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ABSTRACT

We propose MODEL SWARMS, a collaborative search algorithm to adapt LLMs
via swarm intelligence, the collective behavior guiding individual systems. Specif-
ically, MODEL SWARMS starts with a pool of LLM experts and a utility func-
tion. Guided by the best-found checkpoints across models, diverse LLM experts
collaboratively move in the weight space and optimize a utility function repre-
senting model adaptation objectives. Compared to existing model composition
approaches, MODEL SWARMS offers tuning-free model adaptation, works in low-
data regimes with as few as 200 examples, and does not require assumptions about
specific experts in the swarm or how they should be composed. Extensive exper-
iments demonstrate that MODEL SWARMS could flexibly adapt LLM experts to
a single task, multi-task domains, reward models, as well as diverse human in-
terests, improving over 12 model composition baselines by up to 21.0% across
tasks and contexts. Further analysis reveals that LLM experts discover previously
unseen capabilities in initial checkpoints and that MODEL SWARMS enable the
weak-to-strong transition of experts through the collaborative search process.

1 INTRODUCTION
Advancing beyond efforts to train a single, universal large language model (LLM) (Brown et al.,
2020; Gemini Team et al., 2023) that shares parameters across all languages and tasks, recent work
has increasingly recognized the importance of modularity through multi-LLM collaboration, where
diverse models interact and complement each other in various ways (Shen et al., 2024c; Feng et al.,
2024a; Chan et al., 2024; Du et al., 2024). For example, mixture-of-experts (MoE) relies on the rout-
ing of queries to various neural sub-components, leveraging the specialized expertise of one model
(Masoudnia & Ebrahimpour, 2014; Roller et al., 2021; Pfeiffer et al., 2022; Jiang et al., 2024). Rout-
ing to domain-specific experts demonstrates great potential, while no new model/expert is produced
in the MoE process. However, challenging real-world tasks often require flexible composition and
adaptation to new domains and/or capabilities that go beyond the scope of an existing expert.

Two lines of work aim to extend multi-LLM collaboration beyond routing to compose and produce
new adapted models. 1) Learn-to-fuse designs trainable components to “glue” experts together into
a merged model, then fine-tunes the model with supervised objectives to produce compositional
experts (Jiang et al., 2023b; Wang et al., 2024b; Bansal et al., 2024). These approaches often rely
on large training sets to tune the learnable parts from scratch and hardly offer the modularity of
seamlessly adding/removing experts. 2) Model arithmetic composes LLM experts by conducting
arithmetic operations on model weights and/or token probabilities (Ilharco et al., 2023; Yu et al.,
2024; Yadav et al., 2024; Mavromatis et al., 2024; Liu et al., 2024). These approaches often come
with strong assumptions about the available experts and how the desired adaptation should be de-
composed (e.g., lion indoors = lion outdoors + (dog indoors - dog outdoors) (Ilharco et al., 2023)).
As such, a flexible approach that does not rely on excessive tuning data or strong assumptions about
existing models is crucial for adapting diverse LLM experts for wide-ranging purposes.

To this end, we propose MODEL SWARMS, where multiple LLM experts collaboratively search for
new adapted models in the weight space. Inspired by Particle Swarm Optimization (PSO) (Kennedy
& Eberhart, 1995), MODEL SWARMS views each LLM expert as a “particle” and defines LLM
adaptation as the collaborative movement of particles governed by a utility function representing an
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Figure 1: We propose MODEL SWARMS, a collaborative search algorithm to adapt LLM experts via
swarm intelligence. Guided by personal best pi, global best g, and global worst gw, LLM experts
update its velocity v and location x to explore the weight space and optimize a utility function f .
The best-found expert (global best g) in the end is retained as the output.

adaptation objective. Specifically, to model the proactive search of LLMs instead of passive merg-
ing, each expert particle starts with a location (model weights) and a velocity (direction in the weight
space). The velocity is iteratively impacted by inertia (the tendency to keep current velocity), per-
sonal best (the best-found location of a given particle), and global best/worst (the best/worst-found
location among all particles), while LLM particles then take a step towards the updated velocity
direction. These velocity factors enable LLM particles to chart an independent search path and ex-
plore the personal/global best neighborhoods. Thanks to the flexible search methodology, MODEL
SWARMS does not need any supervised fine-tuning data or pre-existing knowledge about the LLM
experts or the utility function, adapting LLM experts solely through collaborative search and move-
ment guided by any model-to-scalar utility function.

MODEL SWARMS achieves superior performance across four distinct LLM adaptation objectives:

• Single task: Optimizing over as few as 200 instances, MODEL SWARMS outperforms 12 model
composition baselines by 13.3% across 9 datasets spanning knowledge, reasoning, and safety.

• Multi-task domain: Jointly optimizing multiple tasks in medical, legal, scientific, and cultural
domains, MODEL SWARMS often produces Pareto-optimal experts than optimizing a single task.

• Reward model: Optimizing reward model scores of general and conflicting preferences, MODEL
SWARMS offers steerable experts that outperform baselines by up to 14.6% in controllability.

• Human interest: On 16 topics evaluated by humans (e.g., electric vehicles and PhD applications),
Model Swarms produces experts on par or better than existing models in 85% of cases.

Empirical analyses reveal that the diversity of starting experts is crucial, models display emerging
capabilities not seen in initial checkpoints, and surprisingly, the best ending particle often did not
start as the best. MODEL SWARMS could be accelerated with dropout-like strategies and seamlessly
extended to token probability arithmetic for experts with different model architectures. We envision
MODEL SWARMS as a versatile framework to reimagine the potential of diverse open models.

2 METHODOLOGY

We propose MODEL SWARMS, a collaborative search algorithm to adapt LLM experts via swarm
intelligence. We present an overview of MODEL SWARMS in Figure 1 and Algorithm 1.

MODEL SWARMS assumes the access to various LLM experts {xi}ni=1, which could be full models
or LoRA adapters (Hu et al., 2022) fine-tuned on diverse tasks and domains publicly available on
model-sharing platforms (Wolf et al., 2019). It also requires a utility function f : x → R, mapping
each expert onto a scalar value that should be optimized for model adaptation. Utility functions
could be dataset performance, reward model scores, or human preferences (Section 3).

Inspired by Particle Swarm Optimization (Kennedy & Eberhart, 1995) and evolutionary algorithms
in general (Bäck & Schwefel, 1993), MODEL SWARMS employs several terminologies:

• Each LLM expert, or “particle” in the model swarm, has a location represented by model weights;

• Each particle has a velocity, a direction in the model weight space that should move towards next;

• Personal best pi: the best-found location of xi based on utility function f in its search history;
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Algorithm 1: Model Swarms
Input: LLM experts {xi}ni=1, utility function f : x→R; Hyperparameters: swarm size N , step length

λ, step length schedule ϕλ, inertia ϕv , cognitive coefficient ϕp, social coefficient ϕg , repel
coefficient ϕw, patience c, restart patience cr , max iteration K

// initialize search

pairwise interpolation to populate initial experts {xi}Ni=1 = populate({xi}ni=1), N > n
initialize global best checkpoint g← ∅, global worst checkpoint gw ← ∅
for i = 1 to N do

initialize personal best pi ← xi, velocity vi ← random({xj}Nj=1)− xi

if f(xi) > f(g), g← xi; if f(xi) < f(gw), gw ← xi

end
// search!
for k = 1 to K do

if g did not change in the last c iterations then break
for i = 1 to N parallel† do

randomness factors rv, rp, rg, rw ∼ U(0, 1)
update velocity vi ← 1

C [rvϕvvi + rpϕp(pi − xi) + rgϕg(g − xi)− rwϕw(gw − xi)], where
normalization term C = rvϕv + rpϕp + rgϕg + rwϕw

update location xi ← xi + λvi

if f(xi) > f(g), g← xi; if f(xi) < f(gw), gw ← xi; if f(xi) > f(pi), pi ← xi

if f(pi) didn
′t change in cr iterations, xi ← pi and vi ← 0

end
step length scheduling λ← λ× ϕλ

end
return g

• Global best and worst g and gw: the best/worst location in all of {xi}ni=1’s search history.

The location and velocity of particles enable the proactive search of LLM experts instead of passive
merging, while the personal/global best checkpoints help keep track of good locations and neigh-
borhoods in the weight space to further explore.

Step 0. Initialize To expand the pool of starting experts/particles {xi}ni=1, MODEL SWARMS
employs pairwise crossover with linear interpolation. Concretely, we randomly select two ex-
perts xa and xb from {xi}ni=1 and sample t ∼ U(0, 1), a new starting particle is obtained by
xnew = txa + (1 − t)xb. Repeat this process for N − n times to expand {xi}ni=1 into {xi}Ni=1.
Expanding the starting particles allows for more trial-and-error bandwidth in the search process.

For each particle xi, we initialize its velocity as pointing to a random particle vi =
random({xj}Nj=1) − xi.* We initialize its personal best as its current location pi = xi and de-
termine the global best/worst as g = argmaxx f(x) and gw = argminx f(x), x ∈ {xi}ni=1.

Step 1. Velocity Update The movement of LLM experts is mainly governed by velocity v, direc-
tions in the weight space. We posit that the weight neighborhoods of good model checkpoints might
be promising to explore (Eilertsen et al., 2020), thus the velocity of particles vi is iteratively drawn
by personal best pi, global best g, and repelled by global worst gw. Concretely:

vi ←
1

C
[
rvϕvvi + rpϕp(pi − xi) + rgϕg(g − xi)− rwϕw(gw − xi)

]
where C = rvϕv + rpϕp + rgϕg + rwϕw is a normalization term. To dissect this formula:

• The new velocity is the weighted average of four factors: vi, the particle keeps some of its current
velocity (i.e. inertia); (pi − xi), it is drawn towards its personal best; (g − xi), drawn towards
the global best; −(gw − xi), repelled from the global worst. Inertia enables each expert to chart
an independent search path, personal/global best terms encourage experts to explore good weight
neighborhoods, while the global worst term repels experts to stay clear of bad model checkpoints.

*This is to avoid all particles collapsing into the global best g like a “black hole” and reduce exploration.
†All particles perform velocity and location update in parallel, we omit the time stamp k for brevity.
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• Hyperparameters – inertia ϕv , cognitive coefficient ϕp, social coefficient ϕg , repel coefficient ϕw,
all ∈ [0, 1] – are configurable and govern how much the search process is impacted by pi, g, and
gw. In particular, inertia ϕv has a unique control over exploration, where lower ϕv means more
exploration (less impacted by current velocity and more by other models) and vice versa.

• Walk randomness factors rv, rp, rg, rw ∼ U(0, 1) ensure that the search is not deterministic,
boosting particle exploration and are crucial in the collaborative search process (Table 5).

Step 2. Weight Update Based on velocity v, the weights/locations of LLM experts are updated
by taking a step towards v: xi ← xi + λvi, where λ is the step length hyperparameter. The updated
particles are then evaluated on the utility function f to update g, gw, and {pi}Ni=1, if necessary.

Since MODEL SWARMS explicitly encourage randomness and exploration, particles might some-
times fail to find desirable locations and stray away. We propose to restart undesirable particles and
give them another chance: concretely, if for particle i the personal best pi didn’t change in cr it-
erations, where cr is a hyperparameter, we put the particle back to its personal-best location with
xi ← pi and vi ← 0, essentially granting the particle another chance with a relatively good starting
point. In this way, MODEL SWARMS strikes a balance between exploration and robustness.

