Publication Library
Artificial Intelligence, Scientific Discovery, and Product Innovation
Description: This paper studies the impact of artificial intelligence on innovation, exploiting the randomized introduction of a new materials discovery technology to 1,018 scientists in the R&D lab of a large U.S. firm. AI-assisted researchers discover 44% more materials, resulting in a 39% increase in patent filings and a 17% rise in downstream product innovation. These compounds possess more novel chemical structures and lead to more radical inventions. However, the technology has strikingly disparate effects across the productivity distribution: while the bottom third of scientists see little benefit, the output of top researchers nearly doubles. Investigating the mechanisms behind these results, I show that AI automates 57% of "idea-generation" tasks, reallocating researchers to the new task of evaluating model-produced candidate materials. Top scientists leverage their domain knowledge to prioritize promising AI suggestions, while others waste significant resources testing false positives. Together, these findings demonstrate the potential of AI-augmented research and highlight the complementarity between algorithms and expertise in the innovative process. Survey evidence reveals that these gains come at a cost, however, as 82% of scientists report reduced satisfaction with their work due to decreased creativity and skill underutilization.
Created At: 17 March 2025
Updated At: 17 March 2025
Generative AI at Work
Description: New AI tools have the potential to change the way workers perform and learn, but little is known about their impacts on the job. In this paper, we study the staggered introduction of a generative AI-based conversational assistant using data from 5,179 customer support agents. Access to the tool increases productivity, as measured by issues resolved per hour, by 14% on average, including a 34% improvement for novice and low-skilled workers but with minimal impact on experienced and highly skilled workers. We provide suggestive evidence that the AI model disseminates the best practices of more able workers and helps newer workers move down the experience curve. In addition, we find that AI assistance improves customer sentiment, increases employee retention, and may lead to worker learning. Our results suggest that access to generative AI can increase productivity, with large heterogeneity in effects across workers.
Created At: 17 March 2025
Updated At: 17 March 2025
Artificial Intelligence in the Knowledge Economy
Description: Artificial Intelligence (AI) can transform theknowledgeeconomybyautomatingnon-codifiable work. To analyze this transformation, we incorporate AI into an economy where humans form hierarchical organizations: Less knowledgeable individuals become “workers” doing routine work, while others become “solvers” handling exceptions. We model AI as a technology that converts computational resources into “AI agents” that operate autonomously (as co-workers and solvers/co-pilots) or non-autonomously (solely as co-pilots). Autonomous AI primarily benef its the most knowledgeable individuals; non-autonomous AI benefits the least knowledgeable. However, output is higher with autonomous AI. These findings reconcile contradictory empirical evidence and reveal tradeoffs when regulating AI autonomy.
Created At: 17 March 2025
Updated At: 17 March 2025
SPO - Sequential Monte Carlo Policy Optimisation
Description: Leveraging planning during learning and decision-making is central to the long-term development of intelligent agents. Recent works have successfully combined tree-based search methods and self-play learning mechanisms to this end. However, these methods typically face scaling challenges due to the sequential nature of their search. While practical engineering solutions can partly overcome this, they often result in a negative impact on performance. In this paper, we introduce SPO: Sequential Monte Carlo Policy Optimisation, a model-based reinforcement learning algorithm grounded within the Expectation Maximisation (EM) framework. We show that SPO provides robust policy improvement and efficient scaling properties. The sample-based search makes it directly applicable to both discrete and continuous action spaces without modifications. We demonstrate statistically significant improvements in performance relative to model-free and model-based baselines across both continuous and discrete environments. Furthermore, the parallel nature of SPO's search enables effective utilisation of hardware accelerators, yielding favourable scaling laws.
Created At: 20 February 2025
Updated At: 20 February 2025
If Multi-Agent Debate is the Answer, What is the Question
Description: Multi-agent debate (MAD) has emerged as a promising approach to enhance the factual accuracy and reasoning quality of large language models (LLMs) by engaging multiple agents in iterative discussions during inference. Despite its potential, we argue that current MAD research suffers from critical shortcomings in evaluation practices, including limited dataset overlap and inconsistent baselines, raising significant concerns about generalizability. Correspondingly, this paper presents a systematic evaluation of five representative MAD methods across nine benchmarks using four foundational models. Surprisingly, our findings reveal that MAD methods fail to reliably outperform simple single-agent baselines such as Chain-of-Thought and Self-Consistency, even when consuming additional inference-time computation. From our analysis, we found that model heterogeneity can significantly improve MAD frameworks. We propose Heter-MAD enabling a single LLM agent to access the output from heterogeneous foundation models, which boosts the performance of current MAD frameworks. Finally, we outline potential directions for advancing MAD, aiming to spark a broader conversation and inspire future work in this area.
Created At: 20 February 2025
Updated At: 20 February 2025