Publication Library
Multi-agent Embodied AI - Advances and Future Directions
Description: Embodied artificial intelligence (Embodied AI) plays a pivotal role in the application of advanced technologies in the intelligent era, where AI systems are integrated with physical bodies that enable them to perceive, reason, and interact with their environments. Through the use of sensors for input and actuators for action, these systems can learn and adapt based on real-world feedback, allowing them to perform tasks effectively in dynamic and unpredictable environments. As techniques such as deep learning (DL), reinforcement learning (RL), and large language models (LLMs) mature, embodied AI has become a leading field in both academia and industry, with applications spanning robotics, healthcare, transportation, and manufacturing. However, most research has focused on single-agent systems that often assume static, closed environments, whereas real-world embodied AI must navigate far more complex scenarios. In such settings, agents must not only interact with their surroundings but also collaborate with other agents, necessitating sophisticated mechanisms for adaptation, real-time learning, and collaborative problem-solving. Despite increasing interest in multi-agent systems, existing research remains narrow in scope, often relying on simplified models that fail to capture the full complexity of dynamic, open environments for multi-agent embodied AI. Moreover, no comprehensive survey has systematically reviewed the advancements in this area. As embodied AI rapidly evolves, it is crucial to deepen our understanding of multi-agent embodied AI to address the challenges presented by real-world applications. To fill this gap and foster further development in the field, this paper reviews the current state of research, analyzes key contributions, and identifies challenges and future directions, providing insights to guide innovation and progress in this field.
Created At: 09 May 2025
Updated At: 09 May 2025
Implicitly Aligning Humans and Autonomous Agents through Shared Task Abstractions
Description: In collaborative tasks, autonomous agents fall short of humans in their capability to quickly adapt to new and unfamiliar teammates. We posit that a limiting factor for zero-shot coordination is the lack of shared task abstractions, a mechanism humans rely on to implicitly align with teammates. To address this gap, we introduce HA: Hierarchical Ad Hoc Agents, a framework leveraging hierarchical reinforcement learning to mimic the structured approach humans use in collaboration. We evaluate HA in the Overcooked environment, demonstrating statistically significant improvement over existing baselines when paired with both unseen agents and humans, providing better resilience to environmental shifts, and outperforming all state-of-the-art methods.
Created At: 09 May 2025
Updated At: 09 May 2025
HiPerRAG - High-Performance Retrieval Augmented Generation for Scientific Insights
Description: The volume of scientific literature is growing exponentially, leading to underutilized discoveries, duplicated efforts, and limited cross-disciplinary collaboration. Retrieval Augmented Generation (RAG) offers a way to assist scientists by improving the factuality of Large Language Models (LLMs) in processing this influx of information. However, scaling RAG to handle millions of articles introduces significant challenges, including the high computational costs associated with parsing documents and embedding scientific knowledge, as well as the algorithmic complexity of aligning these representations with the nuanced semantics of scientific content. To address these issues, we introduce HiPerRAG, a RAG workflow powered by high performance computing (HPC) to index and retrieve knowledge from more than 3.6 million scientific articles. At its core are Oreo, a high-throughput model for multimodal document parsing, and ColTrast, a query-aware encoder fine-tuning algorithm that enhances retrieval accuracy by using contrastive learning and late-interaction techniques. HiPerRAG delivers robust performance on existing scientific question answering benchmarks and two new benchmarks introduced in this work, achieving 90% accuracy on SciQ and 76% on PubMedQA-outperforming both domain-specific models like PubMedGPT and commercial LLMs such as GPT-4. Scaling to thousands of GPUs on the Polaris, Sunspot, and Frontier supercomputers, HiPerRAG delivers million document-scale RAG workflows for unifying scientific knowledge and fostering interdisciplinary innovation.
Created At: 09 May 2025
Updated At: 09 May 2025
Empowering Scientific Workflows with Federated Agents
Description: Agentic systems, in which diverse agents cooperate to tackle challenging problems, are exploding in popularity in the AI community. However, the agentic frameworks used to build these systems have not previously enabled use with research cyberinfrastructure. Here we introduce Academy, a modular and extensible middleware designed to deploy autonomous agents across the federated research ecosystem, including HPC systems, experimental facilities, and data repositories. To meet the demands of scientific computing, Academy supports asynchronous execution, heterogeneous resources, high-throughput data flows, and dynamic resource availability. It provides abstractions for expressing stateful agents, managing inter-agent coordination, and integrating computation with experimental control. We present microbenchmark results that demonstrate high performance and scalability in HPC environments. To demonstrate the breadth of applications that can be supported by agentic workflow designs, we also present case studies in materials discovery, decentralized learning, and information extraction in which agents are deployed across diverse HPC systems.
Created At: 09 May 2025
Updated At: 09 May 2025
Open Challenges in Multi-Agent Security - Towards Secure Systems of Interacting AI Agents
Description: Decentralized AI agents will soon interact across internet platforms, creating security challenges beyond traditional cybersecurity and AI safety frameworks. Free-form protocols are essential for AI's task generalization but enable new threats like secret collusion and coordinated swarm attacks. Network effects can rapidly spread privacy breaches, disinformation, jailbreaks, and data poisoning, while multi-agent dispersion and stealth optimization help adversaries evade oversightcreating novel persistent threats at a systemic level. Despite their critical importance, these security challenges remain understudied, with research fragmented across disparate fields including AI security, multi-agent learning, complex systems, cybersecurity, game theory, distributed systems, and technical AI governance. We introduce \textbf{multi-agent security}, a new field dedicated to securing networks of decentralized AI agents against threats that emerge or amplify through their interactionswhether direct or indirect via shared environmentswith each other, humans, and institutions, and characterize fundamental security-performance trade-offs. Our preliminary work (1) taxonomizes the threat landscape arising from interacting AI agents, (2) surveys security-performance tradeoffs in decentralized AI systems, and (3) proposes a unified research agenda addressing open challenges in designing secure agent systems and interaction environments. By identifying these gaps, we aim to guide research in this critical area to unlock the socioeconomic potential of large-scale agent deployment on the internet, foster public trust, and mitigate national security risks in critical infrastructure and defense contexts.
Created At: 08 May 2025
Updated At: 08 May 2025