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Abstract

The volume of scientific literature is growing exponentially, lead-
ing to underutilized discoveries, duplicated efforts, and limited
cross-disciplinary collaboration. Retrieval-Augmented Generation
(RAG) offers a way to assist scientists by improving the factual-
ity of Large Language Models (LLMs) in processing this influx of
information. However, scaling RAG to handle millions of articles
introduces significant challenges, including the high computational
costs associated with parsing documents and embedding scientific
knowledge, as well as the algorithmic complexity of aligning these
representations with the nuanced semantics of scientific content.
To address these issues, we introduce HiPerRAG, a RAG workflow
powered by high performance computing (HPC) to index and re-
trieve knowledge from more than 3.6 million scientific articles. At
its core are Oreo, a high-throughput model for multimodal doc-
ument parsing, and ColTrast, a query-aware encoder fine-tuning
algorithm that enhances retrieval accuracy by using contrastive
learning and late-interaction techniques. HiPerRAG delivers robust
performance on existing scientific question answering (Q/A) bench-
marks and two new benchmarks introduced in this work, achiev-
ing 90% accuracy on SciQ and 76% on PubMedQA—outperforming
both domain-specific models like PubMedGPT and commercial
LLMs such as GPT-4. Scaling to thousands of GPUs on the Polaris,
Sunspot, and Frontier supercomputers, HiPerRAG delivers million
document-scale RAG workflows for unifying scientific knowledge
and fostering interdisciplinary innovation.
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1 Introduction

Over the past century, the volume of scientific publications has
increased rapidly. Today, this trend continues at an unprecedented
pace. For example, the National Science Foundation reported a 50-
fold increase in open-access scientific publications between 2013
and 2022 [22]. In the biomedical field alone, PubMed processed
approximately 1.69 million articles last year, averaging more than
three articles per minute [45]. Despite this vast output, researchers’
capacity to keep up is limited, estimated at 22 articles per month
[74]. This overload of information has significant consequences:
more than half of the 200 million scholarly papers available today
have never been cited [67]. Meanwhile, the top 1% of most cited
scientists cumulatively receive 21% of all citations [57]. This im-
balance leads to a lack of diversity in academic ideas, redundant
research efforts, and hindered scientific progress [20]. Address-
ing these challenges requires innovative approaches to ingesting
and disseminating scientific knowledge more effectively. In par-
ticular, machine learning poses a promising path towards helping
researchers navigate this rapid influx of information.

The advent of large language models (LLMs) has provided re-
searchers with performant tools for processing vast scientific cor-
pora. LLMs have been explored to help with knowledge-intensive
tasks, such as question answering [7, 10], information retrieval
[7], document summarization [17, 31], and generating novel hy-
potheses [13]. Despite their utility, a crucial complication emerges
when LLMs are applied to science, mainly, the need for any gener-
ated output to be grounded in factuality. Unfortunately, LLMs are
prone to hallucinate plausible yet factually incorrect information,
and science-based LLMs showcase limitations that prevent their
wide-scale adoption in the scientific enterprise [32, 70]. In particu-
lar, enforcing factuality and reducing hallucination is an ongoing
challenge involving multiple avenues of research [9, 21, 30].

The introduction of Retrieval-Augmented Generation (RAG) [48]
aims to mitigate hallucinations of LLMs through the integration of
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neural information retrieval with LLM-based content generation.
This approach leverages the ability of LLMs to represent any chunk
of text—a word, a sentence, a paragraph, or a whole document—as
a fixed-size embedding vector that encodes semantic relationships
akin to meaning. The distance between these embedding vectors is
used as a measure of relevance between two texts such as a question
and a scientific passage answering it. Quantifying relevance in this
manner improves the factuality of LLM outputs by dynamically
equipping LLMs with contextually relevant passages during the
generation process [39].
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Figure 1: HiPerRAG Workflow. A graphical overview of our
implementation of RAG for scientific literature. We imple-
ment a novel PDF parsing approach, namely optical recog-
nition with eclectic output (Oreo) that takes into account
intrinsic formatting of multi-layout scientific manuscripts.
We then design a query-aware encoder finetuned on scien-
tific literature which enables to semantically organize the
data into relevant chunks that can be used to retrieve the
most relevant data on a per-query basis. Both these innova-
tions enable us to achieve both computational efficiency and
retrieval performance at scale.

Despite the widespread adoption of RAG, it faces three significant
technical challenges that hinder its ability to scale to millions of
documents. These include:

(1) Parsing meaningful and coherent text from scientific doc-
uments: This challenge emerges from the diverse organization
semantics of how papers are published, including dense arrange-
ments of tables, figures, and equations in a portable document
format (PDF) file. This process requires intricate subtasks that
range from image normalization to character recognition, mak-
ing it a complex endeavor.

Optimizing the retrieval accuracy using LLMs: LLMs need
to be provided with the most relevant information—and only
that—to answer the specific query at hand. This crucial task
depends on an encoder’s ability to produce vector representa-
tions of both user queries and the document corpus. General
purpose encoders perform suboptimally when encoding scien-
tific content since such content constitutes only a small portion
of mainstream LLM training datasets [28, 68].
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(3) Evaluating RAG systems on scientific literature: Scientific
literature carries unique features including domain-specific vo-
cabulary, empirical evidence, and citations, which are generally
hard to assess. Hence this imposes certain restrictions on how
RAG can be evaluated on scientific literature, where fetching
both the right context and the appropriate related content can
be difficult.

Contributions: Given these limitations, our work, HiPerRAG!
embodies innovations on several components of the RAG frame-
work for scientific literature, including document parsing, encoding
scientific information, and science-specific evaluation benchmarks
to overcome each of the aforementioned challenges (see Figure 1).
Our contributions are summarized as follows:

e We develop neural Optical Recognition with Eclectic Output
(Oreo), a layout-aware multimodal scientific document parser for
high-quality content extraction from PDFs. Oreo outperforms
state-of-the-art parsers in terms of throughput while maintaining
a commensurate accuracy. Section 3.1 and Section 4.1 discuss
Oreo’s design, implementation, and evaluation.

e We design a query-aware encoder tailored for high accuracy on
scientific content that is both state-of-the-art and performs at
scale. To accomplish this we develop a novel finetuning algorithm
for scientific text encoding, called ColTrast, which combines con-
trastive and late-interaction methods to capture the benefits of
both to custom-tailor passage retrieval to user queries. Section 3.2
presents ColTrast’s design and implementation and Section 4.2
presents its evaluation results.

e We introduce two new biomedical Q/A benchmarks for RAG
containing question-answering pairs for protein interaction and
function predictions, namely the ProteinInteractionQA (7591 Q/A
pairs) and ProteinFunctionQA (17,646 Q/A pairs). Section 4.3 dis-
cusses their curation in detail. We also introduce a synthetic
dataset, BioSynthQPs, consisting of 1500 domain-specific sci-
entific passages, to evaluate the retrieval accuracy of encoders.
Section 4.3 describes the process of its creation.

e We leverage the Parsl [11] framework to distribute document
parsing, encoding, and retrieval components of a RAG workflow
to an arbitrary number of nodes on diverse HPC systems. Sec-
tion 5 contains scaling experiments on the Polaris, Sunspot, and
Frontier supercomputers.

