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Trajectory prediction of other vehicles is crucial for autonomous vehicles, with applications

from missile guidance to UAV collision avoidance. Typically, target trajectories are assumed de-

terministic, but real-world aerial vehicles exhibit stochastic behavior, such as evasive maneuvers

or gliders circling in thermals. This paper uses Conditional Normalizing Flows, an unsupervised

Machine Learning technique, to learn and predict the stochastic behavior of targets of guided

missiles using trajectory data. The trained model predicts the distribution of future target

positions based on initial conditions and parameters of the dynamics. Samples from this

distribution are clustered using a time series k-means algorithm to generate representative

trajectories, termed virtual targets. The method is fast and target-agnostic, requiring only

training data in the form of target trajectories. Thus, it serves as a drop-in replacement for

deterministic trajectory predictions in guidance laws and path planning. Simulated scenarios

demonstrate the approach’s effectiveness for aerial vehicles with random maneuvers, bridging

the gap between deterministic predictions and stochastic reality, advancing guidance and control

algorithms for autonomous vehicles.

I. Introduction

Prediction models play a critical role in the guidance and control of guided missiles. In order to effectively guide

a missile to its target, it is necessary to predict the future trajectory of both the missile and the target. These

predictions enable the computation of control commands within a guidance law. While the trajectory of the missile can

often be predicted with high accuracy due to the deterministic nature of its dynamics, predicting the trajectory of the

target is much more challenging because of its inherently stochastic behavior.

Many traditional prediction models for target motion assume deterministic behavior, either implicitly or explicitly.

For example, the Proportional Navigation (PN) guidance law [1] assumes that the target maintains a constant velocity,

while the Zero-Effort-Miss (ZEM) guidance law [2, 3] allows for arbitrary target dynamics within a deterministic

framework.

However, relying on a deterministic model for the target can degrade the performance of the guidance law. This is
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because the control commands are based on a fixed prediction of the trajectory of the target, which may not align with the

actual, more varied maneuvers that the target is executing. In reality, the motion of the target is not confined to a single

deterministic model; it is capable of executing a wide range of possible maneuvers. Recognizing this limitation, [4]

introduced an approach using an Extended Kalman Filter (EKF) to estimate not only the position and velocity of the

target, but also the parameters governing its dynamics.

This concept was further advanced in [5], where a multi-hypothesis guidance approach was proposed. This method

employed an Interacting Multiple Model (IMM) filter to estimate both the state of the target and the probability of

various dynamics hypotheses being true at any given time. The IMM framework runs multiple EKFs in parallel, each

corresponding to a different target dynamics hypothesis. In turn, multiple guidance laws are executed in parallel, with

the final control commands derived by combining the outputs of the guidance laws according to the probability estimates

of the various hypotheses.

While this multi-hypothesis guidance technique is powerful, it has two significant drawbacks. First, the number of

hypotheses that can be considered is limited by the available computational resources, as each additional hypothesis

requires one additional parallel EKF and one additional guidance law. Second, despite incorporating multiple hypotheses,

the approach still assumes that the target follows one of several deterministic trajectories, which may not fully capture

the stochastic nature of the motion of the target.

To address these limitations, this paper introduces a probabilistic approach. Instead of assuming that the target

follows one of several fixed trajectories, we model the maneuvers of the target as a continuous probability distribution.

This shift towards a probabilistic framework presents new challenges, particularly in the prediction of the future trajectory

of the target, which is now described by a dynamic probability distribution rather than a single deterministic path.

In [6], a Monte Carlo method is used to approximate the distribution of future positions of a target, but due to the

computational demands of the method, only a few samples can be generated.

In general, the future states of the target cannot be described as distinct trajectories, but rather as a time-varying

probability distribution over the state space. Such problems are called multimodal trajectory prediction problems and

have mostly been studied in the context of autonomous driving and pedestrians, but not in the context of guided missiles.

One challenge for this kind of problem is that the probability distribution over the state space usually cannot be derived

analytically, but rather has to be approximated in some way.

Ref. [7] gives a good overview of the different approaches that have been taken to solve this problem. The methods

range from adding noise to a deterministic prediction over anchor methods [8], where likely end points of the trajectories

are used to generate multiple trajectories, clustering and Gaussian Mixture Model approaches [9], over grid-based

methods [10] to generative models Machine Learning (ML) techniques. One example of ML approaches is Generative

Adversarial Networks (GANs) [11], where a classifier is trained to distinguish between real data and data generated by a

generator network. In a minimax game, the generator network is trained to generate trajectories that are indistinguishable
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from real trajectories.