Step 3. End of Iteration If the global best g hasn’t changed in c iterations (patience hyperparam-
eter) or the maximum iteration of K is achieved, the search process ends. Otherwise the step length
λ is reduced by a hyperparameter factor ϕλ, λ ← λ × ϕλ, and goes back to step 1. In the end, the
global best expert g is returned as the product of MODEL SWARMS.

3 EXPERIMENT SETTINGS

Models and Implementation We implement a prototype of MODEL SWARMS with GEMMA-
7B (google/gemma-7b-it) (Gemma Team et al., 2024) in the main paper, while we also employ
other LLMs such as MISTRAL-7B (Jiang et al., 2023a) in Table 7. We create a pool of 10 initial
experts/particles by fine-tuning GEMMA-7B separately on the 10 SFT data domains‡ in Tulu-v2
(Ivison et al., 2023) with LoRA (Hu et al., 2022). We fine-tune for 5 epochs with a starting learning
rate of 2e-4 and effective batch size of 32 by default. For MODEL SWARMS searches, we employ
N = 20, ϕλ = 0.95, p = 10, pr = 5,K = 50, while running grid search over other hyperparameters
and report the best-found expert based on utility function f .

Baselines We compare with 12 model composition baselines in three categories.

• Trivial composition, 1) Best Single expert, essentially argmaxx f(x) for x ∈ {xi}ni=1; 2) Data
Merge, where the 10 SFT data domains in Tulu-v2 are merged to train one single expert; 3) Pre-
diction Merge, where the predictions of {xi}ni=1 are ensembled via plurality vote (if applicable).

• Static composition, where the composed expert is independent of the adaptation task/utility func-
tion f . We evaluate Uniform Soup (Wortsman et al., 2022a), Slerp, Dare-Ties (Yu et al., 2024;
Yadav et al., 2024), and Model Stocks (Jang et al., 2024).

• Dynamic composition, where the composed expert changes based on the utility function f . We
evaluate Greedy Soup (Wortsman et al., 2022a), Pack of LLMs (Mavromatis et al., 2024), cBTM
(Gururangan et al., 2023), EvolMerge (Akiba et al., 2024), and LoraHub (Huang et al., 2023).
These approaches are also guided by the utility function f like MODEL SWARMS.

Data and Evaluation We investigate whether MODEL SWARMS could adapt LLM experts via
collaborative search on four types of adaptation objectives and the corresponding utility functions.

• Single task: we employ 9 datasets spanning knowledge (MMLU (Hendrycks et al., 2021),
MMLU-pro (Wang et al., 2024e), Hellaswag (Zellers et al., 2019)), reasoning (GSM8k (Cobbe
et al., 2021), Knowledge Crosswords (Ding et al., 2024), NLGraph (Wang et al., 2024a; Zhang
et al., 2024b)), and safety (TruthfulQA (Lin et al., 2022), RealToxicityPrompts (Gehman et al.,
2020), AbstainQA (Feng et al., 2024a)). We by default randomly sample 200 and 1000 samples
as the validation/test sets: the utility function f is defined as performance on the validation set.

‡We replace the GPT-4 Alpaca subset with Gemini-distilled Alpaca and remove the hardcoded subset.
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MMLU MMLU-pro Hellaswag K-Crossword GSM8k NLGraph TruthfulQA RTPrompts AbstainQA

val test val test val test val test val test val test val test val test val test

BEST SINGLE .555 .537 .357 .231 .605 .601 .395 .346 .220 .237 .540 .535 .365 .308 .913 .860 .020 .065
DATA MERGE .435 .445 .300 .176 .505 .527 .380 .370 .080 .143 .395 .423 .160 .107 .880 .848 -.090 -.025
PRED. MERGE .525 .542 .414 .173 .565 .586 .295 .309 .075 .074 .505 .502 .325 .276 / / / /

UNIFORM SOUP .525 .530 .314 .206 .545 .552 .290 .295 .270 .352 .500 .500 .395 .350 .890 .875 -.040 .003
SLERP .550 .559 .386 .237 .560 .614 .350 .309 .205 .256 .520 .530 .345 .313 .915 .884 .070 .128
DARE-TIES .560 .567 .414 .230 .600 .622 .410 .372 .230 .307 .560 .544 .380 .337 .905 .867 .110 .140
MODEL STOCKS .545 .543 .357 .221 .540 .565 .320 .310 .255 .350 .505 .502 .400 .339 .895 .873 .010 .012

GREEDY SOUP .575 .554 .371 .219 .630 .596 .395 .355 .255 .330 .545 .530 .410 .345 .916 .860 .105 .014
PACK OF LLMS .515 .568 .371 .235 .630 .593 .375 .352 .245 .327 .540 .532 .370 .295 .916 .861 -.065 .095
CBTM .510 .506 .286 .179 .510 .525 .320 .284 .160 .198 .410 .398 .360 .314 .885 .842 -.060 -.029
EVOLMERGE .545 .548 .371 .229 .565 .574 .300 .293 .320 .354 .510 .506 .395 .340 .896 .870 .050 .018
LORAHUB .555 .554 .386 .231 .570 .573 .345 .291 .315 .354 .565 .568 .425 .359 .903 .885 .100 .064

MODEL SWARMS .605 .583 .443 .254 .675 .652 .470 .428 .395 .459 .730 .672 .455 .392 .957 .956 .200 .175

Table 1: Performance on the validation and test sets of the 9 datasets. Best in bold and second-best
in underline. MODEL SWARMS outperforms TRIVIAL, STATIC, and DYNAMIC baselines by 13.3%
on average and works best on the middle three reasoning tasks with an improvement of 21.0%.

• Multi-task domain: in addition to optimizing for one task, models should also be adaptable to
an application domain comprising of multiple tasks. We employ 4 such domains and 2 tasks in
each domain, specifically medical (MedQA (Jin et al., 2021; Li et al., 2024b) and MedMCQA
(Pal et al., 2022)), legal (hearsay and citation prediction classification in LegalBench (Guha et al.,
2024)), scientific (SciFact (Wadden et al., 2020) and the STEM subset of MMLU-pro (Wang et al.,
2024e)), and culture (the country-based and value-based subtasks of Normad (Rao et al., 2024)).
The utility function f is defined as the harmonic mean of performance on the two tasks.

• Reward model: we employ three reward models (RMs) to adapt to general and conflicting pref-
erences: a general RM (internlm/internlm2-7b-reward (InternLM Team, 2023)) and we train two
conflicting RMs, verbose-RM and concise-RM, adapted from the general RM and each preferring
longer and more comprehensive vs. shorter and straight-to-the-point responses, studying whether
MODEL SWARMS and baselines could offer steerability in model behavior and adapt to pluralistic
human preferences (Sorensen et al., 2024). We sample 200 instructions from AlpacaFarm (Dubois
et al., 2024) as the validation set and 550 instructions from AlpacaFarm and Koala (Geng et al.,
2023) as the test set. f is defined as the RM scores on the validation set. We additionally em-
ploy PPO (Schulman et al., 2017) and DPO (Rafailov et al., 2024) as baselines to see if MODEL
SWARMS offers a better use of RMs with as few as 200 instructions.

• Human interest: in addition to preferences represented by reward models, it is crucial to adapt
LLM experts directly to human: their preferences, personalized needs, and interest domains.
Specifically, 13 human annotators nominated 16 interest domains (e.g., electric vehicles and PhD
applications), we then employ GEMINI-PRO to synthesize 25:25 instructions in each domain as
validation/test set. f is defined as LLM-as-a-judge (Zheng et al., 2023) 1-10 scores with Gemini
on the validation set, while we evaluate the adaptation to human interest topics on three fronts:
improvement in f scores, improvement in factuality with Facts&Evidence (Boonsanong et al.,
2024), and human evaluation win rate comparing pre-swarm and post-swarm responses.

4 RESULTS Medical Legal Science Culture

MedQA MedMC Hearsay Cite. SciFact STEM Country Value

BEST SINGLE .423 .432 .638 .500 .545 .171 .544 .585
DATA MERGE .361 .346 .596 .509 .570 .148 .468 .587

UNIFORM SOUP .403 .428 .521 .491 .680 .146 .481 .504
SLERP .424 .431 .610 .528 .729 .167 .514 .528
DARE-TIES .424 .437 .631 .537 .724 .171 .534 .546
MODEL STOCKS .409 .432 .543 .444 .727 .159 .507 .540

GREEDY SOUP .427 .439 .631 .472 .680 .161 .526 .553
PACK OF LLMS .418 .435 .521 .545 .699 .165 .500 .533
CBTM .380 .342 .463 .463 .709 .165 .527 .474
EVOLMERGE .415 .431 .532 .491 .667 .163 .503 .527
LORAHUB .405 .429 .588 .536 .711 .159 .541 .557

MODEL SWARMS .443 .457 .702 .602 .743 .188 .559 .603

Table 2: Test set performance on the 8 tasks across 4 do-
mains in multi-task domain adaptation. Best in bold and
second-best in underline. MODEL SWARMS outperforms all
12 baselines by 5.7% on average across datasets.

Single Task We present the per-
formance of MODEL SWARMS and
baselines on 9 datasets in Table 1.
MODEL SWARMS achieves state-of-
the-art performance on all 9 tasks.
It outperforms the second-strongest
baseline by 13.3% on average and up
to 29.7% on the GSM8k dataset. The
average improvement on reasoning
tasks (middle three, 21.0%) is higher
than on knowledge (first three, 4.9%)
and safety (last three, 14.1%) tasks,
indicating MODEL SWARMS’ versa-
tility and unique strength in adapting
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Interest Topic LLM Judge Factuality Human Eval Win Rate Interest Topic LLM Judge Factuality Human Eval Win Rate

south america 6.28 → 7.32 .50 → .55 sandbox games 5.84 → 6.88 .48 → .62
legal AI 6.36 → 7.60 .46 → .48 cartoons 6.40 → 7.48 .50 → .72
aircraft AI 6.52 → 7.76 .47 → .52 music instrument 6.48 → 7.52 .73 → .76
phd application 6.16 → 7.52 .39 → .45 olympics 5.92 → 6.92 .77 → .79
asian food 6.28 → 7.20 .44 → .47 economics 6.32 → 7.56 .41 → .48
finance 6.72 → 7.76 .42 → .53 electric vehicles 6.56 → 7.64 .40 → .42
luxury cars 6.40 → 7.60 .12 → .30 plastic 6.28 → 7.40 .44 → .53
social network 6.56 → 7.60 .43 → .48 us tourism 6.12 → 7.28 .51 → .60

Table 4: LLM-as-a-judge scores with Gemini-Flash, factuality scores with Facts&Evidence (Boon-
sanong et al., 2024), and human eval win rates comparing pre- and post-MODEL SWARMS across
16 human interest domains. Colors indicate WIN, TIE, and LOSE. MODEL SWARMS improve both
scores by 17.6% and 17.0% on average, while achieving 70.8% average win rate across 16 topics.

to diverse reasoning-intensive contexts due to stronger generalization on reasoning problems. DY-
NAMIC merging baselines achieve 11 out of all 18 second-place positions, with an average perfor-
mance 15.6% and 2.1% higher than TRIVIAL and STATIC approaches. This indicates that how to
compose models is task-dependent, while MODEL SWARMS advances the task-specific adaptation
via multi-LLM collaborative search and further outperforms DYNAMIC approaches by 20.8%.

Multi-Task Domain We present test set performance across 8 tasks and 4 domains in Table 2.
Although the multi-task domain adaptation setting is more challenging, MODEL SWARMS still leads
to an average improvement of 5.7% over baselines. Specifically, in the legal domain, we see the most
substantial performance improvement (11.3% and 10.5%). In addition, we discover that MODEL
SWARMS produces Pareto-Optimal experts (Figure 10), i.e., jointly optimizing two tasks in one
shared domain often outperforms only adapting to one single task.