The remainder of this paper is organized as follows. Section 2
surveys the current state of the art in document parsing, neural in-
formation retrieval, and retrieval-augmented generation. Section 3
presents the detailed design and implementation of the individual
components of HiPerRAG. Section 4 evaluates the HiPerRAG sys-
tem, detailing the performance of the OREO parser and ColTrast
encoder individually, and the overall efficacy of the system on sci-
entific Q/A tasks. It also introduces the Q/A and retrieval datasets
used for testing. Section 5 discusses the performance attributes of
HiPerRAG and presents the scaling experiments on three supercom-
puters. Section 6 concludes the paper with a discussion of current
limitations, future research directions, and implications.

!https://github.com/ramanathanlab/distllm



2 Background

We survey related work on document parsing, neural information
retrieval, metric learning, and retrieval-augmented generation.

2.1 Document Parsing

The portable document format (PDF) has become the primary mode
of scientific communication [6]. Although PDFs can store diverse
content including figures, tables, equations, and references, they
are not machine-readable. [1]. Therefore, the content of a PDF must
be converted into structured outputs, such as raw text, tabular data,
and figures. We refer to this task as document parsing.

Extraction-based parsers such as PyPDF [5], PyMuPDF [4], and
PDFMiner [3] leverage the internal structure of PDF files to obtain
text and metadata. However, while these methods achieve high
throughput, they rely on an embedded text layer that is generally
only present in born-digital PDFs, i.e., they do not apply to scanned
PDFs. Furthermore, their accuracy is sensitive to formatting er-
rors within PDF files, resulting in a high file-level failure rate and
low overall accuracy. Finally, extraction-based parsing is mostly
restricted to raw text, neglecting tables and figures.

Optical Character Recognition (OCR) is a more advanced doc-
ument parsing strategy that generates machine-readable content
directly from the image renderings of the PDF pages. Traditional
OCR approaches involve several deterministic steps such as image
pre-processing (including noise reduction and normalization), seg-
mentation (to separate characters or words), feature extraction (to
identify distinctive character features), and eventually culminating
in character recognition and extracted text. With the advent of
deep learning in computer vision, the use of neural networks has
streamlined this process either by replacing portions of the OCR
pipeline [80] or by training an end-to-end image-to-text decoder
[14, 43]. The leading edge in document parsing is Neural Optical
Understanding for Academic Documents (Nougat) [14] that uses a
Vision Transformer (ViT) to embed a document page image and a
text decoder to generate text from it. Nougat employs a hierarchical
VIiT to process large-image renderings of PDF pages, essentially
encapsulating both low-resolution OCR tasks such as layout identi-
fication and high-resolution ones such as character recognition in
one end-to-end network architecture. Since hierarchical ViTs learn
to decode the contents of a page directly from its image, they re-
quire GPU-accelerated training on large high-quality datasets. This
requirement introduces scalability challenges. In addition, despite
being ViT-based, these approaches are currently unable to process
data modalities other than text, such as figures.

To achieve streamlined ViT-based document parsing, recent
methods such as Marker [60] explored a hybrid of layout-based
and OCR-based parsing. Marker first performs layout detection to
segment the PDF into text, image, table. These segments are then
parsed using the Texify [59] pre-trained ViT to extract machine-
readable content. This model claims to realize an approximately
10-fold improvement over Nougat [14], which we could not confirm
in our experiments.

We propose Optical Recognition with Eclectic Output (Oreo),
which substantially accelerates document parsing while maintain-
ing comparable accuracy to that of leading-edge parsers. Oreo
achieves this by conducting PDF parsing in two stages. First, it

leverages a convolutional neural network architecture (YOLO) for
layout detection [63]. Second, it applies Texify to regions predicted
to be text to retrieve textual content. Oreo achieves a 4.5X speedup
and a 94.6X improvement in FLOP utilization over current state-of-
the-art (SOTA) methods, including Marker. It supports multimodal
parsing for text, figures, and tables, and maximizes GPU utiliza-
tion to deliver the highest throughput with comparable accuracy to
other vision-based parsers. This efficiency highlights Oreo’s capabil-
ity for targeted content extraction and superior hardware resource
leverage.

2.2 Neural Information Retrieval and Metric
Learning

Neural information retrieval uses compact vector representations of
data, known as embeddings, that capture meaningful characteristics
[39, 55]. The distance between the embeddings of a query and a
document, measured by cosine similarity or Euclidean distance,
quantifies their relevance to each other. This measurement allows
retrieval systems to efficiently identify and retrieve documents that
are most relevant to a specific query by comparing these distance
metrics. Since retrieval results depend directly on the embedding
vectors, training on a broad scientific text corpus is a prerequisite for
an encoder LLM to offer embeddings suitable for accurate retrieval
on scientific content.

While Transformer-based LLMs are successful information en-
coders [51], most general-purpose LLMs are not exposed to enough
domain-specific scientific data during training [28, 68]. Since aca-
demic writing style differs substantially from general data such as
news articles, embeddings produced by these LLMs are suboptimal
for accurate information retrieval for niche scientific queries. Previ-
ous work has enhanced the performance of LLMs on downstream
tasks by pre-training encoders from scratch using domain-specific
data. This approach has been applied across various fields, includ-
ing biomedical [33, 47], chemical [65, 75, 84], and material science
[72]. While domain-specific training of encoders has proven valu-
able, incorporating metric learning techniques can further refine
retrieval performance by optimizing the encoder to better align
query embeddings with the most relevant document embeddings.

