Publication Library
Design and Optimization of Big Data and Machine Learning-Based Risk Monitoring System in Financial Markets
Description: With the increasing complexity of financial markets and rapid growth in data volume, traditional risk monitoring methods no longer suffice for modern financial institutions. This paper designs and optimizes a risk monitoring system based on big data and machine learning. By constructing a four-layer architecture, it effectively integrates largescale financial data and advanced machine learning algorithms. Key technologies employed in the system include Long Short-Term Memory (LSTM) networks, Random Forest, Gradient Boosting Trees, and real-time data processing platform Apache Flink, ensuring the real-time and accurate nature of risk monitoring. Research findings demonstrate that the system significantly enhances efficiency and accuracy in risk management, particularly excelling in identifying and warning against market crash risks.
Created At: 14 December 2024
Updated At: 14 December 2024
StockTime A Time Series Specialized Large Language Model Architecture for Stock Price Prediction
Description: The stock price prediction task holds a significant role in the financial domain and has been studied for a long time. Recently, large language models (LLMs) have brought new ways to improve these predictions. While recent financial large language models (FinLLMs) have shown considerable progress in financial NLP tasks compared to smaller pretrained language models (PLMs), challenges persist in stock price forecasting. Firstly, effectively integrating the modalities of time series data and natural language to fully leverage these capabilities remains complex. Secondly, FinLLMs focus more on analysis and interpretability, which can overlook the essential features of time series data. Moreover, due to the abundance of false and redundant information in financial markets, models often produce less accurate predictions when faced with such input data. In this paper, we introduce StockTime, a novel LLM-based architecture designed specifically for stock price data. Unlike recent FinLLMs, StockTime is specifically designed for stock price time series data. It leverages the natural ability of LLMs to predict the next token by treating stock prices as consecutive tokens, extracting textual information such as stock correlations, statistical trends and timestamps directly from these stock prices. StockTime then integrates both textual and time series data into the embedding space. By fusing this multimodal data, StockTime effectively predicts stock prices across arbitrary look-back periods. Ourexperiments demonstrate that StockTime outperforms recent LLMs, as it gives more accurate predictions while reducing memory usage and runtime costs.
Created At: 14 December 2024
Updated At: 14 December 2024
Evaluation of Human-Understandability of Global Model Explanations using Decision Tree
Description: In explainable artificial intelligence (XAI) research, the predominant focus has been on interpreting models for experts and practitioners. Model agnostic and local explanation approaches are deemed interpretable and sufficient in many applications. However, in domains like healthcare, where end users are patients without AI or domain expertise, there is an urgent need for model explanations that are more comprehensible and instil trust in the model’s operations. We hypothesise that generating model explanations that are narrative, patient-specific and global(holistic of the model) would enable better understandability and enable decision-making. We test this using a decision tree model to generate both local and global explanations for patients identified as having a high risk of coronary heart disease. These explanations are presented to non-expert users. We find a strong individual preference for a specific type of explanation. The majority of participants prefer global explanations, while a smaller group prefers local explanations. A task based evaluation of mental models of these participants provide valuable feedback to enhance narrative global explanations. This, in turn, guides the design of health informatics systems that are both trustworthy and actionable.
Created At: 14 December 2024
Updated At: 14 December 2024
Using Sentiment and Technical Analysis to Predict Bitcoin with Machine Learning
Description: Cryptocurrencies have gained significant attention in recent years due to their decentralized nature and potential for financial innovation. Thus, the ability to accurately predict its price has become a subject of great interest for investors, traders, and researchers. Some works in the literature show how Bitcoin’s market sentiment correlates with its price fluctuations in the market. However, papers that consider the sentiment of the market associated with financial Technical Analysis indicators in order to predict Bitcoin’s price are still scarce. In this paper, we present a novel approach for predicting Bitcoin price movements by combining the Fear & Greedy Index, a measure of market sentiment, Technical Analysis indicators, and the potential of Machine Learning algorithms. This work represents a preliminary study on the importance of sentiment metrics in cryptocurrency forecasting. Our initial experiments demonstrate promising results considering investment returns, surpassing the Buy & Hold baseline, and offering valuable insights about the combination of indicators of sentiment and market in a cryptocurrency prediction model.
Created At: 14 December 2024
Updated At: 14 December 2024
Inferring Option Movements Through Residual Transactions A Quantitative Model
Description: This research presents a novel approach to predicting option movements by analyzing "residual transactions," which are trades that deviate from standard hedging activities. Unlike traditional methods that primarily focus on open interest and trading volume, this study argues that residuals can reveal nuanced insights into institutional sentiment and strategic positioning. By examining these deviations, the model identifies early indicators of market trends, providing a refined framework for forecasting option prices. The proposed model integrates classical machine learning and regression techniques to analyze patterns in high-frequency trading data, capturing complex, non-linear relationships. This predictive framework allows traders to anticipate shifts in option values, enhancing strategies for better market timing, risk management, and portfolio optimization. The model’s adaptability, driven by real-time data processing, makes it particularly effective in fastpaced trading environments, where early detection of institutional behavior is crucial for gaining a competitive edge. Overall, this research contributes to the field of options trading by offering a strategic tool that detects early market signals, optimizing trading decisions based on predictive insights derived from residual trading patterns. This approach bridges the gap between conventional metrics and the subtle behaviors of institutional players, marking a significant advancement in options market analysis.
Created At: 14 December 2024
Updated At: 14 December 2024