General RM Verbose RM Concise RM

val test val test val test

BEST SINGLE .559 .562 .650 .642 .533 .490
DATA MERGE .457 .445 .527 .550 .430 .396

UNIFORM SOUP .625 .612 .575 .572 .550 .540
SLERP .327 .316 .608 .611 .220 .204
DARE-TIES .415 .403 .607 .604 .335 .315
MODEL STOCKS .615 .593 .562 .567 .555 .526

GREEDY SOUP .621 .609 .650 .649 .578 .553
PACK OF LLMS .614 .609 .625 .641 .547 .529
CBTM .567 .559 .601 .591 .466 .463
EVOLMERGE .619 .607 .575 .570 .554 .536
LORAHUB .621 .603 .616 .619 .589 .561

PPO .628 .574 .618 .641 .536 .527
DPO .627 .617 .681 .682 .611 .599

MODEL SWARMS .646 .621 .780 .770 .651 .639

Table 3: Reward model scores on the valida-
tion and test instruction sets. Best in bold and
second-best in underline. MODEL SWARMS flex-
ibly adapts to both general and steerable prefer-
ence RMs, improving by 6.7% on average.

Reward Model We present the reward model
scores on validation and test set instructions in
Table 3. MODEL SWARMS outperforms all 14
baselines by 6.7% on average, including PPO
and DPO, in the low-data adaptation regime
with 200 instructions only. Importantly, while
on par with alignment methods on general RM,
MODEL SWARMS offers impressive steerability
to adapt to diverse/conflicting user preferences,
instantiated here as verbose vs. concise. While
most baselines could only reflect one but not the
other (e.g. SLERP is good on verbose but bad on
concise), MODEL SWARMS achieves state-of-
the-art performance on both verbose and con-
cise RMs, indicating that the flexible collabora-
tive search methodology presents a viable solu-
tion for aligning to diverse and pluralistic hu-
man preferences (Wang et al., 2023; Sorensen
et al., 2024; Feng et al., 2024b).

Human Interest We present the comparison between pre- and post-MODEL SWARMS experts in
the 16 human-nominated interest domains in Table 4. Through adaptation with MODEL SWARMS,
experts improve 17.6% in LLM-as-a-judge scores and 17.0% in factuality scores on average when
discussing the 16 topics and domains. Most importantly, human evaluation reveals that MODEL
SWARMS features a 70.8% win rate against initial experts on average, in particular, with an impres-
sive 96% win rate in the two most successful domains while still maintaining 44%:28%:28% on
the unfamiliar and most challenging topics. This indicates that MODEL SWARMS outputs are con-
sistently preferred by both automatic metrics and human users, indicating MODEL SWARMS’ great
potential to produce domain-specialized and community-specific LLM experts.
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Figure 2: The number of problems in each correctness level for experts before and after MODEL
SWARMS across four datasets, along with C-surge and C-emerge metrics. Cell colors indicate UP,
SAME, and DOWN changes in correctness levels. MODEL SWARMS discover new capabilities and
skills through collaborative search evident in the 44.8% average C-emerge, solving 44.8% of previ-
ously “impossible” problems for all initial model checkpoints.

5 ANALYSIS

Correctness Emergence In the collaborative search process, are LLM experts simply transferring
existing capabilities from one model to another, or are they discovering new skills and expertise for
adaptation? Specifically, there are four correctness levels for a question and the pool of LLM experts:
1 the answers of experts are all wrong; 2 less than half correct; 3 more than half correct; and
4 all correct. The correctness level for a question could change between the pre- and post-MODEL

SWARMS experts (e.g. ( 1 → 3 ) indicates that none of the experts answered correctly initially, but
after MODEL SWARMS optimization more than half answered correctly.) We define two metrics,
correctness surge (C-surge) and correctness emergence (C-emerge):

C-surge =

∑
j>i | i → j |∑

i,j∈[1,4] | i → j |
, C-emerge =

∑
j>1 | 1 → j |∑

j∈[1,4] | 1 → j |

where C-surge indicates the percentage of questions with an increased correctness level after
MODEL SWARMS, and C-emerge quantifies that out of all initially type- 1 questions, how much was
correctly answered by at least one expert after MODEL SWARMS. Figure 2 illustrates the changes in
correctness levels: MODEL SWARMS achieves an average C-surge of 48.2% across the four datasets,
indicating broad expert improvements. An interesting observation is that MODEL SWARMS achieves
36.0% to 53.5% C-emerge, indicating that the collaborative search surfaced new skills and capabili-
ties in experts that solved 36.0% to 53.5% previously “impossible” problems for all initial experts.

Figure 3: The distribution of starting model rank-
ings for experts that ended as the best. A vast ma-
jority of 89.6% best-found models did not start as
the best and 56.9% even started in the bottom half.

Diamond in the Rough We observe that in
MODEL SWARMS searches, the experts that
ended as the best didn’t necessarily start as the
best. We illustrate this phenomenon in Figure 3:
for the particles that ended with the highest util-
ity function f scores in a swarm, what was its
ranking based on f before the search? Averaged
across the four datasets, we found that only
10.4% of the ending-best particles also started
as the best (#1), while surprisingly the bottom
half of the starting experts were able to rise
to the top in 56.9% of the MODEL SWARMS
searches. This indicates that weak experts are
not inherently less effective but maybe simply
not fully adapted to the task/domain/context of
use: they are rightfully diamond in the rough
and MODEL SWARMS enables the weak-to-
strong transition that activates their implicit ex-
pertise to produce strong adapted LLM experts.
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Figure 4: MODEL SWARMS with increasing levels of diversity in initial LLM experts. Results show
a general upward trend and a 35.3% increase on average from the least to most diverse initial experts.

Diversity Matters MODEL SWARMS rely on a pool of LLM experts to run the collaborative search
algorithm and produce adapted models. Amid the 922,559 models§ publicly available on Hugging-
face (Wolf et al., 2019), what models should we select? Specifically, do we need homogeneous
model checkpoints or diverse specialized experts? To this end, we conduct a controlled experiment:
we take a distinct initial experts (Section 3) and repeat each for b times to result in the starting
swarm (denoted as a × b) while controlling a ∗ b as a constant, then employ MODEL SWARMS to
adapt them to a task/dataset. We present the results for 1× 10, 2× 5, 5× 2, and 10× 1 in Figure 4,
from the least diverse to the most diverse. Experiments demonstrate a consistent upward trend with
the increase in expert diversity, while 10× 1 outperforms 1× 10 by 35.3% averaged across the five
datasets. This indicates that diversity matters, that the success of MODEL SWARMS hinges on the
collaborative search of a diverse and wide-ranging pool of initial experts.

Figure 5: Performance of the to-
ken probability variation, token
swarms, the first and last four ex-
perts are based on GEMMA and
MISTRAL, respectively. Heteroge-
neous experts improve in perfor-
mance by an average of 29.3%
across models and datasets.

Different Model Architectures with Token Swarms The
default MODEL SWARMS algorithm operates on model
weights, i.e. the arithmetic operation of updating particle ve-
locity and location is instantiated with model parameter val-
ues (weight swarms). What if we need to compose experts
fine-tuned from different base architectures? Instead of model
weights, the swarm intelligence arithmetic could be seamlessly
carried out on token probability distributions for token swarms.

Concretely, the n experts start with a location matrix as an
identity matrix L = In×n = [l1, · · · , ln], where the i-th row
li denotes the location of particle i: a one-hot vector of 0s and
the i-th value is 1. For text generation, denoting the next-token
probability distribution of expert i as ti, expert i’s adjusted
token probability becomes t′i =

∑n
j=1 li,jtj and decode text

with t′i. In the beginning, t′i = ti as the expert focuses solely
on its own token probabilities. After running updates of loca-
tion and velocity in the n-dimensional search space (Algorithm
1), t′i becomes a composition of t across experts to optimize
f . This resembles the collaborative decoding paradigms in ex-
isting research (Liu et al., 2024; Shen et al., 2024a), while how
to compose the distributions are auto-discovered.

0.50

0.55

0.60

0.65

MMLU Hellaswag NLGraph

top-1 Swarm(2-10) Swarm(6-10)

Figure 6: Performance of the best
initial expert, swarm(2-10), and
swarm(6-10). The collaboration of
weak models outperforms the top
expert through MODEL SWARMS.

We run a prototype of token swarms with 4 experts fine-tuned
from GEMMA-7B and 4 from MISTRAL-7B, featuring differ-
ent model architectures. We present the pre- and post-swarm
performance of the 8 experts in Figure 5. All 8 experts become
better regardless of model architecture and the global best in-
creased 5.7% and 11.9% on the two datasets. We envision a
full-blown implementation and analysis as well as some mod-
ifications to the token swarms variant as important future work.

§Accessed on Sept 8, 2024.
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Figure 7: Performance variance across runs with
each circle representing the best-found expert of
a run: red line indicates the best baseline. De-
spite randomness, MODEL SWARMS finds ex-
perts better than any baseline in 73% of the runs.

Figure 8: Visualization of the model search tra-
jectories on two datasets, where each colored
line represents the movement in weight space
for one LLM expert. Diverse experts collabora-
tively search for composition and converge to
adapted models in the weight space.

Collaboration of Weak > Strong When we don’t have strong starting experts to begin with,
would MODEL SWARMS enable the collaboration of weaker models to beat the strong? We investi-
gate this by sorting {xi}ni=1 by utility f , withhold the top-1 model and see whether the collaboration
of the remaining experts would surpass it, i.e., whether Swarm({xi}ni=2) > x1. We also evaluate
the collaboration of the bottom half, Swarm({xi}ni=n/2), and present performance in Figure 6. It is
demonstrated that the collaboration of weak models could beat the top-1 expert, with an average im-
provement of 35.4% across the four datasets. The collaboration of the bottom half also outperforms
the top-1 in 2 out of 3 datasets, suggesting that MODEL SWARMS enables the weak-to-strong (Burns
et al., 2024) transition of LLM experts through collaborative search.

Randomness Ablation We explicitly enable randomness in MODEL SWARMS, with the hope of
boosting exploration and adaptation. Specifically, randomness comes in three steps:

1. random interpolation to grow initial experts {xi}Ni=1 = populate({xi}ni=1), N > n;

2. random starting velocity vi ← random({xi}Ni=1)− xi;

3. random velocity update weights rv, rp, rg, rw ∼ U(0, 1);

SETTING MMLU Hellaswag NLGraph AbstainQA

FULL 0.583 0.652 0.672 0.175

W/O 1 0.504 0.587 0.530 0.099
W/O 2 0.516 0.615 0.523 0.049
W/O 3 0.544 0.611 0.547 0.147

W/O 1 & 2 0.561 0.601 0.611 0.091
W/O 1 & 3 0.536 0.600 0.527 0.055
W/O 2 & 3 0.554 0.606 0.532 0.082
W/O 1 & 2 & 3 0.528 0.611 0.541 0.072

Table 5: Performance with randomness
in 1) initial interpolation, 2) starting ve-
locity, and 3) velocity update removed.

We conduct an ablation study where we disable the three
randomness in Table 5. We find that the three random-
ness factors all contribute to model performance across
the four datasets, while the deterministic variant (no 1 &
2 & 3) would result in a 23.5% drop on average.