Several techniques have been explored for building boutique
encoders for domain-specific scientific content. In particular, con-
trastive learning [46] has improved retrieval accuracy by better
estimating the relevance of document passages to queries. Con-
trastive learning teaches models to distinguish between similar
(positive) and dissimilar (negative) pairs, encoding data such that
positives are closer and negatives farther apart in feature space.
Methods like COSTA [52] and FILIP [81] successfully applied this
to text and image encoders, respectively.

Late interaction, introduced in ColBERT [41], a BERT [40] vari-
ant, computes token-level contextualized embeddings by maximiz-
ing pairwise similarity between query and text token embeddings.
This fine-grained comparison increases semantic alignment and
retrieval accuracy, but is computationally expensive, replacing a
single tensor operation with N? tensor operations. CoIBERTv2 [64]
optimizes this by performing token-wise comparisons only after
encoding, enabling offline computation of document embeddings
and efficient retrieval using a vector database. While this improves



efficiency, it relies on ad-hoc re-ranking and does not scale to end-
to-end ranking for large corpora. In this work, we propose the
ColTrast algorithm, which combines the late interaction mecha-
nism and contrastive learning to achieve robust retrieval accuracy
and scales to thousands of GPUs to cater for millions of documents.

2.3 Retrieval-Augmented Generation

Retrieval-Augmented Generation (RAG) is a prominent technique
that integrates neural information retrieval methods with large
language models (LLMs) to enhance the factuality and relevance of
generated outputs. In their seminal work, Lewis et al. [48] demon-
strated the effectiveness of RAG in tasks such as question answering,
fact-checking, and knowledge extraction. Introduced at a time when
LLMs were already extensively adopted in industry and academia,
and their limitations in factuality, relevance, and bias were well-
documented, RAG represented a significant advancement in Natural
Language Processing.

A key preliminary step in implementing a RAG application in-
volves chunking and encoding a curated corpus of relevant doc-
uments. The resulting chunk embeddings are stored in a vector
database such as Faiss [24] or Chroma [69], each linked to a unique
ID that maps to the raw text in a separate database. When a query
is provided to an LLM, it is encoded using the same encoder as
the document chunks, and the resulting query embedding is used
for a semantic search in the vector database to identify the nearest
neighbors. Common distance metrics for this search include cosine
similarity and Euclidean distance. Finally, the retrieved IDs are
used to fetch the raw content of the relevant documents, which are
supplied to the LLM alongside the query to generate a response.

RAG has been widely adapted to many scientific domains, in-
cluding material science [56], biology [53, 76], and chemistry [18].
However, scaling a RAG application up to millions of documents
remains an ongoing challenge in both academia and industry. In
response, we present HiPerRAG, a high-performance computing
infrastructure designed to scale every component of RAG to an arbi-
trary number of compute nodes. With 3.6 million indexed scientific
papers, HiPerRAG represents a step toward integrating approxi-
mately 200 million existing scientific papers into a single platform
for scientific Q/A, literature review and hypothesis generation.

3 HiPerRAG Design and Implementation

Despite the continued advancement of Large Language Models
(LLMs) in reasoning and creative writing, their limitations in op-
erations like tool usage or information retrieval persist. This has
spurred the development of sophisticated software stacks that en-
hance LLMs with external tools, such as information retrievers,
to augment text generation processes and implement Retrieval-
Augmented Generation (RAG) applications [26, 48, 79]. In response
to the scalability challenges in existing RAG frameworks, we in-
troduce HiPerRAG—an HPC software stack designed to build scal-
able, million-document RAG applications for scientific use. HiPer-
RAG serves not as a standalone model, but as an infrastructure that
supports the development of one of the most comprehensive RAG
systems on scientific data to date.

To enhance the scalability and accuracy of RAG, our work intro-
duces innovations in PDF parsing and encoder fine-tuning through

Oreo and ColTrast, respectively. In Section 3.1 we discuss the im-
plementation details of Oreo. Section 3.2 presents the ColTrast
algorithm. Section 3.3 will conclude this section with the details of
the overall HPC workflow that powers HiPerRAG and the warm-
start optimization we implemented to optimize throughput and
GPU utilization. Figure 1 depicts the high-level RAG workflow
implemented by HiPerRAG.

3.1 Document Parsing with Oreo

A system that extracts text from PDFs follows one of two paradigms:
the end-to-end approach or the compartmentalized approach. End-
to-end document parsing generally relies on the use of multi-modal
AT algorithms which, despite making use of GPU acceleration, are
challenging to scale to large (>1M) document corpora due to the
quadratic scaling of the ViT attention mechanism. However, these
methods are not limited to digital-born PDFs with internal layout
and metadata. On the other hand, more cost-efficient compartmen-
talized approach divides the conversion from image to text into
several canonical phases which usually rely on the internal lay-
out of the PDF file. Despite having higher throughput for lower
cost, these approaches are not applicable to scanned PDF files. The
compartmentalized approach generally consists of the following
steps: image pre-processing, layout detection, text box extraction,
character recognition, and text ordering.
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Figure 2: Parsing workflow for scientific PDFs. The neural
optical recognition with eclectic output allows content-aware
extraction of information from large-scale PDF collections.

We achieve across-the-board improvements in scaling perfor-
mance in Oreo by combining the strengths of both end-to-end and
compartmentalized approaches. PDFs are processed page by page
and converted to images. Batches of pages are then parsed in a
two-step process.

First, layout detection is performed using convolutional neural
networks that identify regions corresponding to text, figures, and
table categories. Text regions are further categorized into meta-
data (e.g., abstract, title, author, publication date) and content (e.g.,
paragraphs, footnotes). The YOLOVS5 architecture used in our exper-
iments provided the best trade-off between throughput, accuracy,
and scalability.

Second, Texify is applied to image patches identified as text in
the previous step to decode them into plain text. It achieves this
by embedding the image using a Vision Transformer (ViT) and
decoding the text autoregressively [59]. The decoded text items
are subsequently recombined for each page and merged into the
document’s full text.

In addition to achieving a 4.5X speed-up over the current state-
of-the-art approach, Marker, Oreo also surpasses both Nougat and
Marker in multimodal capabilities. Specifically, Oreo can distinguish



between 20 types of document assets, compared to Marker’s three.
Unlike Nougat, which can parse only text from PDFs, Oreo compre-
hensively handles a variety of document assets including figures,
tables, equations, and code. Furthermore, Oreo explicitly parses
metadata, which enables the storage of citations, author names, and
references from scientific documents to facilitate digital archiving.
Figure 2 depicts Oreo’s overall document parsing workflow.