Another ML approach is Variational Autoencoders (VAEs) [12], where an encoder network is trained to encode the

input trajectory into a latent space, which is then decoded by a decoder network to generate a trajectory.

Lastly, Normalizing Flows (NFs) [13, 14] are a class of generative ML models that can be used to approximate

probability distributions by transforming a simple base distribution into the desired, complex distribution and vice versa

using a series of invertible transformations. Compared to other ML approaches like GANs or VAEs, NFs have the

advantage that they can perform both sampling (of possible future states) and inference (i.e., calculating the probability

of a given state). Moreover, they allow for efficient and exact computation of the probability of a given state, giving rise

to heatmap-like visualizations of the probability density function (PDF) over the state space.

In [15] Conditional NFs (CNFs) are used to predict the future trajectories of pedestrians in a multimodal way.

It employs recurrent neural networks to encode the past trajectory of the pedestrians which is used to calculate the

conditional probability distribution over the future trajectory conditioned on the past trajectory. Each predicted trajectory

consists of a sequence of positions with equal time intervals between them. In [16] a method is proposed to improve

the quality and diversity of trajectories generated by NFs. By adding a diversity objective function, more diverse

predictions for the future trajectory of vehicles with discrete time steps can be predicted conditioned on measurements

and additional physical attributes. To accommodate the need for fast inference, [17] proposes a method to speed up the

inference of NFs by reusing the results of previous computations to predict future trajectories of humans.

While most prediction methods aim to predict the future positions for discrete time steps, only the method presented

in our previous work [18] is able to predict the probability distribution of the future positions for arbitrary times by using

CNFs. With the CNFs approach, the distribution of the future position of stochastically moving targets can be predicted.

The advantage of this approach is that the predictions in the form of a PDF can be interpreted and visualized as a

heatmap, which can be used to gain insights into the predicted behavior of the target. However, almost all algorithms

(guidance laws, collision avoidance, ...) expect deterministic trajectories, which is a simplification that might not hold in

reality. To bridge this gap, this paper employs a clustering algorithm to cluster the samples generated by the CNFs

into a set of representative trajectories, called virtual targets. Since the samples can be generated for equal time steps

with equal sample sizes, most of the problems that arise when clustering trajectory data can be avoided. Thus, a time

series k-means clustering algorithm [19] is used to generate trajectories of the virtual targets. These virtual targets can

then be used as a drop-in replacement for deterministic trajectory predictions in guidance laws, path planning, or other

applications that require deterministic trajectory predictions.

This paper leverages the data-driven approach of Conditional Normalizing Flows to learn the stochastic behavior of

an aerial vehicle represented by a time-varying PDF of the future positions of the target. The contributions of this paper

are two-fold:

1) A prediction framework leveraging CNFs to predict the distribution of the future positions of a stochastically
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moving target, allowing for interpretable, target-agnostic, and fast predictions.

2) A time series k-means clustering algorithm is described to cluster the superimposed samples generated by the

CNFs for each real target into a set of representative trajectories, called virtual target trajectories, which can be

used as a drop-in replacement for deterministic trajectory predictions for various applications.

The remainder of this paper is structured as follows: In Sec. II, the problem of trajectory prediction for stochastic

targets is described mathematically. Sec. III explains the theory of NFs and describes their application to the problem at

hand. The subsequent clustering process to calculate the trajectories of the virtual targets is described in Sec. IV. These

process is illustrated in Fig. 1. The generation of the training data is described in Sec. V. Sec. VI presents the results of

the approach and Sec. VII concludes the paper.

Input: Positions and Velocities of Targets

Sample Future Target Positions From
Conditional Normalizing Flows (Sec. III)

Translate and Rotate Samples (Sec. III)

Time Series K-Means Clustering (Sec. IV)

Output: Cluster Centers (Virtual Target Trajectories)

Fig. 1 Illustration of the structure of the prediction framework.

II. Problem Statement
The main problem to be solved in this paper is the prediction of the future trajectory of the stochastically maneuvering

target in a computationally efficient manner and its meaningful representation for downstream tasks that require

deterministic trajectory predictions. It is assumed that either the stochastic model of the target dynamics is known or a

dataset of target trajectories is available.