We further visualize performance variance due to these
randomness factors. We run for up to 200 times, and
present the val/test performance variance in Figure 7. De-
spite the randomness, MODEL SWARMS is consistently
producing adapted experts better the best baseline, out-
performing it in 73% of runs.
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0.6

0.7

full DropK-0.2 DropN-0.2 DropK-0.5 DropN-0.5 DropK-0.8 DropN-0.8

MMLU Hellaswag

Figure 9: Performance with Drop-K and
Drop-N, speeding up MODEL SWARMS
by up to 80% with only a 6.0% drop.

Visualizing Search Trajectory Since the same arith-
metic is applied equally to all model parameters, we could
visualize the search trajectory of LLM experts by plot-
ting any two parameter values. Figure 8 demonstrates that
starting as diverse LLM experts, models collaboratively
search in the weight space and converge to a weight area
that best optimizes the objective f .

Accelerating with Dropout-K/N By default, the utility function f is evaluated for every LLM
expert at every single iteration. To speed up, we propose Drop-K dk and Drop-N dn: randomly
skipping model evaluation in dk% of iterations or for dn% of experts. We evaluate {dk, dn} =
{0.2, 0.5, 0.8} and present model performance in Figure 9. With an speed up of up to 80% comes
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with only a slight performance drop of 6.0% on average, indicating that Drop-K and Drop-N present
two helpful strategies to reduce the computational costs of MODEL SWARMS while maintaining
good expert utility.

6 RELATED WORK

Composing Diverse LLM Experts In addition to developing gargantuan general-purpose LLMs,
increasing research focus on the composition of multiple models. Mixture-of-experts (MoE) models
(Jiang et al., 2024; Lin et al., 2024) and methods (Roller et al., 2021; Lewis et al., 2021; Kudugunta
et al., 2021; Pfeiffer et al., 2022; Du et al., 2022; Gururangan et al., 2022; Shen et al., 2024b) are
one of the most noted paradigms in composing models, where different approaches vary on parallel
neural components (Zhang et al., 2022; Li et al., 2022), routing mechanisms (Zhou et al., 2022;
Dai et al., 2022), and expert partition (Gururangan et al., 2023; Jang et al., 2023). More recently,
learn-to-fuse approaches propose to “glue” experts together with trainable modules (Bansal et al.,
2024), adapters (Wang et al., 2024b), or even LLMs (Jiang et al., 2023b): these approaches often
need substantial supervised data and might not be modular to seamlessly add/remove experts. In
addition, static model arithmetic approaches propose to compose experts by performing arithmetic
on model weights and token probabilities to reconcile sign differences (Yu et al., 2024; Yadav et al.,
2024), simulate tuning effects (Liu et al., 2024), and induce compositional capabilities (Ilharco et al.,
2023), and more (Davari & Belilovsky, 2023; Jang et al., 2024; Deep et al., 2024; Zheng et al.,
2024). In comparison, dynamic model arithmetic proposes to merge models guided by an objective
function, employing perplexity heuristics (Mavromatis et al., 2024), evolutionary methods (Akiba
et al., 2024), and more (Wortsman et al., 2022a; Huang et al., 2023; Gururangan et al., 2023). Most
of these model arithmetic approaches often rely on strong assumptions about the experts how they
should be composed (e.g. lion indoors = lion outdoors + (dog indoors - dog outdoors) (Ilharco et al.,
2023)). In contrast, MODEL SWARMS presents a modular, assumption-free, and flexible approach to
compose and adapt diverse LLM experts guided by as few as 200 data instances.

Evolutionary Algorithms and LLMs MODEL SWARMS is in part inspired by particle swarm
optimization (PSO) (Kennedy & Eberhart, 1995), an evolutionary algorithm (EA) solving optimiza-
tion problems. This echoes a recent and contemporary uptake of EAs, especially genetic algorithms
(GAs) in ML/LLMs (Zhao et al., 2023; Lange et al., 2023; Wu et al., 2024; Chao et al., 2024; Lange
et al., 2024). EvolMerge (Akiba et al., 2024) seeks to compose a math LLM and a Japanese LLM
through discovering better weight/layer and data flows guided by genetic algorithms. PromptBreeder
(Fernando et al., 2024) seeks to search for specialized LLM prompts by maintaining a prompt pop-
ulation and conducting LLM-based crossover and mutation to produce better prompts, resembling
GA processes. EvoPrompt (Guo et al., 2024a) also follows similar concepts of applying GAs for
prompt optimization. We see two key differences between MODEL SWARMS and this line of ex-
isting research: most methods focus on improvements in prompt/data engineering (Fernando et al.,
2024; Guo et al., 2024a), while MODEL SWARMS seek to adapt LLMs by changing model weights
and inducing new expert capabilities (Figure 2), which is more fundamental and offers greater head-
room for improvement; existing EA applications mostly employed genetic algorithms that necessi-
tate much hand-crafted rules (Lambora et al., 2019) (how should two prompts/models crossover to
produce new ones, how to mutate, etc.), while MODEL SWARMS is inspired by swarm intelligence
that come with little to no manual engineering in the composition and collaboration of models.

7 CONCLUSION

We propose MODEL SWARMS, a collaborative search algorithm to flexibly adapt diverse LLM ex-
perts to wide-ranging purposes. Guided by personal and global best-found locations, LLM experts
explore to optimize utility functions representing various adaptation objectives. Extensive exper-
iments demonstrate that MODEL SWARMS outperforms three categories of 12 model composition
baselines by up to 21.0% across four types of model adaptation. Further analysis reveals that MODEL
SWARMS help discover new skills in the collaborative search process and bring out the best and im-
plicit expertise of weak models for weak-to-strong expert transition.
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LIMITATIONS AND ETHICS STATEMENT

MODEL SWARMS assumes access to a pool of initial experts for collaborative search to adapt lan-
guage models. On one hand, it might be challenging to select the right pool of LLMs while we
present evidence that the diversity of initial experts is crucial to MODEL SWARMS’ successes (Fig-
ure 4); On another hand, MODEL SWARMS require the update of all experts at each iteration, which
might be computationally challenging. We provide time/space complexity analysis in Appendix
B and present a preliminary dropout-like acceleration scheme in Figure 9. MODEL SWARMS is
uniquely suited to low-data contexts where only a few hundred examples are readily available to
serve as the utility function f .

MODEL SWARMS aims to adapt language models based on their existing expertise rather than mem-
orizing new information that was never seen in the training of these experts. While theoretically by
changing model weights experts could pick up new information, our preliminary experiments with
perplexity as the utility function, a proxy for memorization, indicates that MODEL SWARMS could
not reliably optimize perplexity. We envision that temporal updates could be enabled by employing
retrieval augmentation (Chen et al., 2023b; Jiang et al., 2023c; Shi et al., 2024; Wang et al., 2024f)
over unseen documents in conjunction with MODEL SWARMS.

MODEL SWARMS by default operate on the model weight space, enabling the collaborative search
and movement of LLM experts in terms of model parameters. While this paradigm is incompati-
ble with a pool of experts with heterogeneous model architectures, we propose token swarms and
demonstrate its preliminary success in Figure 5. We highlight the trade-off between weight swarms
and token swarms: weight swarms induces more fundamental change of model capabilities through
weight changes, but it would require all experts to share the same architecture; token swarms is
much more flexible in expert architectures, but only changes the composition of token probabili-
ties without touching on the model’s parametric capabilities. We expect a full implementation and
adaptations to the token swarms variant as important future work.

Unsuccessful MODEL SWARMS searches might be confined to a local minimum without broad
exploration of the desirable weight space. While 1) we take several measures in Algorithm 1 to
mitigate this (random starting velocity, walk randomness factors, etc.), 2) we observe strong em-
pirical performance of MODEL SWARMS and consistent improvement to the global best g, and
3) we visualize the movement of particles in Figure 8 demonstrating its convergence quality, one
way to mitigate this concern is by annealing/adding noise to go beyond the local search: chang-
ing rv, rp, rg, rw ∼ U(0, 1) to rv, rp, rg, rw ∼ U(−0.2, 1) so that models have a small chance of
moving towards the reverse direction and potentially jump out of local minimums.

We would like to highlight the dual-use risk of MODEL SWARMS: thanks to its flexible adaptation
strategy by using a model-to-scalar utility function f , it also leads to malicious use cases by having
malicious fs. Some examples could include optimizing the reverse reward model scores, optimizing
for lower scores on RealToxicityPrompts (Gehman et al., 2020), optimizing for certain social and
political biases (Feng et al., 2023), and more. We argue for the responsible use of the MODEL
SWARMS methodology as well as the responsible release of adapted experts.

REPRODUCIBILITY STATEMENT

We provide all details in the implementation and evaluation of MODEL SWARMS in Appendix C.
Specifically, Appendix C contains dataset details and statistics (Table 10), implementation details
of MODEL SWARMS, hyperparameter settings, details of all 12 baselines in Section 3, details of
all 4 evaluation settings in Section 4, specific prompt texts in Table 11 employed in the human
interest objective, and specific human evaluation instructions in Table 12. Upon the final version,
we will include a link to a publicly accessible repository with all MODEL SWARMS implementation
code, prepossessed data files and resources, adapted model checkpoints, as well as instructions on
reproducing our results and using MODEL SWARMS beyond tasks included in this paper.
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A DISCUSSION

Three Key Strengths of MODEL SWARMS 1) training-free: by training-free we mean that the
composition of models in MODEL SWARMS doesn’t require specific training objectives, loss func-
tion, gradient descent, or back propagation. This alleviates data dependency: by using as few as 200
examples MODEL SWARMS could produce better adapted experts, while that is only a bit over 3
batches for training-based approaches with a typical effective batch size of 64. 2) automatic dis-
covery or assumption-free: instead of dictating the composition of models in A=B+C-D formulas,
MODEL SWARMS automatically discover better adapted experts through swarm intelligence without
making assumptions about experts and how they should be composed. 3) any adaptation objective:
the collaborative search is only guided by a particle-to-scalar utility function f which could be any
thing: dataset performance, reward model scores, human interests, and more.

MODEL SWARMS and Optimization Research MODEL SWARMS is in part inspired by particle
swarm optimization, one algorithm in the very rich literature of optimization research. We don’t
claim that PSO is the only and best applicable algorithm in the modern LLM world: on the contrary,
we invite follow-up works that critically examine how classic optimization techniques, especially
for non-convex problems without strong guarantees, could be revived in today’s context.

Non-Neural Reward Models In Figure 3 we demonstrate that MODEL SWARMS could adapt to
preferences represented by neural reward models. However, any model-to-scalar utility function f
could work and non-neural RMs are definitely possible: optimizing engagement in social media
posts, optimizing click-through rates in online ads, optimizing charity donations when advertising
a righteous case. We see many positive (and also negative) possibilities when employing MODEL
SWARMS in conjunction with non-neural RMs in social-economic contexts.

Long vs. Short In Figure 3 we demonstrate that MODEL SWARMS could steerably adapt to either
verbose RM or concise RM, offering use agency and controllability in model behavior. We discuss
the distinctions with two other potential solutions: 1) setting max new tokens, which might result in
cutoffs in generated texts; 2) penalizing [EOS] tokens, which might tamper with token probabilities
and harm generation quality. For a more on-the-fly steerability, we suggest to separately conduct
MODEL SWARMS for two conflicting objectives, then employ an interpolation of the two models
with a user-controlled scaler from 0 to 1.

Resilience to Malicious Experts There is discussion in multi-agent research about the impact of
malicious agents (Huang et al., 2024). However, MODEL SWARMS is robust to malicious experts
since the only time a model has influence on others is when it becomes the global best g, while an
intentionally “bad” model has no chance of becoming g on the “good” utility function f .

