Publication Library

Publication Library

Aligning Cyber Space with Physical World A Comprehensive Survey on Embodied AI

Description: —Embodied Artificial Intelligence (Embodied AI) is crucial for achieving Artificial General Intelligence (AGI) and serves as a foundation for various applications that bridge cyberspace and the physical world. Recently, the emergence of Multi-modal Large Models (MLMs) and World Models (WMs) have attracted significant attention due to their remarkable perception, interaction, and reasoning capabilities, making them a promising architecture for the brain of embodied agents. However, there is no comprehensive survey for Embodied AI in the era of MLMs. In this survey, we give a comprehensive exploration of the latest advancements in Embodied AI. Our analysis firstly navigates through the forefront of representative works of embodied robots and simulators, to fully understand the research focuses and their limitations. Then, we analyze four main research targets: 1) embodied perception, 2) embodied interaction, 3) embodied agent, and 4) sim-to-real adaptation, covering the state-of-the-art methods, essential paradigms, and comprehensive datasets. Additionally, we explore the complexities of MLMs in virtual and real embodied agents, highlighting their significance in facilitating interactions in dynamic digital and physical environments. Finally, we summarize the challenges and limitations of embodied AI and discuss their potential future directions. We hope this survey will serve as a foundational reference for the research community and inspire continued innovation. The associated project can be found at https://github. com/HCPLab-SYSU/Embodied AI Paper List.

Created At: 04 December 2024

Updated At: 04 December 2024

Collective decision making with embodied neural agents

Description: Collective decision making using simple social interactions has been studied in many types of multi-agent systems, including robot swarms and human social networks. However, existing multi-agent studies have rarely modeled the neural dynamics that underlie sensorimotor coordination in embodied biological agents. In this study, we investigated collective decisions that resulted from sensorimotor coordination among agents with simple neural dynamics. We equipped our agents with a model of minimal neural dynamics based on the coordination dynamics framework, and embedded them in an environment with a stimulus gradient. In our single-agent setup, the decision between two stimulus sources depends solely on the coordination of the agent's neural dynamics with its environment. In our multi-agent setup, that same decision also depends on the sensorimotor coordination between agents, via their simple social interactions. Our results show that the success of collective decisions depended on a balance of intra-agent, inter-agent, and agent-environment coupling, and we use these results to identify the influences of environmental factors on decision difficulty. More generally, our results demonstrate the impact of intra- and inter-brain coordination dynamics on collective behavior, can contribute to existing knowledge on the functional role of inter-agent synchrony, and are relevant to ongoing developments in neuro-AI and self-organized multi-agent systems.

Created At: 04 December 2024

Updated At: 04 December 2024

ChatCollab Exploring Collaboration Between Humans and AI Agents in Software Teams

Description: We explore the potential for productive team-based collaboration between humans and Artificial Intelligence (AI) by presenting and conducting initial tests with a general framework that enables multiple human and AI agents to work together as peers. ChatCollab's novel architecture allows agents - human or AI - to join collaborations in any role, autonomously engage in tasks and communication within Slack, and remain agnostic to whether their collaborators are human or AI. Using software engineering as a case study, we find that our AI agents successfully identify their roles and responsibilities, coordinate with other agents, and await requested inputs or deliverables before proceeding. In relation to three prior multi-agent AI systems for software development, we find ChatCollab AI agents produce comparable or better software in an interactive game development task. We also propose an automated method for analyzing collaboration dynamics that effectively identifies behavioral characteristics of agents with distinct roles, allowing us to quantitatively compare collaboration dynamics in a range of experimental conditions. For example, in comparing ChatCollab AI agents, we find that an AI CEO agent generally provides suggestions 2-4 times more often than an AI product manager or AI developer, suggesting agents within ChatCollab can meaningfully adopt differentiated collaborative roles. Our code and data can be found at: https://github.com/ChatCollab

Created At: 04 December 2024

Updated At: 04 December 2024

Deep Learning, Machine Learning, Advancing Big Data Analytics and Management

Description: Advancements in artificial intelligence, machine learning, and deep learning have catalyzed the transformation of big data analytics and management into pivotal domains for research and application. This work explores the theoretical foundations, methodological advancements, and practical implementations of these technologies, emphasizing their role in uncovering actionable insights from massive, high-dimensional datasets. The study presents a systematic overview of data preprocessing techniques, including data cleaning, normalization, integration, and dimensionality reduction, to prepare raw data for analysis. Core analytics methodologies such as classification, clustering, regression, and anomaly detection are examined, with a focus on algorithmic innovation and scalability. Furthermore, the text delves into state-of-the-art frameworks for data mining and predictive modeling, highlighting the role of neural networks, support vector machines, and ensemble methods in tackling complex analytical challenges. Special emphasis is placed on the convergence of big data with distributed computing paradigms, including cloud and edge computing, to address challenges in storage, computation, and real-time analytics. The integration of ethical considerations, including data privacy and compliance with global standards, ensures a holistic perspective on data management. Practical applications across healthcare, finance, marketing, and policy-making illustrate the real-world impact of these technologies. Through comprehensive case studies and Python-based implementations, this work equips researchers, practitioners, and data enthusiasts with the tools to navigate the complexities of modern data analytics. It bridges the gap between theory and practice, fostering the development of innovative solutions for managing and leveraging data in the era of artificial intelligence.

Created At: 04 December 2024

Updated At: 04 December 2024

Learning Explainable Treatment Policies with Clinician-Informed Representations A Practical Approach

Description: Digital health interventions (DHIs) and remote patient monitoring (RPM) have shown great potential in improving chronic disease management through personalized care. However, barriers like limited efficacy and workload concerns hinder adoption of existing DHIs; while limited sample sizes and lack of interpretability limit the effectiveness and adoption of purely black-box algorithmic DHIs. In this paper, we address these challenges by developing a pipeline for learning explainable treatment policies for RPM-enabled DHIs. We apply our approach in the real-world setting of RPM using a DHI to improve glycemic control of youth with type 1 diabetes. Our main contribution is to reveal the importance of clinical domain knowledge in developing state and action representations for effective, efficient, and interpretable targeting policies. We observe that policies learned from clinician-informed representations are significantly more efficacious and efficient than policies learned from black-box representations. This work emphasizes the importance of collaboration between ML researchers and clinicians for developing effective DHIs in the real world.

Created At: 04 December 2024

Updated At: 04 December 2024

First 34 35 36 37 38 39 40 Last