Publication Library

Publication Library

Harnessing Preference Optimisation in Protein LMs for Hit Maturation in Cell Therapy

Description: Cell and immunotherapy offer transformative potential for treating diseases like cancer and autoimmune disorders by modulating the immune system. The development of these therapies is resource-intensive, with the majority of drug candidates failing to progress beyond laboratory testing. While recent advances in machine learning have revolutionised areas such as protein engineering, applications in immunotherapy remain limited due to the scarcity of large-scale, standardised datasets and the complexity of cellular systems. In this work, we address these challenges by leveraging a high-throughput experimental platform to generate data suitable for fine-tuning protein language models. We demonstrate how models fine-tuned using a preference task show surprising correlations to biological assays, and how they can be leveraged for few-shot hit maturation in CARs. This proof-of-concept presents a novel pathway for applying ML to immunotherapy and could generalise to other therapeutic modalities.

Created At: 04 December 2024

Updated At: 04 December 2024

Scalable Agent-Based Modeling for Complex Financial Market Simulations

Description: In this study, we developed a computational framework for simulating large-scale agent-based financial markets. Our platform supports trading multiple simultaneous assets and leverages distributed computing to scale the number and complexity of simulated agents. Heterogeneous agents make decisions in parallel, and their orders are processed through a realistic, continuous double auction matching engine. We present a baseline model implementation and show that it captures several known statistical properties of real financial markets (i.e., stylized facts). Further, we demonstrate these results without fitting models to historical financial data. Thus, this framework could be used for direct applications such as human-in-the-loop machine learning or to explore theoretically exciting questions about market microstructure's role in forming the statistical regularities of real markets. To the best of our knowledge, this study is the first to implement multiple assets, parallel agent decision-making, a continuous double auction mechanism, and intelligent agent types in a scalable real-time environment.

Created At: 03 December 2024

Updated At: 03 December 2024

MarketGPT Pre-trained transformer for Modeling Financial Time Series

Description: This work presents a generative pre-trained transformer (GPT) designed for modeling financial time series. The GPT functions as an order generation engine within a discrete event simulator, enabling realistic replication of limit order book dynamics. Our model leverages recent advancements in large language models to produce long sequences of order messages in a steaming manner. Our results demonstrate that the model successfully reproduces key features of order flow data, even when the initial order flow prompt is no longer present within the model's context window. Moreover, evaluations reveal that the model captures several statistical properties, or 'stylized facts', characteristic of real financial markets and broader macro-scale data distributions. Collectively, this work marks a significant step toward creating high-fidelity, interactive market simulations.

Created At: 03 December 2024

Updated At: 03 December 2024

Misalignments in AI Perception

Description: Artificial Intelligence (AI) is transforming diverse societal domains, raising critical questions about its risks and benefits and the misalignments between public expectations and academic visions. This study examines how the general public (N=1110) -- people using or being affected by AI -- and academic AI experts (N=119) -- people shaping AI development -- perceive AI's capabilities and impact across 71 scenarios, including sustainability, healthcare, job performance, societal divides, art, and warfare. Participants evaluated each scenario on four dimensions: expected probability, perceived risk and benefit, and overall sentiment (or value). The findings reveal significant quantitative differences: experts anticipate higher probabilities, perceive lower risks, report greater utility, and express more favorable sentiment toward AI compared to the non-experts. Notably, risk-benefit tradeoffs differ: the public assigns risk half the weight of benefits, while experts assign it only a third. Visual maps of these evaluations highlight areas of convergence and divergence, identifying potential sources of public concern. These insights offer actionable guidance for researchers and policymakers to align AI development with societal values, fostering public trust and informed governance.

Created At: 03 December 2024

Updated At: 03 December 2024

Marc Andreessen - Joe Rogan Experience 2234

Description: Joe Rogan Experience #2234 - Marc Andreessen

Created At: 03 December 2024

Updated At: 03 December 2024

First 50 51 52 53 54 55 56