patients achieve personalized and lifestyle-related goals, effectively managing chronic conditions and alleviating mental health issues. It is particularly beneficial, however cost-prohibitive, for low-socioeconomic status populations due to its highly personalized and labor-intensive nature. In this paper, we propose a neuro-symbolic goal summarizer to support health coaches in keeping track of the goals and a text-units-text dialogue generation model that converses with patients and helps them create and accomplish specific goals for physical activities. Our models outperform previous state-of-the-art while eliminating the need for predefined schema and corresponding annotation. We also propose a new health coaching dataset extending previous work and a metric to measure the unconventionality of the patient's response based on data difficulty, facilitating potential coach alerts during deployment.
Created At: 04 December 2024
Updated At: 04 December 2024