Publication Library

Publication Library

Defending against Intrusion of Malicious UAVs with Networked UAV Defense Swarms

Description: Nowadays, companies such as Amazon, Alibaba, and even pizza chains are pushing forward to use drones, also called UAVs (Unmanned Aerial Vehicles), for service provision, such as package and food delivery. As governments intend to use these immense economic benefits that UAVs have to offer, urban planners are moving forward to incorporate so-called UAV flight zones and UAV highways in their smart city designs. However, the high-speed mobility and behavior dynamics of UAVs need to be monitored to detect and, subsequently, to deal with intruders, rogue drones, and UAVs with a malicious intent. This paper proposes a UAV defense system for the purpose of intercepting and escorting a malicious UAV outside the flight zone. The proposed UAV defense system consists of a defense UAV swarm, which is capable to self-organize its defense formation in the event of intruder detection, and chase the malicious UAV as a networked swarm. Modular design principles have been used for our fully localized approach. We developed an innovative auto-balanced clustering process to realize the intercept- and capture-formation. As it turned out, the resulting networked defense UAV swarm is resilient against communication losses. Finally, a prototype UAV simulator has been implemented. Through extensive simulations, we show the feasibility and performance of our approach.

Created At: 04 December 2024

Updated At: 04 December 2024

Embodied Artificial Intelligence Trends and Challenges

Description: The field of Artificial Intelligence, which started roughly half a century ago, has a turbulent history. In the 1980s there has been a major paradigm shift towards embodiment. While embodied artificial intelligence is still highly diverse, changing, and far from “theoretically stable”, a certain consensus about the important issues and methods has been achieved or is rapidly emerging. In this non-technical paper we briefly characterize the field, summarize its achievements, and identify important issues for future research. One of the fundamental unresolved problems has been and still is how thinking emerges from an embodied system. Provocatively speaking, the central issue could be captured by the question “How does walking relate to thinking?”

Created At: 04 December 2024

Updated At: 04 December 2024

All Robots in One A New Standard and Unified Dataset for Versatile, General-Purpose Embodied Agents

Description: Embodied AI is transforming how AI systems interact with the physical world, yet existing datasets are inadequate for developing versatile, general-purpose agents. These limitations include a lack of standardized formats, insufficient data diversity, and inadequate data volume. To address these issues, we introduce ARIO (All Robots In One), a new data standard that enhances existing datasets by offering a unified data format, comprehensive sensory modalities, and a combination of real-world and simulated data. ARIO aims to improve the training of embodied AI agents, increasing their robustness and adaptability across various tasks and environments. Building upon the proposed new standard, we present a large-scale unified ARIO dataset, comprising approximately 3 million episodes collected from 258 series and 321,064 tasks. The ARIO standard and dataset represent a significant step towards bridging the gaps of existing data resources. By providing a cohesive framework for data collection and representation, ARIO paves the way for the development of more powerful and versatile embodied AI agents, capable of navigating and interacting with the physical world in increasingly complex and diverse ways. The project is available on https: //imaei.github.io/project_pages/ario/.

Created At: 04 December 2024

Updated At: 04 December 2024

Aligning Cyber Space with Physical World A Comprehensive Survey on Embodied AI

Description: —Embodied Artificial Intelligence (Embodied AI) is crucial for achieving Artificial General Intelligence (AGI) and serves as a foundation for various applications that bridge cyberspace and the physical world. Recently, the emergence of Multi-modal Large Models (MLMs) and World Models (WMs) have attracted significant attention due to their remarkable perception, interaction, and reasoning capabilities, making them a promising architecture for the brain of embodied agents. However, there is no comprehensive survey for Embodied AI in the era of MLMs. In this survey, we give a comprehensive exploration of the latest advancements in Embodied AI. Our analysis firstly navigates through the forefront of representative works of embodied robots and simulators, to fully understand the research focuses and their limitations. Then, we analyze four main research targets: 1) embodied perception, 2) embodied interaction, 3) embodied agent, and 4) sim-to-real adaptation, covering the state-of-the-art methods, essential paradigms, and comprehensive datasets. Additionally, we explore the complexities of MLMs in virtual and real embodied agents, highlighting their significance in facilitating interactions in dynamic digital and physical environments. Finally, we summarize the challenges and limitations of embodied AI and discuss their potential future directions. We hope this survey will serve as a foundational reference for the research community and inspire continued innovation. The associated project can be found at https://github. com/HCPLab-SYSU/Embodied AI Paper List.

Created At: 04 December 2024

Updated At: 04 December 2024

Collective decision making with embodied neural agents

Description: Collective decision making using simple social interactions has been studied in many types of multi-agent systems, including robot swarms and human social networks. However, existing multi-agent studies have rarely modeled the neural dynamics that underlie sensorimotor coordination in embodied biological agents. In this study, we investigated collective decisions that resulted from sensorimotor coordination among agents with simple neural dynamics. We equipped our agents with a model of minimal neural dynamics based on the coordination dynamics framework, and embedded them in an environment with a stimulus gradient. In our single-agent setup, the decision between two stimulus sources depends solely on the coordination of the agent's neural dynamics with its environment. In our multi-agent setup, that same decision also depends on the sensorimotor coordination between agents, via their simple social interactions. Our results show that the success of collective decisions depended on a balance of intra-agent, inter-agent, and agent-environment coupling, and we use these results to identify the influences of environmental factors on decision difficulty. More generally, our results demonstrate the impact of intra- and inter-brain coordination dynamics on collective behavior, can contribute to existing knowledge on the functional role of inter-agent synchrony, and are relevant to ongoing developments in neuro-AI and self-organized multi-agent systems.

Created At: 04 December 2024

Updated At: 04 December 2024

First 46 47 48 49 50 51 52 Last