3.2 ColTrast: Query-Aware Encoder Finetuning

The discussion of the ColTrast query-aware encoder finetuning
algorithm is organized as follows. Section 3.2.1 presents the design
choices we made on the similarity metric, model size, and loss
function along with our reasoning for each. Section 3.2.2 introduces
the ColTrast training dataset and the procedure for curating it.
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Figure 3: Encoder/retrieval models workflow using the
ColTrast loss method. A) Training using ColTrast combines
local token-level late-interaction loss with a contrastive
loss operating on gathered embeddings. B) Details of late-
iteration loss where each token in question/query is com-
pared to each document. C) Inference time workflow. Each
question is embedded, and then used in similarity search to
extract relevant chunks from the scientific database.

3.2.1 ColTrast Architecture and Implementation. Embedding-based
retrievers function on the premise that similar vectors indicate
similarities in text. Therefore, in many question answering use cases,
it is common to embed the query text and identify the most similar
document chunk embeddings. The texts corresponding to these
embeddings then are added as part of the in-context information
the LLM can use to help answer the original question. In other
words, the goal is to augment the LLM by providing text containing
the information needed to answer the original question. The major
determinants of retrieval performance are similarity metric and
embedding performance, which is determined by model size, loss
function, and training data.

We note that many of these performance determinants are double-
edged: cutting back computation and improving scaling often comes
at the cost of retrieval accuracy and vice-versa. However, we iden-
tified several places where we could improve accuracy with no or
minimal loss of scaling performance, as described below.

Similarity metric: token-by-token vs. pooled embeddings. Although
CoIBERT is a performant retriever in terms of retrieval accuracy, its
late interaction loss function involves a token-by-token comparison
that scales as the product of the numbers of tokens in the document
chunk and query. Figure 3 illustrates the detrimental effect of this
quadratic process for a single comparison in terms of scaling perfor-
mance. For a large-scale vector store with billions of chunks of text,
these scaling barriers become impractical. Ideally, we would like to
retain performance and scalability together. Scalabilty in this case
depends on choice of similarity metric and we choose to replace
the token-by-token similarity metric with the cosine similarity on
the pooled embeddings. Normally, this would lead to performance
degradation. We describe in the following how we overcame this
problem by enhancing the accuracy of the embedding model.

Embedding performance: model size. For a well-trained model,
model size is often a primary determinant of model performance.
While BERT-style models such as ColBERT perform well on em-
bedding tasks, especially for their size (~110M parameters), bil-
lion parameter GPT-style models have started to surpass moderate
BERT-style models on the embedding leaderboard. At the time of
writing, a 7B parameter GPT-style model named SFR-Embedding-
Mistral [54] has the best overall performance on embedding tasks,
meaning it is the embedding model that most accurately captures
semantic meaning appropriately. It is therefore likely that SFR-
Embedding-Mistral is a good basis for enhancing the performance
of our similarity metric that uses pooled embeddings.

Embedding performance: loss function. Fine-tuning on relevant
tasks can enhance performance. However, increasing the model size
by 70x limits our batch sizes and requires model sharding across
GPUs, hurting our ability to fine-tune the embedding represen-
tation. To resolve these issues, we fine-tune the 8-bit version of
SFR-Embedding-Mistral model using QLoRA [23] with a batch size
of 24 per GPU. Since there is no need for model sharding, we can
now use simple data parallel approaches (e.g., ZeRO-1) and are able
to achieve linear scaling up to 400 nodes (1,600 GPUs) of the Polaris
supercomputer (see Section 5 for details).

We use contrastive loss to improve our embedding models, which
benefits from large batch sizes [12]. Naively increasing batch size
by reducing loss from all ranks and applying contrastive or LI loss
is limited by dense embeddings becoming large with increased
world size, affecting LI more acutely than contrastive losses. We
apply LI loss to the local rank only due to its memory and compu-
tational demands. For contrastive loss, pooled embeddings from
all ranks are gathered, and loss is calculated with the local rank
compared to min(N, W) samples, where N is the maximum to con-
sider and W is the total samples across all ranks. The total loss
per iteration is L = (Lpy + L¢)/2, where Ly is maxsim loss [41]
and L is contrastive loss [29]. This “ColTrast” loss method is illus-
trated in Figure 3. Following this fine-tuning algorithm produces an
embedding representation that clusters related scientific concepts
(discussed further in Section 4).

3.22 ColTrast Finetuning Dataset. We finetune ColTrast on three
scientific paper datasets, totaling 82,750 papers, that we curated.
These papers span diverse topics, including low-dose radiation and
cancer biology, antimicrobial peptide literature, and SARS-CoV-2



Table 1: Composition of the ColTrast finetuning dataset with
a further description provided in Section 3.2.2.

Domain PDF Count | Chunk Count | Generated questions
Peptides 10,124 123,685 70,866
Cancer 18,034 208,803 114,535
COVID-19 54,592 519,412 270,493
Total 82,750 851,900 455,894

research. The high-level composition of the combined dataset is
summarized in Table 1, and the sub-domain distribution of the
antimicrobial peptide dataset is illustrated in Figure 4 for additional
clarity on its diversity.

To enhance the effectiveness of our retrieval system, we apply a
semantic chunking algorithm to the text of these papers. Semantic
chunking is the process of dividing the content of a paper into
concise, coherent segments or "chunks" that each encapsulate a
complete semantic idea. This technique involves iterating over the
encoded sentences using SFR-Embedding-Mistral [54] and continu-
ously adding to a segment as long as the cosine similarity between
consecutive sentences remains above a predetermined threshold.
This method not only aids in maintaining the contextual integrity
of the information but also optimizes the retrieval process by en-
suring that each chunk represents a distinct concept or topic. Such
organization of text before vectorization is widely recognized to im-
prove the precision and relevance of retrieved documents, thereby
advancing the state of the art in document parsing for LLM-based
retrieval systems.

For each semantic chunk created, we then employ Mistral-7B-
Instruct-v0.2 [37] to generate a high-level question that uses the
chunk as a reference or resource for its answer. This process re-
sults in a collection of 455,894 question-chunk pairs, collectively
referred to as the ColTrast fine-tuning dataset, as shown in Table 1.

This structured approach not only improves the efficiency of our
retrieval system but also significantly enhances the quality of gener-
ated questions, facilitating more accurate and contextually relevant
responses.