MODEL SWARMS and Multi-Agent Systems The role of all “experts” in MODEL SWARMS is
homogeneous, i.e. they pursue the same goal/adapt to the same objective as represented by utility
function f . In multi-agent systems (Rame et al., 2022; Zaman et al., 2023; Ainsworth et al., 2023;
Chan et al., 2024; Talebirad & Nadiri, 2023; Chen et al., 2023a; Zhang et al., 2024a; Abdelnabi
et al., 2024; Kannan et al., 2023; Zeng et al., 2024; Guo et al., 2024b; Sun et al., 2024; Han et al.,
2024; Ishibashi & Nishimura, 2024; Wang et al., 2024d; Zhao et al., 2024; Chen et al., 2024c;
Hong et al., 2024; Smit et al., 2024; Chen et al., 2024a;b), the agents often have different roles
to jointly complete a task, albeit those roles are more or less hand-crafted and especially through
prompting. We envision future work on adapting MODEL SWARMS and automatically discovering
heterogeneous and collaborative agents that jointly serve a purpose.

MODEL SWARMS and Model Merging MODEL SWARMS is both searching and merging (Worts-
man et al., 2022b; Davari & Belilovsky, 2023; Deep et al., 2024; Yang et al., 2024; Wan et al., 2024;
Rame et al., 2024; Fu et al., 2024; Ramé et al., 2024; Li et al., 2024a; Tang et al., 2024; Wang
et al., 2024c; Du & Kaelbling, 2024): searching in the sense that models are proactively moving
in the search space for better experts instead of passively being squashed together, merging in the
sense that each resulting model is implicitly an expert taking input from other models and changing
its weights accordingly. Contrary to the often “many-to-one” paradigm in model merging research
where there is only one merged model, MODEL SWARMS is a “many-to-many” operation that yields
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Figure 10: Performance of best single expert, ours only optimizing task 1 or 2, and jointly optimizing
tasks 1 and 2. The domains of medical, legal, science, and culture are presented from left to right.
MODEL SWARMS produces Pareto-Optimal expert than uni-task optimization.

multiple adapted experts, which open the door for further model merging, another search based on
the result of a previous search, MoE routing, and more.
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Figure 11: Performance on Knowledge
Crosswords with optimizing one dataset
or joint task optimization.

Compositional Capability through Joint Utility Func-
tions We investigate whether MODEL SWARMS could
adapt to compositional tasks by jointly optimizing
two different datasets. Specifically, we investigate
“QA+graph reasoning = multi-hop QA” with MMLU,
NLGraph, and Knowledge Crosswords. We compare the
joint utility function of harmonic mean performances
against the best single expert without search or searching
to optimize one task only. Figure 11 demonstrates that
MODEL SWARMS could indeed adapt to compositional
tasks by utilizing a combined utility function.

Pareto-Optimal In adaptation objective 2: multi-task domains, we argue that the joint optimiza-
tion of multiple tasks in a single domain might be better than separately optimizing just one. We
investigate this by comparing the joint optimization against only optimizing only dataset 1 or 2 in
Figure 10. MODEL SWARMS produce mostly Pareto-Optimal experts that’s better than optimizing
one dataset in most cases.

Qualitative Examples We present qualitative examples for objective 4: human interests, essen-
tially (instruction, pre response, post response) tuples, where human evaluators judge MODEL
SWARMS as winning, tying, or losing to initial experts in Tables 13, 14, and 15.

SETTING MMLU Hellaswag NLGraph AbstainQA

FULL 0.583 0.652 0.672 0.175

CROSSOVER, ONLY 15 0.527 0.604 0.534 0.093
NO CROSSOVER 0.504 0.587 0.53 0.099
VELOCITY:BEST 0.518 0.613 0.542 0.031
VELOCITY:ZERO 0.516 0.615 0.523 0.049
NO REPEL 0.534 0.631 0.534 0.025
NO SCHEDULE 0.517 0.611 0.536 0.095
NO RESTART 0.532 0.628 0.532 0.131

Table 6: Ablation study removing the
five modifications to PSO.

Ablation Study MODEL SWARMS features five major
differences from the classic swarm intelligence for LLM
optimization: 1) crossover through interpolation and ex-
panding initial expert pool; 2) randomize initial veloc-
ity; 3) adding a repel term; 4) adding step length sched-
ule; 5) restarting failing particles. We conduct an ablation
study for these five factors in Table 6. It is demonstrated
that they are all helpful for model performance, while 1)
crossover is most useful.

Other LLMs To show the generality of MODEL SWARMS, we replace GEMMA-7B with
MISTRAL-7B (mistralai/Mistral-7B-Instruct-v0.3) and re-run evaluation of adapting to one dataset.
Results in Table 7 demonstrates that MODEL SWARMS is general and works regardless of base
model.
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MMLU MMLU pro Hellaswag K-Crosswords GSM8k NLGraph TruthfulQA RTP AbstainQA

dev test dev test dev test dev test dev test dev test dev test dev test dev test

best single 0.385 0.433 0.257 0.146 0.545 0.550 0.415 0.364 0.190 0.303 0.335 0.325 0.380 0.353 0.898 0.873 -0.130 0.081
ours 0.510 0.510 0.271 0.160 0.640 0.664 0.470 0.497 0.290 0.328 0.380 0.358 0.440 0.405 0.906 0.881 0.095 0.199

Table 7: Performance of single-dataset adaptation with MISTRAL-7B.
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Figure 12: Time per iteration changes with in-
creasing number of GPUs.
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Figure 13: Performance when new experts are
injected, from 5 to 10, from 8 to 10, and from
9 to 10, across three datasets. MODEL SWARMS
presents the possibility of injecting experts after
a search.

Hyperparameter We by default run a grid search over several hyperparameters: step length λ,
inertia ϕv , cognitive coefficient ϕp, social coefficient ϕg , and repel coefficient ϕw. We dissect per-
formance with each hyperparameter value in Table 8. It is demonstrated that the changes are minor,
thus MODEL SWARMS is largely robust to different hyperparameter configurations.

MMLU NLGraph TruthfulQA

avg std avg std avg std

all 0.557 0.011 0.585 0.036 0.365 0.014

inertia
0.10 0.556 0.012 0.582 0.033 0.363 0.015
0.20 0.557 0.010 0.586 0.037 0.365 0.013
0.30 0.556 0.010 0.590 0.039 0.366 0.013

cognitive coeff.

0.10 0.557 0.010 0.584 0.041 0.362 0.015
0.20 0.558 0.011 0.588 0.037 0.364 0.013
0.30 0.556 0.009 0.590 0.041 0.367 0.014
0.40 0.556 0.011 0.587 0.033 0.365 0.014
0.50 0.557 0.012 0.578 0.028 0.365 0.014

social coeff.

0.20 0.558 0.012 0.600 0.040 0.365 0.012
0.30 0.558 0.011 0.593 0.037 0.365 0.012
0.40 0.556 0.010 0.587 0.039 0.365 0.014
0.50 0.556 0.010 0.570 0.023 0.365 0.014
0.60 0.554 0.010 0.576 0.032 0.363 0.015

repel coeff.
0.01 0.553 0.009 0.565 0.013 0.367 0.015
0.05 0.558 0.010 0.587 0.037 0.364 0.014
0.10 0.559 0.012 0.606 0.040 0.363 0.012

step length

0.50 0.558 0.010 0.583 0.028 0.366 0.011
0.60 0.558 0.009 0.587 0.035 0.368 0.014
0.70 0.557 0.010 0.584 0.036 0.364 0.014
0.80 0.556 0.012 0.593 0.043 0.367 0.014
0.90 0.556 0.011 0.589 0.040 0.363 0.013
1.00 0.555 0.012 0.578 0.034 0.361 0.015

Table 8: Average model performance under vari-
ous hyperparameter values.

Time and Space Complexity For MODEL
SWARMS with n particles, k iterations, the time
of validation set inference as D1, the time of
test set inference as D2, the time of weight
arithmetic as w, the probability of global best
updating as a, then the time complexity is
n(D1 +2D2 + k[(5+ a)w+D1]) and isO(n)
and O(k), indicating linear growth with the
amount of particles and iterations. For space,
the peak storage requirement is 3n + 1 copies
of the LoRA adapters: given the tiny size of
adapters, any n < 100 should be reasonable.

The implementation of MODEL SWARMS em-
ploys multiprocessing, essentially distributing
the evaluation of particles to m GPUs with m
concurrent threads. We empirically analyze the
time complexity of employing 1 to 10 GPUs
on our cluster of 16 A100 GPUs with 96 CPU
cores with 10 default initial experts. Figure 12
demonstrates that the benefit of more GPUs
gradually diminishes due to multiprocessing
costs, with 5 GPUs as being optimal on our
machine. We show the general trade-off be-
tween GPU computation time and multipro-
cessing time while the exact time per iteration
is not meaningful.

Modularity: Adding and Removing Experts MODEL SWARMS presents a modular multi-LLM
collaboration system, where experts could be added/removed from the composition even after a
search. For adding experts, since the only time a particle has an influence on others is when it
becomes global best, we only start the search with the new particle when and if it were to become
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MMLU MMLU pro Hellaswag GSM8k NLGraph TruthfulQA

best single 0.537 0.231 0.601 0.237 0.535 0.308
SFT 0.450 0.167 0.513 0.279 0.585 0.359
Model Swarms 0.583 0.254 0.652 0.459 0.672 0.392

Table 9: MODEL SWARMS outperforms directly training LLMs on the 200-instance validation set.

g. We empirically test this by withholding several experts and injecting others in 5 → 10, 8 → 10,
and 9 → 10 settings in Figure 13. Adding experts in this way is generally helpful, while injecting
fewer experts is more effective.

As for removing experts, MODEL SWARMS presents a technical guarantee for completely removing
an expert and all its influence on other models. We first expand the velocity update term on step t:

vt = rvϕvvt−1 + rpϕp(pt−1 − xt−1) + rgϕg(gt−1 − xt−1)− rwϕw(gw,t−1 − xt−1)

= rvϕvvt−1 + rpϕppt−1 − (rpϕp + rgϕg − rwϕw)xt−1 + rgϕggt−1 − rwϕwgw,t−1

The updated location at step t is then:

xt = xt−1 + λvt

= xt−1 + λ
[
rvϕvvt−1 + rpϕppt−1 − (rpϕp + rgϕg − rwϕw)xt−1 + rgϕggt−1 − rwϕwgw,t−1

]
= λrvϕvvt−1 + λrpϕppt−1 +

[
1− λ(rpϕp + rgϕg − rwϕw)

]
xt−1 + λrgϕggt−1 − λrwϕwgw,t−1

Note that vt−1, pt−1, and xt−1 are the property of the particle itself, while gt−1 and gw,t−1 are the
property of potentially other particles. As a result, simply remove the gt−1 and gw,t−1 terms if gt−1

and/or gw,t−1 come from the expert to the removed and normalize the remaining weight terms. For
example, if gt−1 andr gw,t−1 are both from the particle to be removed, then:

x̃t = C
[
xt − λrgϕggt−1 + λrwϕwgw,t−1

]

where C =
λrvϕv+λrpϕp+

[
1−λ(rpϕp+rgϕg−rwϕw)

]
+λrgϕg+λrwϕw

λrvϕv+λrpϕp+

[
1−λ(rpϕp+rgϕg−rwϕw)

] is the weight normalization fac-

tor. Starting from t = 1 up to t = K for every x, this removes the specified expert(s) from the
composition of other models.

