Publication Library

Publication Library

GPT-4 Passes the Bar Exam

Description: In this paper, we experimentally evaluate the zero-shot performance of a preliminary version of GPT-4 against prior generations of GPT on the entire Uniform Bar Examination (UBE), including not only the multiple-choice Multistate Bar Examination (MBE), but also the open-ended Multistate Essay Exam (MEE) and Multistate Performance Test (MPT) components. On the MBE, GPT-4 significantly outperforms both human test-takers and prior models, demonstrating a 26% increase over ChatGPT and beating humans in five of seven subject areas. On the MEE and MPT, which have not previously been evaluated by scholars, GPT-4 scores an average of 4.2/6.0 as compared to much lower scores for ChatGPT. Graded across the UBE components, in the manner in which a human tast-taker would be, GPT-4 scores approximately 297 points, significantly in excess of the passing threshold for all UBE jurisdictions. These findings document not just the rapid and remarkable advance of large language model performance generally, but also the potential for such models to support the delivery of legal services in society.

Created At: 18 November 2024

Updated At: 18 November 2024

Towards a Classification of Open-Source ML Models and Datasets for Software Engineering

Description: Background: Open-Source Pre-Trained Models (PTMs) and datasets provide extensive resources for various Machine Learning (ML) tasks, yet these resources lack a classification tailored to Software Engineering (SE) needs. Aims: We apply an SE-oriented classification to PTMs and datasets on a popular open-source ML repository, Hugging Face (HF), and analyze the evolution of PTMs over time. Method: We conducted a repository mining study. We started with a systematically gathered database of PTMs and datasets from the HF API. Our selection was refined by analyzing model and dataset cards and metadata, such as tags, and confirming SE relevance using Gemini 1.5 Pro. All analyses are replicable, with a publicly accessible replication package. Results: The most common SE task among PTMs and datasets is code generation, with a primary focus on software development and limited attention to software management. Popular PTMs and datasets mainly target software development. Among ML tasks, text generation is the most common in SE PTMs and datasets. There has been a marked increase in PTMs for SE since 2023 Q2. Conclusions: This study underscores the need for broader task coverage to enhance the integration of ML within SE practices.

Created At: 18 November 2024

Updated At: 18 November 2024

LLMPhy Complex Physical Reasoning Using Large Language Models and World Models

Description: Physical reasoning is an important skill needed for robotic agents when operating in the real world. However, solving such reasoning problems often involves hypothesizing and reflecting over complex multi-body interactions under the effect of a multitude of physical forces and thus learning all such interactions poses a significant hurdle for state-of-the-art machine learning frameworks, including large language models (LLMs). To study this problem, we propose a new physical reasoning task and a dataset, dubbed TraySim. Our task involves predicting the dynamics of several objects on a tray that is given an external impact -- the domino effect of the ensued object interactions and their dynamics thus offering a challenging yet controlled setup, with the goal of reasoning being to infer the stability of the objects after the impact. To solve this complex physical reasoning task, we present LLMPhy, a zero-shot black-box optimization framework that leverages the physics knowledge and program synthesis abilities of LLMs, and synergizes these abilities with the world models built into modern physics engines. Specifically, LLMPhy uses an LLM to generate code to iteratively estimate the physical hyperparameters of the system (friction, damping, layout, etc.) via an implicit analysis-by-synthesis approach using a (non-differentiable) simulator in the loop and uses the inferred parameters to imagine the dynamics of the scene towards solving the reasoning task. To show the effectiveness of LLMPhy, we present experiments on our TraySim dataset to predict the steady-state poses of the objects. Our results show that the combination of the LLM and the physics engine leads to state-of-the-art zero-shot physical reasoning performance, while demonstrating superior convergence against standard black-box optimization methods and better estimation of the physical parameters.

Created At: 13 November 2024

Updated At: 13 November 2024

Automation of the NIST Cryptographic Module Validation Program September 2024 Status Report

Description: The Cryptographic Module Validation Program (CMVP) validates third-party assertions that cryptographic module implementations satisfy the requirements of Federal Information Processing Standards (FIPS) Publication 140-3, Security Requirements for Cryptographic Modules. The NIST National Cybersecurity Center of Excellence (NCCoE) has undertaken the Automated Cryptographic Module Validation Project (ACMVP) to support improvement in the efficiency and timeliness of CMVP operations and processes. The goal is to demonstrate a suite of automated tools that would permit organizations to perform testing of their cryptographic products according to the requirements of FIPS 140-3, then directly report the results to NIST using appropriate protocols. This is a status report of progress made so far with the ACMVP and the planned next steps for the project.

Created At: 04 November 2024

Updated At: 04 November 2024

Private Augmentation Robust and Task Agnostic Data Valuation Approach for Data Marketplace

Description: Evaluating datasets in data marketplaces, where the buyer aim to purchase valuable data, is a critical challenge. In this paper, we introduce an innovative task-agnostic data valuation method called PriArTa which is an approach for computing the distance between the distribution of the buyer's existing dataset and the seller's dataset, allowing the buyer to determine how effectively the new data can enhance its dataset. PriArTa is communication-efficient, enabling the buyer to evaluate datasets without needing access to the entire dataset from each seller. Instead, the buyer requests that sellers perform specific preprocessing on their data and then send back the results. Using this information and a scoring metric, the buyer can evaluate the dataset. The preprocessing is designed to allow the buyer to compute the score while preserving the privacy of each seller's dataset, mitigating the risk of information leakage before the purchase. A key feature of PriArTa is its robustness to common data transformations, ensuring consistent value assessment and reducing the risk of purchasing redundant data. The effectiveness of PriArTa is demonstrated through experiments on real-world image datasets, showing its ability to perform privacy-preserving, augmentation-robust data valuation in data marketplaces.

Created At: 04 November 2024

Updated At: 04 November 2024

First 39 40 41 42 43