The future position x(𝑡) at time 𝑡 of a moving target performing random maneuvers is to be predicted given the

initial position x0 at 𝑡 = 0 and additional parameters 𝜓 regarding the target dynamics, such as the ballistic coefficient

or the maximum turn rate. More precisely, the PDF 𝑝(x | 𝑡, x0, 𝜓) is to be estimated, which describes the relative
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probability of the target being at a given position x at time 𝑡 conditioned on the initial position x0 and the parameters 𝜓.

Additionally, an algorithm 𝐶𝑛𝑣 to generate a set of 𝑛v representative trajectories 𝜙𝑖 from set of PDFs 𝑝 𝑗 (x | 𝑡, x0, 𝜓)

for 𝑛r targets is to be developed, such that each trajectory 𝜙𝑖 = {x𝑖 (𝑡𝑘)}𝑛𝑡𝑘=1 consisting of the sequence of 𝑛𝑡 positions x𝑖

at times 𝑡𝑘 are generated for each virtual target 𝑖. Equation (1) describes the mapping of the input data to the output data

of the CNFs model.

𝐶𝑛𝑣 : {𝑝 𝑗 (x | 𝑡, x0, 𝜓)}𝑛𝑟𝑗=1 ↦→ {𝜙𝑖}𝑛𝑣𝑖=1 (1)

III. Learning Stochastic Target Dynamics
The first step to solve the problem described in Sec. II is to learn the stochastic behavior of the target. In order to

learn the probability distribution of the target’s future position, NFs are used. NFs are a class of generative ML models

that can be used to approximate probability distributions by transforming a simple base distribution into the desired,

complex distribution and vice versa. Here, the complex distribution is the distribution of the position of the target at a

given time and the base distribution is a Gaussian distribution. In the following, the theory of NFs is explained and their

application to the problem at hand is described.

A. Normalizing Flows

NFs consist of a series of invertible transformations, which transform a sample from the base distribution into

a sample from the complex distribution and vice versa. Since the transformations are invertible, the model can be

used for both sampling and inference. Sampling means that the NFs model can be used to generate samples from the

desired distribution by sampling from the base distribution and transforming the samples with the learned invertible

transformations. Inference, or density estimation, means that the model can be used to calculate the probability density of

a given sample from the complex distribution by transforming it to the base distribution and calculating the probability of

the sample in the known base distribution and correcting for the volume change due to the transformation by multiplying

with the determinant of the Jacobian of the transformation.

As displayed in Fig. 2, NFs describe a transformation f : R𝑑 → R𝑑 , which transforms samples x with dimension 𝑑

from the complex distribution 𝑝(x) into samples z with the same dimension from the base distribution 𝑝(z). In this

application, 𝑝(z) is a Gaussian distribution with zero mean and unit variance and 𝑝(x) denotes the distribution of the

position x of the target.

Equation (2) describes the transformation f and its inverse f−1 as a composition of 𝑛l invertible transformations

fΘ𝑖
, where Θ𝑖 are the 𝑛Θ𝑖

parameters of the 𝑖-th transformation. The transformations fΘ𝑖
can be any invertible

function, provided they are easy to evaluate, invert, and differentiate. Moreover, the determinant of the Jacobian of the

transformation fΘ𝑖
must be easy to compute since it is needed for the calculation of the PDF of the complex distribution.
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Fig. 2 Illustration of the transformation of points from a normal distribution to a complex distribution (and
vice versa) using Normalizing Flows. Their relative probability is according to the probability density function
above. Figure adapted from [18].
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Fig. 3 Illustration of the Normalizing Flows concept with neural networks 𝛼𝑖 and transformations 𝑓Θ𝑖
with

parameters Θ𝑖 . Figure adapted from [18].

Examples of such transformations include affine transformations (e.g., fΘ𝑖
(x) = Ax + b), as utilized in RealNVP [20].

In this paper, fΘ𝑖
are rational quadratic spline transformations, which are elaborated upon in Sec. III.C.

The parameters Θ𝑖 are the outputs of neural networks (NNs) 𝛼𝑖 , which are trained to learn the parameters of the

transformations.