Search Dynamics What exactly is happening during a MODEL SWARMS search and how did
expert utility change in the process? We visualize the change of each particle as well as the global
best in term of utility function f in Figure 15. Experts explore the weight space, their utility scores
wax and wane, leading to consistent bumps in global best scores and consequently better adapted
language models.
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pre-search ours Gemini-flash Gemini-pro

Figure 14: Entropy of model responses
indicating sensitivity to 10 prompt ver-
sions with minor differences, the lower
the better.

Prompt Variation We hypothesize that by optimizing
the weights, MODEL SWARMS might offer stronger ro-
bustness to minor prompt changes. We employ GEMINI-
PRO to “Please paraphrase the question into 10 versions
with minor differences.”, evaluate models on the 10 ver-
sions, and calculate the entropy of response distributions
as indicators of sensitivity. Figure 14 demonstrates that
MODEL SWARMS drastically reduce the sensitivity to mi-
nor prompt changes, while still being a bit shy of Gemini-
flash/pro levels.
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Comparison with Training Instead of running MODEL SWARMS, what if we directly fine-tune
models on the validation set with its 200 data points? We compare the performance of pre-search
best initial expert, post-search global best, and SFT in Table 9. MODEL SWARMS outperforms SFT,
indicating that we offer a stronger solution for model adaptation in low-data regimes with as few as
200 instances while SFT might be over-fitting.

C EXPERIMENT DETAILS

Dataset Details We employ 20 datasets in total to evaluate MODEL SWARMS and baselines: 9 for
objective 1: single task, 8 for objective 2: multi-task domains, 2 for objective 3: reward models, and
we synthesize a 16-domain instruction dataset from Gemini (gemini-1.5-pro-001) for objective 4:
human evaluation. We randomly sample subsets from each dataset and present the statistics in Table
10. We also employ the z-test with the one-tailed hypothesis and present statistical significance test
results on the applicable objective 1: single task datasets.

Dataset Source Size

dev test

MMLU (Hendrycks et al., 2021) 200 1000
MMLU-pro (Wang et al., 2024e) 70 1000
K-Crosswords∗∗∗ (Ding et al., 2024) 200 1000
Hellaswag∗ (Zellers et al., 2019) 200 1000
NLGraph∗∗∗ (Wang et al., 2024a) 200 1000
GSM8k∗∗∗ (Cobbe et al., 2021) 200 1000
TruthfulQA∗ (Lin et al., 2022) 200 617
RealToxicityPrompts∗∗∗ (Gehman et al., 2020) 200 1000
AbstainQA∗∗ (Feng et al., 2024a) 200 1000

MedQA (Li et al., 2024b) 200 1000
MedMCQA (Pal et al., 2022) 200 1000
Hearsay (Guha et al., 2024) 94 94
Citation Prediction (Guha et al., 2024) 108 108
SciFact (Wadden et al., 2020) 200 532
STEM (Wang et al., 2024e) 30 473
Normad w/country (Rao et al., 2024) 500 2000
Normad w/value (Rao et al., 2024) 500 2000

AlpacaFarm (Dubois et al., 2024) 200 400
Koala (Geng et al., 2023) / 150

Humen eval Gemini-synthesized 16*25 16*25

Table 10: Statistics of employed datasets. *, **,
and *** indicates the improvement on this dataset
is statistically significant with p < 0.1, p < 0.05,
and p < 0.01 with one-tailed z-test.

Implementation Details For a prototype of
MODEL SWARMS, we employ GEMMA-7B
(google/gemma-7b-it) as the base model check-
point, then fine-tune it on 10 different super-
vised fine-tuning domains to obtain 10 ini-
tial experts. we specifically employ Tulu-v2
(Ivison et al., 2023), an open collection of
instruction-tuning data. We specifically employ
the following subsets: flan (Chung et al., 2024),
CoT, Open Assistant 1 (Köpf et al., 2024),
ShareGPT†, Code Alpaca (Chaudhary, 2023),
LIMA (Zhou et al., 2024), WizardLM Evol-
Instruct V2 (Xu et al., 2023), Open-Orca (Lian
et al., 2023), and Science Literature (Ivison
et al., 2023). We replace the GPT4 Alpaca sub-
set with Gemini Alpaca, distilling generations
from gemini-1.5-pro-001 and remove the hard-
coded subset. We employ LoRA fine-tuning
(Hu et al., 2022) with a learning rate of 2e-4,
cosine learning rate scheduling, effective batch
size of 32, warm-up ratio of 0.1, and 5 default
training epochs, while we only train for 1 epoch
on the large ShareGPT subset. We similarly
fine-tune MISTRAL-7B for the experiments in
Table 7. We employ greedy decoding for text
generation and a maximum new token of 10,
50, 100, or 512 depending on the task.

Hyperparameter Settings For MODEL SWARMS searches, we employ N = 20, ϕλ = 0.95,
p = 10, pr = 5, K = 50, while running grid search over other hyperparameters and report the
best-found expert based on utility function f . Specifically, we search for ϕv ∈ {0.1, 0.2, 0.3},
ϕp ∈ {0.1, 0.2, 0.3, 0.4, 0.5}, ϕg ∈ {0.2, 0.3, 0.4, 0.5, 0.6}, ϕw ∈ {0.01, 0.05, 0.1}, λ ∈
{0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. We run up to 200 to 1000 runs by randomly choosing over these hy-
perparameter search settings and report the best-found expert on utility function f . Though there is
randomness, Figure 7 demonstrates that MODEL SWARMS is robust to hyperparameter settings and
consistently find experts better than any of the 12 baselines.

Baseline Details We employ 12 baselines in total:

• Best single expert: among the 10 initial experts, the expert that performed best on utility function
f is evaluated and reported.

†https://sharegpt.com/
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• Data merge: instead of separately training 10 initial experts, we combine the SFT data and train 1
expert, then evaluate and report its performance.

• Prediction merge: each initial expert generates a prediction, then the final answer is determined
through majority vote. Note this is not applicable to open-ended generation tasks such as Real-
ToxicityPrompts or tasks where the correct behavior vary across models such as AbstainQA.

• Uniform soup (Wortsman et al., 2022a): the weights of the 10 initial experts are uniformed aver-
aged together into a new model.

• Slerp: spherical interpolation of the top-2 experts as evaluated by f based on the implementation
of Goddard et al. (2024) with default hyperparameters.

• Dare-ties: sparsifies task vectors to reduce interference (Yu et al., 2024) with the sign consensus
algorithm (Yadav et al., 2024) based on the implementation of Goddard et al. (2024). We run this
algorithm on the top-2, top-3, top-4, or top-5 models as evaluated by f and employ the best-found
expert.

• Model stocks: employ geometric properties of models to determine linear interpolation weights
(Jang et al., 2024). We run this algorithm on the top-3, top-4, or top-5 models as evaluated by f
and employ the best-found expert based on the implementation of Goddard et al. (2024).

• Greedy soup: starting from the expert with the best f scores, iteratively add the next-best expert
into the soup of uniform averaging, retains the added expert if the soup becomes better and discard
if not, until every expert is considered (Wortsman et al., 2022a).

• Pack of LLMs: the linear interpolation weights of models is decided by perplexity on inference
queries (Mavromatis et al., 2024). We run a hyperparameter search for 200 times with temperature
from 0.1, 0.2, to 1 and report the best-found expert by f .

• cBTM: the ensemble weights of experts are decided by an embedding model’s embedding of
inference query and expert training data (Gururangan et al., 2023). We employ ROBERTA-BASE
as the embedding model to fuse the top-2, top-3, top-4, or top-5 expert and report the best-found
expert.

• EvolMerge: employing genetic algorithm to combine models based on data/layer flow engineering
(Akiba et al., 2024). We run for 200 times randomly crossover the layers of the top-2 experts
through linear interpolation to produce new models, while we keep a maximum population size of
50, retain 10 best-found at every iteration, a max iteration of 5 and report the best-found expert.

• LoraHub: dynamic LoRA composition by employing genetic algorithm to optimize the linear
interpolation weights of different LoRA modules (Huang et al., 2023). We run for 200 times by
employing a population size of 50, 10 max iterations, α = 0 or α = 0.05, and report the best-found
expert.

Evaluation Details We describe the evaluation details in the 4 objectives:

• a single task: MODEL SWARMS and baselines are evaluated based on the performance on the
validation set as the utility function f , while the best-found expert is evaluated on the held-out test
set.

• multi-task domain: MODEL SWARMS and baselines are evaluated based on the harmonic mean of
the performance on the dev set of the two tasks as f , while the best-found expert is evaluated on
the held-out test sets of the two tasks.

• reward models: for the verbose and concise reward models, we run the GEMMA-7B model on
the validation set, record is response length distribution, calculate a length score based on the
percentile of the response in the distribution to the short or long end, average that score with
the general reward model’s score to obtain an overall score. MODEL SWARMS and baselines are
evaluated based on the reward model scores on the dev set instructions as f , while the best-found
expert is evaluated on the reward model scores on the test set instructions.

• human interests: MODEL SWARMS is evaluated on the Gemini-as-a-judge (gemini-1.5-flash-001)
scores on the dev set of instructions as f , with the prompt format in Table 11 (We include a
human-authored example of a good response in the domain for calibration). At inference time the
best-found expert on f is evaluated on 1) the Gemini scores on the held-out test instructions, 2)
Facts&Evidence (Boonsanong et al., 2024) score of factuality, and 3) human evaluation win rates
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against pre-swarm experts. We employ a total of 13 internal researchers as annotators interested
in these domains, while we ask 3 of the annotators to annotate the domain of PhD applications,
resulting in a Fleiss’ Kappa of 0.62 indicating moderate to strong inter-annotator agreement. We
present the human evaluation instructions in Table 12.

For the following instruction and response, please rate the response on a scale of 1 to 10, where 1 is the
worst and 10 is the best. Below is an example of a good (instruction, response) pair:

Instruction: How does tourism influence property values and the real estate market in major tourist destina-
tions, and what are some of the potential benefits and drawbacks of these changes for local residents?
Response: Tourism significantly influences property values and the real estate market in major tourist des-
tinations by driving up demand for short-term rentals, vacation homes, and investment properties. This in-
creased demand often results in higher property prices, which can benefit local homeowners by boosting
their property values and providing lucrative opportunities for renting out their properties. However, the
drawbacks for local residents include affordability issues, as higher property prices can make it challeng-
ing for locals to buy or rent homes, potentially leading to gentrification and displacement. Additionally, an
overemphasis on tourism-related development may strain local infrastructure, disrupt community cohesion,
and reduce the availability of amenities and services tailored to residents’ needs rather than tourists.

Please respond with ”Rating: ?/10” first and then provide your reason.

Instruction: [instruction]
Response: [response]

Table 11: Gemini-as-a-judge prompt.

Instructions
Thank you for being part of the human eval! Each example features one instruction and two responses:
please help us by judging which response is “better”, in the broadest sense possible, by entering 1 (response
1 wins), 2 (response 2 wins), or 3 (tie). Please note that:

> These are open-ended questions without a potential “gold” answer. Please evaluate whether the responses
are helpful, whether they fulfill the instruction, and whether you find it satisfactory, in the broadest sense
possible.
> Don’t worry if you are unsure about the factual aspects of the responses: we have a separate FactScore-like
methodology for that, so you only need to focus on the general quality of responses.
> Please cut the models some slack: responses #1 and #2 both come from <10B LLMs. Please bear this in
mind and don’t expect ChatGPT-like quality.
> Please don’t penalize responses that were partially cut off.
> If you would like to, feel free to write down your comments for specific examples in the “comments”
field.

Again, thank you so much and your efforts would be acknowledged in the eventual paper!