3.3 Distributing HiPerRAG with HPC and
Warmstart Optimization

We use the Parsl parallel programming library [11] to distribute the
execution of our PDF parsing, semantic chunking, chunk encoding,
and question sampling workflows. Parsl supports execution across
diverse HPC resources and schedulers and has been shown to scale
to hundreds of thousands of workers and thousands of tasks per
second. However, standard Parsl assumes that tasks are pure func-
tions, which is not conducive to persisting shared data structures,
such as ML models, between tasks. For example, loading models
for semantic chunking is an I/O-heavy operation and takes longer
when more nodes read the same weight files concurrently: nearly
nine minutes at worst, as shown in Table 2.

Thus, we implement a model registry that makes Parsl workers
stateful actors that can persist a shared state across task invocations.
The registry is implemented as a module-level global singleton
variable that caches the return result of a Python function or class
initialization in a dictionary using a hash of the arguments and
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Figure 4: Sub-domain distribution of the antimicrobial pep-
tide dataset for ColTrast finetuning.

keyword arguments as a unique key. The registry permits only
one object at a time. Before a new object is created and registered,
any existing object is automatically destroyed to free up shared
resources, such as GPU memory [16]. In our use case, the registry
captures a reference to the model upon its first initialization within
a worker process (cold start), then returns the cached model for all
subsequent task invocations (warm start). This method enhances
system utilization by minimizing I/O overheads, amortizing the cost
of model loading, and keeping the model in device memory (e.g.,
CUDA memory) to reduce memory transfers from host to device.

Table 2: Semantic chunking model load times on Polaris
and Sunspot increase at larger scales. The 2- and 128-node
values correspond to Polaris, while the 4- and 96-node values
correspond to Sunspot. All times in seconds.

Nodes
System 2/4 32 64 96 / 128 256
Polaris 36 £ 21 88 + 28 114 + 24 130 £ 23 | 362 + 88
Sunspot | 172 +£73 | 218 + 107 | 209 + 160 535+5 —

4 HiPerRAG Evaluation

It is important to reiterate that all RAG systems are made up of mul-
tiple independent components. Accordingly, HiPerRAG consists
of the Oreo document parser, the ColTrast query-aware encoder,
and an arbitrary generator model to produce a response in light of
the relevant content retrieved. Our discussion in this section com-
mences with an evaluation of Oreo in Section 4.1. The evaluation of
ColTrast in retrieval accuracy will follow in Section 4.2. Section 4.3



will introduce the scientific Q/A and retrieval accuracy evaluation
datasets that this work contributes. Section 4.4 will conclude with
an evaluation of various HiPerRAG configurations on five scientific
Q/A benchmarks, two of which are our contribution.

4.1 Oreo Document Parsing Evaluation

We evaluate Oreo, Marker, and Nougat on n = 100 scientific docu-
ments spanning eight domains: mathematics, physics, chemistry,
biology, engineering, medicine, economics, and computer science,
and six publishers: ArXiv, BioRxiv, MedRxiv, BMC, MDP]I, and Na-
ture. Ground truth text is sourced from the full-text HTML versions
of the articles.

Table 3: Accuracy and throughput of image-based parsers on
diverse scientific documents.

Oreo (ours) | Nougat | Marker
Accuracy (BLEU) [%] 46.34 46.42 56.90
Accuracy (CAR) [%] 73.92 70.92 73.51
Throughput [PDFs/GPU sec] 0.55 0.12 0.09

Parsing quality is measured using bilingual evaluation under-
study (BLEU) and character accuracy rate (CAR). BLEU evaluates
n-gram overlap between parsed and ground truth text [58]. CAR
measures character-level precision, particularly valuable for scien-
tific equations and numerical data [83].

The results in Table 3 show that Marker achieves the highest
BLEU score but has the lowest throughput. Nougat offers a com-
petitive BLEU score but the lowest CAR. Notably, Oreo excels with
the highest CAR and throughput while approximately matching
Nougat’s BLEU performance. Therefore, Oreo maximizes the num-
ber of accurately parsed tokens, making it a suitable option for
large-scale document parsing.

4.2 ColTrast Retrieval Evaluation

To evaluate the ColTrast retrieval approach, we utilize two datasets:
(1) our BioSynthQP dataset described in Section 4.3.3, and (2) a
5% held-out evaluation dataset from the ColTrast training set, as
described in Section 3.2.2. Rather than sampling the evaluation set
randomly, we ensure that the training and evaluation sets contain
passage/query pairs from distinct scientific documents. Table 4
shows results of training with different model architectures and
loss paradigms against the evaluation datasets. When provided
with a question, the documents are ranked according to the cosine
similarity between the question and document embeddings.

We report the precision as P = N,.,;/Nye; for the number of rel-
evant retrieved documents, N, and the total number of retrieved
documents, Ny¢;. In the case of P@10, Ny¢; is set to 10. MRR@10
is calculated as MRR = N Iy, rankl._1 where rank; is the ranking

of the positive paired document for the it" query, Ny is the total
number of queries, and @10 sets that if the positive document is
ranked beyond 10, that term of MRR is zero. All models in the
upper section of Table 4 were trained with the IA3[50] parameter-
efficient fine-tuning (PEFT) method, except ColTrast-M-Q-, since
the QLoRA approach requires LoRA PEFT[35]. We performed abla-
tions to examine the effectiveness of the ColTrast combined loss

Table 4: Model performance on the BioSynthQP dataset and
evaluation split of data. Abbreviations used include: BSQP
- BioSynthQP dataset; Eval - the evaluation split; M - Sales-
force Research/SFR-Mistral base model; B - BERT base model;
Q - quantized low-rank approximation (QLoRA) parameter-
efficient fine-tuning; ND - No distributed all-gather in con-
trastive loss; CL - contrastive loss only; LI - Late-Interaction
Loss only; S - Model with ColTrast loss (CL + LI).

P@10 | MRR@10 | MRR@20 | Top-20
Name BSQP BSQP Eval Eval
ColTrast-M-Q-S 0.74 0.35 0.93 0.62
ColTrast-M-Q-ND-S | 0.81 0.51 0.90 0.98
ColTrast-B-S 0.33 0.03 0.21 0.05
ColTrast-B-ND-S 0.72 0.46 0.84 0.96
BERT-CL-S 0.28 0.45 0.184 0.04
BERT-LI-S 0.03 0.003 0.06 0.003
PubMedBERT 0.72 0.65 0.22 0.39
ColBERT-v2 0.31 0.11 0.371 0.97
BERT-Base 0.31 0.03 0.21 0.37

method. BERT-CL-S uses contrastive loss only, BERT-LI-S only
has late-interaction loss, and <Model name>-ND-S denotes models
with the ColTrast loss method but excluding the all-gather for the
contrastive loss. The base model used for fine tuning is denoted
by “M” for SFR-Mistral and “B” for BERT-base. We observe that
performance on evaluation metrics is improved with the ColTrast
loss method, as opposed to utilizing only LI or contrastive losses
and that, for these models where a decent batch size is allowed,
ND performs comparably to the distributed loss. The models in the
lower half of the table are pre-existing approaches to the embedding
and retrieval task included for comparison.