NFs :



z = f (x) = (fΘ𝑛l
◦ · · · ◦ fΘ2 ◦ fΘ1 ) (x)

x = f−1 (z) = (f−1
Θ1

◦ · · · ◦ f−1
Θ𝑛l

) (z)

with Θ𝑖 = 𝛼𝑖 (fΘ𝑖−1 (x))

(2)

Equation (3) depicts the input and output dimensions of the NNs 𝛼𝑖 with 𝑑 being the dimension of the input data

and 𝑛Θ𝑖
being the size of the parameters of the transformation fΘ𝑖

. The input for 𝛼𝑖 is the output from the previous

transformation fΘ𝑖−1 as illustrated in Fig. 3.

𝛼𝑖 : R𝑑 → R𝑛Θ𝑖 (3)

Using samples from the complex distribution, the weights of the NNs are optimized during the training process

in a Maximum Likelihood Estimation approach, such that the observed training data points are most probable under

the learned distribution. This is done by minimizing the negative log-likelihood of the training data points, which is
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equivalent to maximizing the likelihood of creating the training data points by sampling from the base distribution and

transforming them with the NFs.

Thus, the optimal set of weights 𝜃∗ for the NNs 𝛼𝑙 with 𝜃 = {𝜃1, . . . , 𝜃𝑛l } is found by minimizing the negative

log-likelihood of the 𝑛𝑑 training data points x𝑖 when applying the NFs 𝑝𝜃 (x) with NN weights and biases 𝜃 as described

in Eq. (4):

𝜃∗ = arg min
𝜃

(
−

𝑛d∑︁
𝑖=1

log 𝑝𝜃 (x𝑖)
)

(4)

For simplicity, the index 𝜃 indicating the set of NN weights and biases in the NFs model is dropped in the following.

During the training process, singularities of the true PDF 𝑝(x), i.e., points where the PDF has a value of infinity, can

lead to problems. The reason for this is that it would violate the invertibility property since the inverse transformation

f−1 would not be defined at these points. A common solution to this problem, which is also applied in this paper, is the

so-called noise injection, where a small amount of noise is added to the training data to dilute the singularities of the

true PDF.

B. Conditional Normalizing Flows

The NFs model can be used to transform samples from the complex distribution to the base distribution (density

estimation) and to sample from the complex distribution. However, a NFs model can only transform a simple base

distribution into one complex distribution, i.e., for one time 𝑡 and one set of parameters 𝜓. Since the model should not

describe only one distribution, but rather a distribution for any given time 𝑡 and additional parameters 𝜓 regarding the

target dynamics, the architecture must be extended. This can be achieved by using Conditional Normalizing Flows

(CNFs) [14], which are a special kind of NFs that can be conditioned on some input to calculate a conditional probability

𝑝(x | 𝑡, 𝜓) in contrast to the unconditional probability 𝑝(x) provided by normal NFs. In this case, 𝑡 and 𝜓 serve as

additional input for the model, the so-called conditioning variables. More precisely, they are used as an additional input

for the NNs besides the output of the previous transformation fΘ𝑖−1 . To differentiate these NNs with more inputs from

the NNs 𝛼𝑖 used in the NFs model, they are denoted as 𝛽𝑖 .

As displayed in Fig. 4, CNFs describe a transformation f, which transforms samples x from the complex distribution

𝑝(x | 𝑡, 𝜓) into samples z from the base distribution 𝑝(z).

Equation (5) describes the transformation f and its inverse f−1 as a composition of 𝑛l invertible transformations fΘ𝑖
,

where Θ𝑖 are the 𝑛Θ𝑖
parameters of the 𝑖-th transformation. The parameters Θ𝑖 are the outputs of NNs 𝛽𝑖 , which are
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Fig. 4 Illustration of the Conditional Normalizing Flows concept with neural networks 𝛽𝑖 and transformations
𝑓Θ𝑖

with parameters Θ𝑖 , conditioned on the time 𝑡 and dynamics parameters 𝜓.

trained to learn the parameters of the transformations conditioned on 𝑡 and 𝜓.

CNFs :



z = f (x, 𝑡, 𝜓) = (fΘ𝑛l
◦ · · · ◦ fΘ2 ◦ fΘ1 ) (x, 𝑡, 𝜓)

x = f−1 (z, 𝑡, 𝜓) = (f−1
Θ1

◦ · · · ◦ f−1
Θ𝑛l

) (z)

with Θ𝑖 = 𝛽𝑖 (fΘ𝑖−1 (x), 𝑡, 𝜓)

(5)

Equation (6) depicts the input and output dimensions of the NNs 𝛽𝑖 . The input for 𝛽𝑖 is the output from the previous

transformation fΘ𝑖−1 , the time 𝑡, and the parameters 𝜓 as illustrated in Fig. 4.