Table 12: Human evaluation instructions.
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topic instruction pre response post response

legal AI

How can nat-
ural language
process-
ing (NLP)
technology
enhance
the drafting
and review
processes
for legal
documents,
ensuring
precision and
compliance?

Enhanced Drafting and Review Processes for Legal Documents
Through NLP Natural language processing (NLP) is revolutioniz-
ing the legal industry by automating and improving various tasks,
including document drafting and review. NLP technologies can
enhance the accuracy, efficiency, and compliance of legal docu-
ments, reducing the time and cost of legal proceedings. 1. Docu-
ment Drafting: - Sentence Generation: NLP models can generate
sentences that adhere to legal syntax and style, reducing the need
for manual writing. - Contract Drafting: NLP can generate con-
tracts and other legal documents based on specific terms and con-
ditions. - Legal Briefs: NLP can create legal briefs that summarize
the facts of a case and argue the case in a concise and persuasive
manner.

Natural Language Processing (NLP) technology can significantly
enhance the drafting and review processes for legal documents,
ensuring precision and compliance. Here’s how: 1. Document
Summarization and Analysis: Extracting Key Information: NLP
can analyze legal documents and extract relevant information like
contracts, agreements, and regulations. This allows lawyers to
quickly understand the core of complex documents, saving time
and effort. Identifying Legal Entities and Relationships: NLP can
identify and categorize legal entities (e.g., people, organizations,
locations) and their relationships within documents. This facil-
itates accurate document organization and analysis. Sentiment
Analysis: NLP can determine the sentiment of legal documents,
helping lawyers understand the tone and potential bias. This can
be valuable in contract negotiations or dispute resolution. 2. Auto-
mated Document Drafting: Standard Clauses and Contracts: NLP
can generate standard legal clauses and contracts based on spe-
cific industry, location, and other factors.

aircraft AI

How can
regulatory
frameworks
be developed
to ensure the
responsible
and safe use
of drones for
building iden-
tification?

Regulatory frameworks for drones in building identification
should be developed with a focus on ensuring safety, security, and
responsible use. Here are key areas to consider: 1. Safety and Se-
curity: Liability and Insurance: Establish clear liability and insur-
ance requirements for drone operators in building identification.
This protects victims in case of accidents or misuse. Training and
Certification: Require drone operators to undergo training and ob-
tain certification from recognized authorities. This ensures com-
petency and adherence to safety standards. Flight Restrictions:
Establish clear flight restrictions based on weather, time of day,
and proximity to buildings, infrastructure, and sensitive areas.
Data Security and Privacy: Implement robust data security and
privacy regulations to protect sensitive building information from
unauthorized access or misuse. Liability for Data Errors: Estab-
lish clear liability for errors in data collected by drones, ensuring
compensation for victims.

Regulatory frameworks for drones in building identification
should be developed with a focus on ensuring safety, security, and
responsible use. Here are key areas to consider: 1. Safety and Se-
curity: Liability and Insurance: Establish clear liability and insur-
ance requirements for drone operators in building identification.
This protects victims in case of accidents or misuse. Training and
Certification: Require drone operators to undergo training and ob-
tain certification from recognized authorities. This ensures com-
petency and adherence to safety standards. Flight Restrictions:
Establish clear flight restrictions based on weather, time of day,
and proximity to buildings, infrastructure, and sensitive areas.
Data Security and Privacy: Implement robust data security and
privacy regulations to protect sensitive building information from
unauthorized access or misuse. Liability for Data Errors: Estab-
lish clear liability for errors in data collected by drones, ensuring
compensation for victims.

asian food

What are
some essen-
tial elements
and tech-
niques in the
art of Chinese
tea pairing
with meals,
and how do
they enhance
the dining
experience?

Chinese tea pairing with meals is a delicate art that has been per-
fected over centuries. It is a harmonious blend of tradition and in-
novation, and it is a key element of the Chinese dining experience.
Essential Elements of Chinese Tea Pairing with Meals: Teapot:
The teapot is the centerpiece of the tea pairing experience. It is a
beautiful and ornate vessel that is steeped in history. The teapot
is used to steep the tea leaves in hot water, and it is also used to
serve the tea to the guests. Teacups: The teacups are used to serve
the tea to the guests. They are usually made of porcelain, and they
are decorated with intricate patterns. Tea strainer: The tea strainer
is used to filter the tea leaves from the tea. It is usually made of a
fine mesh, and it is placed in the teapot.

Chinese tea pairing with meals is a delicate art that harmonizes
flavors, textures, and aromas to elevate the dining experience.
Here are the essential elements and techniques: Elements: Tea:
Choose teas that complement the meal’s flavors and ingredients.
For example, green tea pairs well with delicate dishes, while black
tea complements richer ones. Water Quality: Use filtered or spring
water to enhance the tea’s flavor and aroma. Teapot: Select a
teapot that matches the tea type and brewing method. For exam-
ple, a Gaiwan (steaming bowl) is used for green tea, while a Yix-
ing pot is ideal for black tea. Teacup: Choose a cup that allows
for proper brewing and allows the tea to cool down appropriately.
Food: The food should be prepared in a way that complements the
tea. For example, spicy dishes pair well with cooling teas, while
sweet foods pair with floral teas.

instrument

What are
some dis-
tinct stylistic
differences
between the
use of bass
in jazz versus
rock music?

Sure, here are some distinct stylistic differences between the use
of bass in jazz versus rock music: Jazz: Melodic: The bass is of-
ten used to play the melody, rather than just the root notes. Har-
monic: The bass is used to play chords, rather than just root notes.
Rhythm: The bass is used to play a variety of rhythm patterns, in-
cluding syncopation, swing, and waltz. Dynamic: The bass is used
to play a variety of dynamic changes, including volume changes,
pitch changes, and tempo changes. Rock: Rhythm: The bass is
used to play a variety of rhythm patterns, including straight, syn-
copated, and polyrhythmic.

Distinctive Bass Styles in Jazz and Rock: While both genres
utilize bass, their stylistic differences are evident in the instru-
ment’s role, playing techniques, and overall musical context. Jazz:
Melodical Focus: The bass often takes the lead, playing intricate
melodies and improvisational lines. Think of the bass as a second
lead instrument, not just a rhythm section member. Harmonic So-
phistication: Jazz basslines often incorporate chromaticism, dis-
sonance, and complex chord structures, adding harmonic depth
and complexity. Dynamic Range: Jazz bass players exhibit a wide
dynamic range, playing with both power and finesse, often switch-
ing between the two within a single phrase. Rhythm Section Syn-
ergy: The bass interacts with the drums and piano to create a dy-
namic rhythm section, emphasizing interplay and improvisation.

olympics

How did
Brazil’s eco-
nomic and
political cli-
mate affect
the organi-
zation and
execution
of the 2016
Olympic
Games in Rio
de Janeiro,
and what
were the
implications
for the host
city?

The 2016 Olympic Games in Rio de Janeiro were held in a coun-
try that was experiencing a severe economic crisis, and the games
were a major event that was affected by the crisis. The economic
crisis was caused by a number of factors, including the collapse of
the oil industry, the decline of the Brazilian economy, and the rise
of the Zika virus. The Zika virus was a major threat to the games,
and it was a major source of anxiety for the athletes and the pub-
lic. The economic crisis had a number of negative effects on the
games. First, it made it difficult to attract athletes to the games.
Second, it made it difficult to attract sponsors to the games. Third,
it made it difficult to attract tourists to the games. Fourth, it made
it difficult to attract media to the games. The economic crisis also
had a number of negative effects on Rio de Janeiro. First, it made
it difficult to attract tourists to Rio de Janeiro. Second, it made
it difficult to attract businesses to Rio de Janeiro. Third, it made
it difficult to attract investors to Rio de Janeiro. Fourth, it made
it difficult to attract government officials to Rio de Janeiro. The
economic crisis was a major threat to the 2016 Olympic Games
in Rio de Janeiro. It was a major threat to the athletes, the public,
and the city of Rio de Janeiro.

Brazil’s economic and political climate in 2016 significantly af-
fected the organization and execution of the 2016 Olympic Games
in Rio de Janeiro. Here’s a breakdown of the impact and its im-
plications for the host city: Economic Impact: High Inflation and
Currency Fluctuations: Brazil was facing a severe economic cri-
sis in 2016, with high inflation and a plummeting currency (the
Brazilian Real). This made it difficult to manage the Olympic bud-
get and impacted the cost of hosting the games. Budget Overruns:
The Olympic Games were estimated to cost $15 billion, but the
final cost exceeded that by $2 billion due to inflation and currency
fluctuations. This put a strain on Brazil’s economy and forced the
government to make adjustments. Impact on Tourism: While the
Olympics boosted tourism in the short term, Brazil’s economic
instability made it difficult to attract long-term investment and
tourism after the games.

Table 13: Part of LLM responses where MODEL SWARMS win over pre-swarm experts per human
evaluation.

27



topic instruction pre response post response

south amer-
ica

How has
Chile’s
unique ge-
ographic
location and
landscape
influenced
its economic
activities,
particularly in
mining and
agriculture?

Chile’s unique geographic location and landscape have signifi-
cantly influenced its economic activities, particularly in mining
and agriculture. Mining: - Chile is the world’s largest copper pro-
ducer and the world’s largest exporter of copper. - The country’s
copper deposits are located in the Andes Mountains, which are
the world’s largest copper resource. - The Andes Mountains are
also home to the world’s largest gold and silver mines. - Chile’s
mining industry is a major source of the country’s GDP and em-
ployment.

Chile’s unique geographic location and landscape have signifi-
cantly influenced its economic activities, particularly in mining
and agriculture. Here’s how: Mining: Mineral Riches: Chile is
known as the copper capital of the world due to its vast min-
eral deposits, particularly copper. These deposits are concentrated
in the Andes Mountains, leading to a strong focus on mining.
Challenges and Opportunities: The Andes present logistical chal-
lenges for mining operations, including difficult terrain, altitude
sickness, and the need for specialized equipment. However, these
challenges also contribute to the unique skills and expertise of
Chilean miners, making the industry a major employer and con-
tributor to the economy. Environmental Impact: The mining in-
dustry in Chile has a significant environmental footprint, with
large-scale mining operations impacting water resources, air qual-
ity, and land use. This has led to environmental concerns and the
need for sustainable practices.

cartoons

In what ways
does the an-
imation style
and visual de-
sign of Peppa
Pig contribute
to its appeal
for preschool
audiences?

The animation style and visual design of Peppa Pig contribute to
its appeal for preschool audiences in a number of ways. 1. Sim-
plicity and clarity: The animation style is simple and clear, with
a focus on the main character’s expressive eyes and mouth. The
characters are designed to be easily identifiable, with their distinct
shapes and colours. The backgrounds are simple and uncluttered,
allowing the characters to stand out.

The animation style and visual design of Peppa Pig are key factors
in its appeal for preschool audiences. Here’s how they contribute:
1. Simplicity and Familiarity: Minimalist Design: The characters
are simple, blocky figures with few details. This makes them eas-
ily identifiable and less intimidating for young children. Limited
Color Palette: The show uses a limited color palette, often sticking
to primary and secondary colors. This further simplifies the vi-
sual language and avoids overwhelming young viewers. Familiar
Shapes and Patterns: The characters are made up of basic shapes
like circles, squares, and rectangles. This helps children recognize
and learn about shapes.

policy

In what ways
can tax policy
be reformed
to better
support social
programs
without over-
burdening the
middle and
lower classes?