4.3 Scientific Question-Answering and Retrieval
Accuracy Evaluation Datasets

Question-answering (QA) datasets are pivotal for both training and
evaluating LLMs in various scientific domains. These benchmarks
are especially valuable for gauging a model’s depth of domain-
specific knowledge, its ability to understand intricate questions, and
its proficiency in quantifying uncertainty during the generation of
open-ended responses [42]. In Sections 4.3.2 and 4.3.1, we present
two novel scientific QA datasets that we used to evaluate RAG
configurations within the HiPerRAG framework. In Section 4.3.3
we present a synthetic retrieval accuracy evaluation dataset, which
was used for assessing retrieval accuracy of query-aware scientific
encoders, such as ColTrast that we present in this work.

4.3.1 ProteininteractionQA. We compiled a dataset of 16,009 an-
timicrobial peptides from three sources: The Antimicrobial Peptide
Database (APD) [77], the Database of Antimicrobial Activity and
Structure of Peptides (DBAASP) [61], and the Database of Antimi-
crobial Resistance Peptides (DRAMP) [66]. For each peptide, we
utilized the UniProt API [73] to retrieve data on proteins that in-
teract with them. This effort identified 7591 peptides with known
interactants. Utilizing the instruction-tuned Mistral7B model [36],
we generated multiple-choice questions from this experimentally



validated data. The resulting task, ProteinInteractionQA, poses
questions such as “What protein does <peptide-name> interact
with?” The correct answer includes all known interactants from
UniProt, while the distractors comprise non-interactants randomly
selected from other peptides in the dataset. It is worth noting that
formatting our curated data into a Q/A task did not require a state-
of-the-art LLM. Mistral7B proved sufficient for this purpose, thanks
to its ability to follow instructions and produce structured output
effectively.

4.3.2  ProteinFunctionQA. To curate the ProteinFunctionQA, we
downloaded functional descriptions for 17,646 antimicrobial pep-
tides from the UniProt database. We then employed the Mistral7B
[36] instruction-tuned LLM to generate multiple-choice questions
based on this experimentally annotated data. The correct answer
reflected the ground-truth function of the peptide as retrieved from
UniProt, while the distractors were incorrect functions sampled
from other peptides within the dataset. The task requires selecting
the correct function for a given peptide.

4.3.3  BioSynthQP. We created this synthetic biomedical data set by
using GPT-4 prompt engineering with the express purpose of eval-
uating retrieval accuracy. BioSynthQP features scientific questions
surrounding subdomains of medicine such as virology, oncology,
and cardiology. For each subdomain, we generate a set of ques-
tions, along with 10 paragraphs for each question with a decreasing
level of accuracy and relevance. In this context, the most relevant
paragraph constitutes an answer that contains keywords, empirical
results, and citations. The least relevant paragraph, on the other
hand, digresses away from the question, lacks scientific basis, and
citations, but still is broadly related to medicine. We apply human
supervision to the postprocessing of the synthetic content to guar-
antee the accuracy of the quality labels assigned to each sample.
Consequently, BioSynthQP presents a demanding retrieval task
that evaluates an encoder’s capability to generate embeddings that
accurately capture quality characteristics within samples from the
same domain.

4.4 Scientific Q/A Evaluations

We analyze the performance of our scientific Q/A from three angles:
composition of the retrieval corpus, encoder model employed for
retrieval, and the generator that leverages the retrieved content to
answer questions. The two scientific corpora that we curated for
this analysis differ greatly in terms of their domain composition and
document size. As shown in Table 1, PLC consists of 10,124 PubMed
articles about proteins. We encode this corpus with PubMedBERT,
an encoder-based LLM specifically fine-tuned on PubMed articles
[34]. On the other hand, Scientific Literature Corpus (SLC) contains
over 3.6 million articles across numerous domains. We encode SLC
with our Coltrast-B-S and Coltrast-M-Q-S encoders, which have
been fine-tuned on a comprehensive scientific dataset (Section 4.2).
We utilize instruct-finetuned versions of two generators Mistral-7B
and Mixtral-8x7B, both of which are instruct-finetuned. Table 5
compares encoder models with respect to accuracy on five scientific
Q/A tasks. SciQ [78] covers crowd-sourced science exam questions
on Biology, Chemistry, and Physics. PubMedQA contains biomedi-
cal research questions. LitQA [44] also focuses on the biomedical

domain, but features questions that can only be answered from
knowledge in full-text papers. ProteinInteractionQA and Prote-
inFunctionQA are presented in this work (Section 4.3). We also
provide baseline results where we do not use retrieval.

We observe that the Mixtral8x7B model which retrieves with
PubmedBERT [33] outperforms GPT-4 (75.2% accuracy) on the Pub-
medQA benchmark [2] despite having access to a much smaller
biomedical corpora (PLC), and having a smaller parameter count
(14-billion parameters utilized at inference). Additionally, this model
also outperforms PubmedGPT [15], a domain-specific LLM with 2.7
billion parameters pre-trained from scratch on biomedical data. This
result suggests that retrieval-augmented generation at scale can
improve the accuracy of LLMs in a data-efficient manner and render
general-purpose LLMs more performant than domain-specific mod-
els on scientific QA tasks. Moreover the Mixtral8x7B model which
uses the (ColTrast-B-S) encoder answers 90% of the questions in
the comprehensive SciQ dataset. ColTrast-B-S retrieval and SLC
corpora lead to a 12% improvement of this model on that bench-
mark. This result is consistent with our hypotheses that combining
a novel metric learning-based retrieval strategy with the ability of
retrieving from millions of scientific articles can equip LLMs with
domain-specific knowledge beyond their training data.