𝛽𝑖 : R𝑑+1+𝑛𝜓 → R𝑛Θ𝑖 (6)

C. Application of Conditional Normalizing Flows

In our approach, we utilize CNFs to model the distribution of the target’s position under varying conditions of time

and target dynamics. Specifically, we implement CNFs with a technique known as Masked Autoregressive Flow (MAF)

combined with rational quadratic splines.

MAF [21] is a method that leverages autoregressive models to generate samples from a complex distribution. It

does so by modeling the distribution as a sequence of conditional distributions where each dimension depends on the

previous ones, giving it a high degree of flexibility. This autoregressive property makes it suitable for our task of

predicting the target’s position under different conditions.

Rational quadratic splines [22] are used as transformation functions fΘ𝑖
to further enhance the flexibility and

expressive power of the model compared to affine transformations as used in RealNVP [20]. They allow to capture

complex patterns in the data by adjusting the shape of the spline as needed, making the model adaptable to a wide range

of target distributions.
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While a detailed technical description of MAF and rational quadratic splines is beyond the scope of this paper, we

refer the interested reader to the original papers for a more in-depth understanding of these techniques. The combination

of MAF and rational quadratic splines in CNFs allows for a flexible and expressive model that can accurately capture the

distribution of the target’s position.

Leveraging CNFs allows to transform samples from the complex distribution to the base distribution for a given

time 𝑡 and additional parameters 𝜓 regarding the target dynamics which serve as the conditioning variables. Thus, the

PDF 𝑝(x | 𝑡, x0, 𝜓) can be evaluated by transforming a position x from the complex distribution to the base distribution

and calculating the probability of the sample in the base distribution. Moreover, the model can be used to sample from

the complex distribution for a given time 𝑡 and parameters 𝜓 by sampling from the base distribution and transforming

the samples with the learned invertible transformations. The calculation time for the evaluation of the PDF or sampling

is constant, since the model learns the distribution of the target’s future position and not the dynamics of the target itself.

Not only is the sampling using the CNFs much faster than Monte Carlo simulation (especially for evaluations at the final

time), the use of CNFs also allows for an exact computation of the PDF, which is not possible with the Monte Carlo

trajectory generation method. To facilitate the training process, the training data is normalized to a range of [−1, 1],

including the positions x, the time 𝑡, and the parameters 𝜓.

D. Translation and Rotation of the Predicted Target Positions

Since the true distribution is independent of the absolute position and the rotation of the target for the scenarios

used in this paper, the position of the target can be predicted for any initial position and orientation of the target by

transforming the position of the target to the origin and rotating it such that the target is flying northbound. Thus, the

prediction task can be simplified from predicting 𝑝(x | 𝑡, x0, 𝜓) to predicting 𝑝(x | 𝑡, 𝜓). This simplified PDF is then

translated to the current normalized position p̄ and rotated according to the orientation of the target. The position p̄ is

calculated by applying the same normalization procedure to the current position p as was applied to the training data.

In a two-dimensional scenario, the rotation matrix R is calculated from the orientation 𝜒 of the target as described

in Eq. (7). For a three-dimensional scenario, the extension is straightforward.

R =


cos(𝜒) − sin(𝜒)

sin(𝜒) cos(𝜒)

 (7)

The samples x predicted by the CNFs are then moved to the normalized position p̄ of the target by performing the

rotation and translation as described in Eq. (8) and visualized in Fig. 5. Note that these samples xreal are still in the

normalized coordinate system.

xreal = Rx + p̄ (8)
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Fig. 5 Illustration of the translation (by p̄) and the rotation (by 𝜒) of the predicted target positions.

Nevertheless, if the true target distribution depends on the initial position and orientation, i.e., if the motion of the

target is not translation and rotation invariant, the initial position and orientation of the target can be used as additional

conditioning variables to allow for the prediction of the position of the target for any initial position and orientation.

E. Outlier Removal

Due to the normalization of the training data, the domain that the CNFs are trained on is limited to [−1, 1]. Thus,

the performance of the CNFs outside this domain can be arbitrarily poor. Furthermore, these samples might even be

physically impossible, e.g., if the velocity of the target is assumed to be constant.