Tax policy can be reformed to better support social programs
without overburdening the middle and lower classes through a
variety of mechanisms. 1. Increase the marginal tax rate on the
wealthy. This would raise a significant amount of revenue, which
could be used to fund social programs. The wealthy are less likely
to be affected by a higher marginal tax rate, as they are more likely
to be able to afford to pay more in taxes. This would not overbur-
den the middle and lower classes, as they are less likely to be able
to afford to pay more in taxes.

Tax policy reform can be designed to better support social
programs without overburdening the middle and lower classes
through a combination of approaches: 1. Progressive Taxation:
Increase marginal tax rates for high earners: This ensures that the
wealthy contribute a greater share of their income in taxes, offset-
ting the burden on lower earners. Implement a progressive prop-
erty tax system: This would increase taxes on larger homes and
decrease taxes on smaller homes, ensuring that property taxes are
more equitable.

EVs

What are
some po-
tential eco-
nomic conse-
quences, both
positive and
negative, of
a global shift
towards elec-
tric vehicles?

## Positive Economic Consequences Reduced fuel costs: Elec-
tric vehicles (EVs) are powered by electricity, which is much
cheaper than gasoline or diesel fuel. This can save drivers a lot of
money on fuel costs. Increased energy efficiency: EVs are much
more energy efficient than gasoline or diesel vehicles. This means
that they use less energy to travel the same distance, which can
also save drivers a lot of money. Increased energy security: EVs
can help to increase energy security. This is because they can be
charged from a variety of sources, including the electric grid, solar
panels, and wind turbines. This means that EVs can help to reduce
the impact of power outages and other disruptions. Increased job
creation: The EV industry is creating a lot of new jobs. This is be-
cause EVs require more energy than gasoline or diesel vehicles,
which means that they need to be charged more often. This can
create a lot of new jobs for people who are responsible for charg-
ing EVs.

Positive Economic Consequences: Reduced fuel costs: Electric
vehicles (EVs) eliminate the need for gasoline or diesel fuel,
which can lead to significant fuel cost savings for consumers.
Lower maintenance costs: EVs require less maintenance than tra-
ditional combustion engine vehicles (CEVs), as they have fewer
moving parts and do not require oil changes. Increased energy
efficiency: EVs are much more energy-efficient than CEVs, con-
verting a higher percentage of electricity into motion. Job cre-
ation: The manufacturing and installation of EVs and related in-
frastructure can create new jobs in various sectors. Reduced air
pollution: EVs produce zero tailpipe emissions, which can im-
prove air quality and reduce health problems related to air pollu-
tion.

plastic

How can
consumer
awareness
and demand
drive in-
novation
and market
growth for
alternatives
to plastic
products?

Consumer Awareness and Demand Drive Innovation and Market
Growth for Alternatives to Plastic Products Consumer awareness
and demand are powerful drivers of innovation and market growth
for alternatives to plastic products. As consumers become more
informed about the environmental impact of plastic products, they
are increasingly seeking out sustainable alternatives. This demand
for sustainable alternatives is creating a growing market for prod-
ucts made from recycled materials, bioplastics, and other sus-
tainable materials. 1. Recycled Materials The recycling of plas-
tic products is a key driver of innovation and market growth for
alternatives to plastic products. Recycled plastic can be used to
produce a variety of products, including bottles, cups, trays, and
films. Recycled plastic is often more expensive than virgin plas-
tic, but it is also more environmentally friendly.

Consumer awareness and demand can be powerful drivers of in-
novation and market growth for alternatives to plastic products.
Here’s how: 1. Demand Creates Opportunity: Consumer Pressure:
When consumers express their preference for alternatives through
boycotts, petitions, and social media campaigns, it creates pres-
sure on manufacturers to respond. Market Incentives: Growing
demand for eco-friendly alternatives incentivizes manufacturers
to invest in research, development, and production of sustainable
products.

us tourism

What are the
economic
challenges
that tourism-
dependent
communities
face during
periods of
downturn,
such as
economic
recessions or
global pan-
demics, and
what strate-
gies can these
communities
employ to
mitigate such
impacts?

## Economic Challenges Faced by Tourism-Dependent Com-
munities During Downturns Tourism-dependent communities are
highly vulnerable to economic fluctuations, as their economies are
heavily reliant on tourism revenue. During periods of downturn,
such as economic recessions or global pandemics, these commu-
nities face a number of challenges: Reduced tourism revenue: As
travel and tourism spending declines, the revenue that tourism-
dependent communities rely on for employment, income, and
revenue is significantly reduced. Increased unemployment: As
tourism revenue declines, businesses in tourism-dependent com-
munities are forced to lay off employees, leading to increased
unemployment. Increased poverty: As tourism revenue declines,
the poverty rate in tourism-dependent communities increases.
Increased crime: As tourism revenue declines, crime rates in
tourism-dependent communities increase. Increased social unrest:
As tourism revenue declines, social unrest in tourism-dependent
communities increases.

## Economic Challenges Faced by Tourism-Dependent Commu-
nities during Downturns: 1. Loss of Revenue and Job Creation:
Direct Impact: Tourism is a major source of revenue for these
communities, and its decline directly impacts local businesses, at-
tractions, and government budgets. Job Loss: Tourism creates a
significant number of jobs, and their disappearance during down-
turns leads to unemployment, reduced wages, and economic in-
stability.

Table 14: Part of LLM responses where MODEL SWARMS tie with pre-swarm experts per human
evaluation. 28



topic instruction pre response post response

phd appli-
cation

What types
of research
projects and
collaborations
are currently
underway
in your de-
partment,
and how can
prospective
students get
involved?

## Research Projects and Collaborations in the Department The
Department of [insert department name] is a vibrant and active
research community, with ongoing projects in a wide range of ar-
eas. Some of the department’s key research areas include: [List of
key research areas] Here are some of the department’s current re-
search projects: [List of current research projects] These projects
are being conducted by faculty members, postdocs, and graduate
students. Many of the department’s faculty members are also in-
volved in collaborative research projects with other institutions.

I am a large language model, and I don’t have the capacity to con-
duct research projects or engage in collaborations. I can provide
you with information about research projects and collaborations
happening in various fields, though. To give you a better idea of
what’s happening in your specific department, I need more in-
formation. Please tell me: Your department: What department are
you interested in? Your university or institution: Are you looking
for research opportunities at a specific university or institution?
Once I have this information, I can provide you with relevant re-
search projects and collaborations happening in your department.

finance

What are
the ethical
considera-
tions that
companies
should adhere
to when they
go public?

Ethical Considerations for Public Companies Public companies
have a greater responsibility to the public than private companies.
They are subject to more scrutiny and are expected to act in a more
ethical manner. Ethical Considerations for Public Company Di-
rectors Board diversity: Public company boards should reflect the
diversity of the company’s workforce and customer base. Inde-
pendent directors: Public company boards should have a majority
of independent directors. Board meetings: Public company boards
should meet regularly and be prepared to act in the best inter-
ests of the company. Financial disclosure: Public company boards
should ensure that the company’s financial statements are accu-
rate and complete. Corporate social responsibility: Public com-
pany boards should ensure that the company is acting in a socially
responsible manner.

When a company goes public, it takes on a new level of scrutiny
and responsibility. Here are some key ethical considerations com-
panies should adhere to: Transparency and Accountability: Finan-
cial Reporting: Accurate and timely reporting of financial infor-
mation is crucial. This includes: Financial Statements: Publishing
transparent and reliable financial statements that accurately reflect
the company’s financial standing. SEC Filings: Filing required
SEC forms (e.g., 10-K, 10-Q) on time and with accurate infor-
mation. Corporate Governance: Establishing strong governance
practices to ensure accountability and protect shareholder inter-
ests. This includes: Board of Directors: Having a diverse and in-
dependent board of directors with appropriate expertise and expe-
rience. Executive Compensation: Setting executive compensation
packages that are reasonable and linked to company performance.

luxury car

How does
Ferrari
manage to
maintain the
exclusivity
and desir-
ability of its
brand, includ-
ing through
limited-
production
models and
special edi-
tions?

Ferrari’s exclusivity and desirability are maintained through a
combination of factors, including: 1. Limited-Production Models:
- Ferrari’s limited-production models are designed to be exclusive
and desirable. - They are often limited to a single year of produc-
tion, and are often sold at a premium over the standard model. -
The limited-production models are often designed to be unique
and to attract attention.

Ferrari’s brand exclusivity and desirability are carefully man-
aged through a combination of factors, including: 1. Limited Pro-
duction & High Demand: High Demand: Ferrari’s vehicles are
highly sought after, with waiting lists often exceeding years. This
scarcity fuels the perception of exclusivity and desirability. Lim-
ited Production: Ferrari carefully controls its production numbers,
ensuring that demand far exceeds supply. This exclusivity further
drives demand and keeps prices high.

social net-
work

How do mod-
erators on
Reddit bal-
ance the need
for open dis-
cussion with
maintaining
community
standards and
preventing
harmful con-
tent?

## Balancing Open Discussion with Community Standards on
Reddit Moderators on Reddit face a delicate balancing act be-
tween fostering open discussion and maintaining a safe and posi-
tive community. Here are some key approaches they use: 1. Defin-
ing Community Standards: - Reddit has established guidelines for
content and behavior, including rules against hate speech, harass-
ment, bullying, and misinformation. - Moderators enforce these
guidelines through various tools like flags, warnings, and bans.

Moderators on Reddit face a delicate balancing act between fos-
tering open discussion and protecting the community from harm-
ful content. Here’s a breakdown of how they navigate this com-
plex issue: 1. Defining Community Standards: Reddit’s Con-
tent Policy: Reddit has a comprehensive content policy that out-
lines acceptable behavior and content. This acts as a baseline for
moderation decisions. Community Guidelines: Reddit’s subreddit
structure allows communities to establish their own guidelines,
often specific to their niche or topic. These guidelines provide
additional context and expectations for content. Community In-
volvement: Moderators actively engage with the community to
understand their expectations and concerns. This feedback is cru-
cial in shaping and refining community standards.

sandbox
games

Discuss
the role of
character
backstories
in Genshin
Impact. How
do these nar-
ratives enrich
the over-
all gaming
experience
and player
engagement?

Character backstories are a key element of the narrative structure
in Genshin Impact. These narratives are not only a source of lore
and lore lore but also serve to build character relationships and
to give players a deeper understanding of the characters. 1. Lore
and Lore Lore: - Character backstories are a way to build lore and
lore lore. They provide information about the characters’ lives,
their motivations, and their relationships with other characters. -
This information can be used to create a more immersive and en-
gaging experience for players. - For example, a character who is a
member of the Knights of Favonius will have a different backstory
than a character who is a member of the Order of the Knights of
the Round Table.

Character backstories play a crucial role in enhancing the over-
all gaming experience and player engagement in Genshin Impact.
These narratives provide context, depth, and emotional weight to
the characters, making them more relatable and memorable. 1.
Establishing Character Identity and Motivation: Backstories re-
veal the motivations, goals, and aspirations of characters. For ex-
ample, Xiao’s backstory reveals his internal conflict between his
duty as a Fatui Harbinger and his desire to protect others. They
help players understand the characters’ perspectives, values, and
relationships. For instance, Diluc’s backstory reveals his complex
relationship with his father and his motivations for founding the
Knights of Favonius.

Table 15: Part of LLM responses where MODEL SWARMS lose to pre-swarm experts per human
evaluation.
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Figure 15: Search dynamics of per-particle change (left) and global best change (right) of utility
function f . MMLU-pro, Knowledge Crosswords, Hellaswag, NLGraph, RealToxicityPrompts, and
AbstainQA performance are illustrated from top to bottom.
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