Table 5: Comparison of different encoder models with Pro-
tein Literature Corpus (PLC) and Scientific Literature Corpus
(SLC). Results are reported as accuracy (%) on multiple-choice
scientific question-answering benchmarks. Abbreviations
used include: PMB - PubMedBERT Encoder; ColTrast-B-S
- ColTrast encoder based on BERT-base; ColTrast-M-Q-S -
ColTrast encoder based on SFR-Mistral with QLoRA.
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PLC Mistral (PMB) 0.80 | 0.45 | 0.32 | 0.44 0.32
Mixtral8x7B (PMB) 0.88 | 0.76 | 0.34 | 0.70 0.52

Mistral (ColTrast-B-S) 0.82 | 0.45 | 032 | 0.40 | 0.32
SLC Mistral (ColTrast-M-Q-S) | 0.85 | 0.44 | 0.24 | 0.43 | 0.332
Mixtral8x7B (ColTrast-B-S) | 0.90 | 0.75 | 0.34 | 0.66 | 0.526

Mistral 0.88 | 0.59 | 0.40 | 0.44 0.36

Mixtral8x7B 0.78 | 0.73 | 0.38 | 0.70 | 0.36
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5 HiPerRAG Scaling and Performance

We conduct extensive scaling experiments on document parsing,
semantic chunking, and encoder fine-tuning steps of HiPerRAG . In
Section 5.1 we describe the HPC platforms on which we conducted
our experiments. Section 5.2 will discuss our experiments and their
results in detail.

5.1 Hardware Platforms Utilized

We evaluate the performance and scale on three diverse super-
computing systems: Polaris at the Argonne Leadership Computing
Facility (ALCF), Sunspot at ALCF, and Frontier at the Oak Ridge
Leadership Computing Facility (OLCF). In the November 2024 Top-
500 list [71], Polaris is ranked #47 with a peak of 34 PFLOPS and



Table 6: GPU supercomputing systems used for evaluation.

Polaris Sunspot Frontier
November-2024 Top 500# 47 - 2
System size (nodes) 560 128 9408
CPU AMD Milan Intel Sapphire Rapids | AMD
Sockets/node (total cores) 1(32) 2(104) 1 (64)
Node CPU Memory (TB) 0.5 1.0 0.5
GPU NVIDIA A100 | Intel Data Center AMD MI250X

Max (PVC)

Number of GPUs per node | 4 6 4
GPU Memory (GB) 40 128 128
GPU Memory Technology HBM2 HBM2e HBM2e
GPU Memory BW (TB/s) 1.5 2.0 2.0
Interconnect HPE SS-11 HPE SS-11 HPE SS-11
NICs per node 2 8 4
Network GB/s per direction | 25 200 100
# Nodes (GPUs) scaled 450 (1800) 96 (576, 1152) 96 (384,768)

Frontier is ranked #2 with a peak of 2.055 EFLOPS. Table 6 compares
the three systems used for evaluation.

Polaris is an HPE Apollo Gen10+ system with 560 nodes in-
terconnected by an HPE Slingshot-11 network with a Dragonfly
topology. Each node consists of an AMD “Milan” processor with 32
cores and 512GB of system memory. four 40 GB NVIDIA A100 GPUs,
and two Slingshot-11 25 GB/s network adapters. Each NVIDIA A100
GPU is capable of achieving a peak of 19.5 TFLOPS in FP32, 156
TFLOPS in TF32, and 312 TFLOPS in FP16 and BF16.

The Sunspot Test and Development System (TDS) is a 128 node
HPE Cray EX system. Each node consists of two Intel Sapphire
Rapids Xeon CPU Max Series and six Intel Ponte Vecchio Data
Center GPU Max Series, as has 1 TB memory Each Xeon CPU
has 52 physical cores (two hardware threads per core). GPUs have
128 GB of high-bandwidth memory (HBM2e) memory and are con-
nected within each node by an all-to-all interconnect. Each node
has 8x HPE Slingshot-11 NICs, providing an injection bandwidth
of 200 GB/s.

Frontier is an HPE Cray EX system comprised of 74 Olympus
rack, 128-AMD-compute-node, HPE cabinets, for a total of 9408
AMD compute nodes. Each compute node comprises a single 64-
core AMD CPU (two hardware threads per core), 512 GB of DDR4
memory, and four AMD MI250X GPUs. Each GPU has two Graphics
Compute Dies (GCDs) for a total of 8 GCDs per node; GCDs have
64 GB of HBM2e. The nodes are connected with 4x HPE Slingshot-
11 25 GB/s NICs providing a node-injection bandwidth of 100 GB/s.

5.2 Scaling the HiPerRAG Workflow

We trained the embedding retriever models with the Huggingface
Accelerate library and the Huggingface trainer. Aside from imple-
mentation simplicity, the trainer also supplies estimates of total
FLOPs and run time at each checkpoint. From these estimates, and
a known world size, we estimated TFLOPS per GPU. The trainer
(after a complete run) also supplies estimates of training steps per
second. We use these metrics to derive the performance results
presented in the next section.

Figure 5-A shows the performance of the Oreo and Nougat
parsers as we strong scale on Polaris and Sunspot by increasing
the number of accelerators to 1024 GPUs on Polaris (256 nodes)
and to 1152 tiles on Sunspot (96 nodes, each with 6 GPUs and 12
tiles). On Polaris at 1024 accelerators, Oreo achieves 118.2 samples/s

and Nougat 38.9 samples/s: a 3X improvement in throughput with
Oreo over Nougat. This improved throughput is key to realizing
our vision of being able to parse and extract, in a scalable manner
with high quality, all of the scientific literature generated.

Next, we compare the performance of Nougat processing on
Polaris and Sunspot. We observe a throughput of 35.62 samples/s
on 1152 tiles (96 nodes) of Sunspot and 38.9 samples/s on 1024 GPUs
(256 nodes) of Polaris. At a node-to-node level, we observe a 2.36x
improvement in performance on Sunspot over Polaris. This result
is expected as we have more GPUs and memory on each Sunspot
node. At an accelerator level, comparing a single A100 GPU to
a Intel Max GPU tile, we currently observe a 26% improvement
for an A100 GPU in comparison to a tile on the Intel Max Data
Center GPU. We attribute this primarily to the current state of
optimization of the software stack here. In all cases, we observe a
linear scaling in throughput as we scale out, which we attribute to
the embarrassingly parallel nature of the parsing workflows.

For end-to-end parsing, Oreo achieves 40.7 TFLOPS/GPU peak
with a sustained average of 37.2 TFLOPS/GPU on an NVIDIA A100,
while Nougat achieves 0.43 TFLOPS/GPU peak and a sustained aver-
age of 0.28 TFLOPS/GPU. Thus, Oreo achieves 94.6X better compute
performance than Nougat while sustaining a 4x improvement in
throughput. This result is expected as Oreo follows a compartmen-
talization strategy that adds compute requirements in two ways.
First, layout detection and combination of text items require tensor
operations. Second, once text items are transcribed, they need to be
mapped to their proper position. These innovations enable Oreo to
process efficiently multiple file formats and multi-modal document
assets including figures, tables, equations, and code.