To prevent the usage of such outliers, samples outside this range plus a margin of three times the standard deviation

of the noise injection are removed from the set of generated samples.

IV. Generation of Virtual Target Trajectories
While the CNFs can be used to predict the distribution of the future positions of the target, the samples generated

by the CNFs are not directly usable for downstream tasks, since they are not deterministic trajectories. Besides the

development of guidance laws that can handle stochastic trajectories, a more straightforward approach is to generate

a set of representative trajectories from the samples, which can be used as a drop-in replacement for deterministic

trajectory predictions. To this end, a time series k-means clustering algorithm is used to cluster the samples into a set of

representative trajectories. This approach, i.e., the combination of the predictions for multiple targets and the clustering

of the samples, as well as the renormalization of the cluster means, is described in the following sections.
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A. Combination of Targets

For each of the 𝑛r real targets 𝑖 = 1, . . . , 𝑛r, the respective learned CNFs model is used to generate 𝑗 = 1, . . . , 𝑛s

samples x𝑖, 𝑗 ,𝑘 of the future positions of the target 𝑖 for each time step 𝑘 = 1, . . . , 𝑛𝑡 . First, 𝑛r · 𝑛s samples z𝑖, 𝑗 are drawn

from the base distribution, which is a Gaussian distribution with zero mean and unit variance of dimension 𝑑, i.e.

z𝑖, 𝑗 ∼ N(0, I𝑑) for 𝑖 = 1, . . . , 𝑛r, 𝑗 = 1, . . . , 𝑛s (9)

Then, the samples are transformed by the CNFs f to obtain samples from the complex distribution:

x𝑖, 𝑗 ,𝑘 = f−1 (z𝑖, 𝑗 , 𝑡𝑘 , 𝜓𝑖) for 𝑖 = 1, . . . , 𝑛r, 𝑗 = 1, . . . , 𝑛s, 𝑘 = 1, . . . , 𝑛𝑡 (10)

x𝑖, 𝑗 ,𝑘 consists of 𝑑 dimensions, where 𝑑 is the dimension of the position of the target which can be 2 or 3 depending on

the scenario. If the targets are of the same type, i.e., their dynamics and their parameters 𝜓 are identical, the same

generated samples can be used for all the targets to save computation time. Otherwise, a separate CNFs model has to be

trained for each type of target and then evaluated for each target. Since most target distributions are not dependent on

the current position and azimuth, the samples from the CNFs which are generated in a normalized coordinate system

with axis limits of [−1, 1] can be moved to the normalized current position p̄𝑖 with orientation 𝜒𝑖 of the real target by

performing a rotation and a translation as described in Sec. III.D.

B. Clustering

After generating and then rotating and translating the samples or each real target 𝑖, the trajectories y𝑖, 𝑗 of the samples

are clustered to obtain a set of representative trajectories. To this end, a time series k-means clustering algorithm is used,

which assigns each sample trajectory to one of 𝑛v clusters, where 𝑛v is the number of virtual targets that can be chosen

by the user. The resulting trajectories of the cluster means are then used as the virtual targets.

The input for the clustering process is a set 𝑌 comprised of 𝑛r · 𝑛s flattened trajectories y𝑖, 𝑗 of size (𝑛𝑡 · 𝑑 × 1), which

are generated as follows:

y𝑖, 𝑗 =
[
x𝑇𝑖, 𝑗,1, . . . , x

𝑇
𝑖, 𝑗,𝑛𝑡

]𝑇
(11)

𝑌 =
{
y1,1, y1,2, . . . , y𝑛r ,𝑛s

}
(12)

With this flattened input, a k-means clustering algorithm as described in [19] can be applied to obtain the cluster

means, which are then used as the virtual targets.
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Fig. 6 Illustration of the resulf of k-means clustering for two dimensions.

Figure 6 illustrates the result of the k-means clustering for two dimensions. This only serves as a visualization of the

clustering process and does not represent the actual dimensions of the input data, since the input data, i.e., the flattened

trajectories, are of size 𝑛𝑡 · 𝑑 instead of two dimensions.

By choosing a desired 𝑛v, the number of virtual targets, the algorithm assigns each trajectory of the 𝑛r · 𝑛s samples

to one of the 𝑛v clusters 𝐶𝑖 such that the sum of the squared Euclidean distances between the samples and the cluster

means is minimized:

c∗1, . . . , c
∗
𝑛v = argmin

c1 ,...,c𝑛v

𝑛v∑︁
𝑖=1

∑︁
y∈𝐶𝑖

| |y − c𝑖 | |2

s.t. ∀𝑖 ≠ 𝑗 : 𝐶𝑖 ∩ 𝐶 𝑗 = ∅
𝑛v⋃
𝑖=1

𝐶𝑖 = 𝑌

(13)

The result of the clustering process is a set of 𝑛v optimal cluster means c∗1, . . . , c
∗
𝑛v , each consisting of dimensions

(𝑛𝑡 · 𝑑, 1), which can then be reshaped to 𝑛v trajectories with dimensions (𝑛𝑡 , 𝑑) each:

c∗𝑖 =



c∗
𝑖,1 . . . c∗

𝑖,𝑑

c∗
𝑖,𝑑+1 . . . c∗

𝑖,2𝑑

...
. . .

...

c∗
𝑖, (𝑛𝑡−1) ·𝑑+1 . . . c∗

𝑖,𝑛𝑡 ·𝑑


(14)

𝜙𝑖 (𝑘 · Δ𝑡) =
(
c∗
𝑖, (𝑘−1) ·𝑑+1, . . . , c

∗
𝑖,𝑘 ·𝑑

)
(15)
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C. Renormalization

As mentioned in Sec. III.C, the samples are generated in a normalized coordinate system with axis limits of [−1, 1].

To obtain the real-world positions and times of the virtual targets, the cluster means have to be renormalized to the

original coordinate system, with the inverse of the normalization process mentioned in Sec. III.E. After applying

the renormalization, the trajectories of the virtual targets are obtained, which can be used for further analysis and

downstream tasks.

V. Data Generation
Before training the CNFs model, data has to be generated to train the model. This data consists of trajectories of

simulated targets performing random maneuvers generated with a Monte Carlo simulation. If real data is available, it

can be used to train the model instead of generating synthetic data.

A. Simple Target

As a practical illustration of the problem described in Sec. II, consider a target flying in the horizontal plane, i.e.,

x ∈ R2, with a constant velocity and performing random maneuvers. This scenario serves as an instructive example of a

stochastically moving target. Three different types of maneuvers are assumed: left turn, right turn, and straight flight.

At the beginning of a trajectory (at the origin, flying northbound), the type and duration of the maneuver and the radius

(bounded by the lateral acceleration) of the turn are randomly chosen from a uniform distribution with parameters

depicted in Table 1. After the maneuver is completed, new maneuvers are randomly chosen until the total duration of the

trajectory is reached. Since no additional parameters are required for this simple scenario, 𝜓 is a vector of dimension

zero (𝜓 ∈ R0).

Trajectories created with this approach are shown in Fig. 7. Each dot denotes the change of the maneuver. Since

the trajectories are simulated with a time discretization of 0.1 s, trajectory data can be obtained and saved for all the

simulated time steps.

Figure 8 depicts histograms of samples of the distribution of the target positions for different times. The data was

created with a computationally expensive Monte Carlo simulation.

B. Complex Target

In order to demonstrate the capabilities of the model, a more complex scenario is considered. A ballistic target

influenced by disturbances is considered, flying along a ballistic trajectory in three dimensions, i.e., x ∈ R3. Due to the

disturbances, the target does not fly the ballistic trajectory exactly, but with some deviations, leading to a distribution

of possible trajectories, which is to be modeled. The ballistic trajectory is calculated according to Eq. (16) in the

North-East-Down frame.
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Table 1 Properties of the target maneuvers. Table reproduced from [18].

Property Value
Trajectory duration 100 s
Time discretization 0.1 s
Target speed 200 m/s
Minimum maneuver duration 5 s
Maximum maneuver duration 50 s
Minimum lateral acceleration 3 m/s2

Maximum lateral acceleration 20 m/s2

20 15 10 5 0 5 10 15 20
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20
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 in
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m

Trajectories

Fig. 7 Ten randomly generated simple target trajectories with a duration of 100 s. Figure adapted from [18].

¤x = v

¤v = g + d + w
(16)
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with

d = − 1
2 · BC

· 𝜌 · | |v| | · v

g = [0, 0, 𝑔]⊤

w ∼ N(0,𝚺)

BC =
𝑚

𝐴 · 𝐶𝐷

The change of the position x is equal to the velocity v and the change of the velocity v is equal to the sum of the

gravitational acceleration g, the deceleration d due to drag, and the disturbances w. The disturbance w is modeled as a

zero-mean Gaussian noise with a covariance matrix 𝚺.