We next compare the strong scaling performance of our end-to-
end Semantic Chunking workflow on Polaris and Sunspot. As seen
from Figure 5-B, we observe linear scaling, in terms of throughput
in samples/s, as we scale with the number of accelerators. This
result is expected given the embarrassingly parallel nature of the
workflow. We observe a slight dip in performance at 256 acceler-
ators (64 nodes), likely due to storage system limitations when
reading the data to be chunked. We observe a throughput of 385.7
samples/s on 1024 accelerators (256 nodes) of Polaris. On Sunspot,
we observe a throughput of 319.8 samples/s on 1152 accelerators
(96 nodes). Normalizing these at an accelerator level, we observe
a 35% improvement in achievable throughput on an A100 GPU in
comparison to a tile of an Intel GPU. In terms of a node-to-node

Table 7: Estimated floating point operations and through-
put for embedding/retriever model architectures during 100-
step scaling runs using 400 GPUs on Polaris supercomputer
(<model>-P). BERT-base-LoRA-F was run on 2400 GCDs (1200
GPU) on Frontier supercomputer. Throughput is in samples
per second, total samples (S7) in millions of samples.

TFLOPS/ | FLOPs St
Name GPU | (10'8) | Samples/s | (10°)
Mistral-LoRA-P 0.71 2.40 152.2 0.64
Mistral-QLoRA-P 93.80 | 160.00 3496.4 | 3.84
BERT-base-LoRA-P 7.95 0.67 24,157.0 2.56
BERT-base-LoRA-F 1.92 3.10 8654.8 7.68
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Figure 5: A) Strong scaling results for PDF parsing workflows on Polaris and Sunspot; B) Strong scaling results for semantic
chunking workflows on Polaris and Sunspot; C) Strong scaling results for different model architectures on Polaris and Frontier.
Unless noted, a run was accomplished on Polaris. Note that one GPU in this figure on Frontier corresponds to one GCD.

comparison, we achieve a 2.2X improvement on a Sunspot node in
comparison to a Polaris node.

Figure 5-C shows strong scaling for training encoder models
with samples/s as our throughput metric. Polaris runs include ma-
jor model architectures used here: BERT base and mistral. Each
model is trained using parameter-efficient fine-tuning—for compu-
tational efficiency and to help the model retain its knowledge from
pretraining. Early experiments showed less than ideal scaling for
Mistral-LoRA; since the model is too large for a single GPU, we
sharded it across ranks by using Deepspeed ZeRO-3, and further
employed parameter and optimizer state offloading in order to max-
imize batch size. To overcome this poor scaling, we adopted QLoRA
training, where the model is first quantized to reduce memory pres-
sure and then a LoRA adapter is applied as trainable parameters in
full (bf16) precision. The Mistral-QLoRA approach yielded twofold
benefits: first, the reduced memory footprint allowed us to load the
full Mistral model into a single Nvidia-A100 with a batch size of 24;
second, the reduced communication overhead compared to ZeRO-3
also enabled ideal scaling up to 400 nodes of Polaris.

Despite the success of QLoRA on Polaris, we were unable to em-
ploy a similar tactic on Frontier, as the BitsAndBytes quantization
library required by transformers is not yet supported on MI250X.
Performance in terms of TFLOPS/GPU, total FLOPs and sample
throughput are enumerated for the scaling runs in Table 7. Notably,
applying the QLoRA approach to SFR-Embedding-Mistral fine-
tuning increases TFLOPS/GPU by 132X, and also achieves the high-
est TFOPS/GPU and total FLOPs of all measured models. Further,
given the total document chunks of the SLC dataset (16.4 M sam-
ples), Mistral with QLoRA could iterate an epoch of data in 1.3
hours. Such throughput enables fine tuning on corpora of hundreds
of millions of PDF documents.

6 Conclusions

We presented HiPerRAG as a scalable scientific knowledge synthesis
framework that adapts existing LLMs with fast and efficient neural
retrieval approaches to minimize hallucinations. Our methods en-
hance traditional RAG models by integrating contrastive learning
and late interaction techniques to customize the distance metric

based on the input query. This enables more accurate retrieval of rel-
evant information from potentially millions of scientific documents
and allows the model to effectively navigate a high-dimensional
embedding space. By learning semantic connections among diverse
domains, the system approaches state-of-the-art performance in
scientific question answering benchmarks in a zero-shot manner
(i.e., without the need for fine-tuning the generator). This is a sig-
nificant advance for scientific literature data, where often, a model
trained for a specific purpose may need extensive fine-tuning to be
performant on other tasks.

Our work has implications for how knowledge from scientific
literature is encoded and represented using LLMs. We have demon-
strated a scalable workflow that enables a “plug and play” frame-
work for any LLM of choice while enabling retrieval at scale. Se-
mantic chunking allows us to learn viable contexts within scientific
literature, while also pointing to (and potentially learning) new
semantic interactions, which provide additional contexts for the
models to organize emerging concepts or ‘trends’ in scientific re-
search. We intend to use temporal evolution strategies (i.e., by
predicting emerging concepts or research themes at a future date,
given current scenarios) similar to approaches in [27, 49].

A further implication of our work is how knowledge graphs can
be instantiated from these representations. The semantic chunking
and retrieval frameworks are extensible, and can use any backend
model; however, we believe that the implicit representations learned
within the embeddings can be used to connect across concepts and
scientific domains with rich annotations (that can be enabled by
metric learning). These representations then can be used to build
an ontology connecting various scientific concepts and disciplines
embodied in recent work [25]. Moreover, it could be used to propose
new hypotheses based on existing knowledge.

Extensions to HiPerRAG include the capability to pursue mul-
timodality, especially in handling images, video, and audio along
with text, which are particularly valuable for parsing scientific ar-
ticles rich in tables and figures [19, 38, 82]. Although Oreo can
output multimodal data, the lack of established multimodal bench-
marks for scientific literature led us to focus on text retrieval as
the primary evaluation method for HiPerRAG. Future work will
experiment with multimodal LLMs as generators to incorporate



images and tables that Oreo can parse from a PDF. We expect this to
benefit newly emerging workflows—including agentic implemen-
tations [8, 62] that begin to power innovative scientific discovery
workflows.
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