The drag d is calculated with the ballistic coefficient BC, which is the ratio of the mass 𝑚 of the target to the

product of the cross-sectional area 𝐴 and the drag coefficient 𝐶𝐷 of the target. The goal of the model is to calculate the

distribution of the position x of the ballistic target after a certain time 𝑡.

Table 2 depicts the parameters of the ballistic trajectories used as training data. The ballistic coefficient of the

target is sampled from the uniform distribution U(200, 800) kg/m2 to allow for the prediction of the distribution of the

position of the target for any ballistic coefficient in the learned range. This serves as an example of how additional

parameters 𝜓 can be included in the model to predict the distribution of the target’s position for different parameters.

Thus, 𝜓 is a vector of dimension one (𝜓 ∈ R1) in this scenario.

Table 2 Parameters of the ballistic trajectories used as training data. Table adapted from [18].

Parameter Value
Trajectory duration 100 s
Time discretization 0.1 s
Air density 𝜌 1.225 kg/m3

Target ballistic coefficient U(200, 800) kg/m2

Target initial position [0, 0, -1000] m
Target initial velocity [100, 0, 0] m/s
Disturbance covariance matrix 𝚺 I3 m2/s4

Gravitational acceleration 𝑔 9.81 m/s2

Compared to the scenarios in Sec. V.A, the dynamics here differ dramatically:

• The target velocity is not constant but changes nonlinearly over time due to drag and the disturbance forces.

• The scenario takes place in three dimensions, instead of two dimensions.

• An additional parameter 𝜓 is added to the training data, namely the ballistic coefficient of the target.
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Figure 13 depicts samples of the distribution of the target positions for different times and BC = 500 kg/m2, obtained

by Monte Carlo simulation. It can be seen that the distribution of the target positions widens over time, due to the

influence of the noise.

VI. Simulation Results
With the above-described CNFs approach, the distribution of the target’s position can be modeled for any given

time and target dynamics and then clustered to obtain a set of representative trajectories. The results of the stochastic

predictions by the CNFs are presented in Sec. VI.A, followed by the generation of virtual target trajectories in Sec. VI.B.

A. Stochastic Predictions

In the following, three different scenarios are considered: First, a stochastically moving target is examined in

Sec. VI.A.1. Second, the application of the CNFs to predict trajectories of targets that are moving deterministically

is presented in Sec. VI.A.2. Finally, the prediction of the position of a ballistic target with stochastic disturbances is

examined in Sec. VI.A.3.

For all three scenarios, the same NNs and CNFs architecture are used, which are depicted in Tables 3 and 4.

1. Stochastic Maneuvers

First, the scenario described in Sec. V.A is examined. The latent dimension of the model, i.e., the dimension of

the base distribution, is set to 2, which means that the model can learn the distribution of the position of the target in

two dimensions, namely the 𝑥- and 𝑦-coordinate. Thus, a two-dimensional Gaussian distribution is used as the base

distribution that is transformed by the model to obtain the distribution of the position of the target.

After training the CNFs model for 1000 epochs (requiring 81 s of computation time∗) on the generated data described

in Sec. V and displayed in Fig. 8, the model is evaluated on the test data. The results of the model evaluation are shown

in Fig. 9. The figure depicts the absolute frequency from 104 samples (as a representation of the PDF) of the position of

the target at different times. Figure 10 depicts the learned PDF of the position of the target at different times.

When comparing the results to the test data depicted in Fig. 8, it can be seen that the model is able to predict the

position of the target quite well with a test loss of -2.85. Furthermore, the calculation time for the model evaluation is

independent of the time 𝑡 at which the distribution shall be predicted. Compared to the Monte Carlo simulation, the

time to create 104 samples is only about 0.17 s, compared to 6.64 s required for the Monte Carlo simulation for the a

simulated duration of 100 s. Not only is the sampling much faster, the use of CNFs also allows for an exact computation

of the PDF, which is not possible with the Monte Carlo trajectory generation method. Overall, we can conclude that

CNFs are a suitable tool for modeling the distribution of the target’s position.
∗All computations were performed with a Ryzen 7 6800U processor with 16 GB RAM.
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(a) 0 s (b) 45 s (c) 90 s

Fig. 8 Histograms of 104 samples of the probability density function of the position of the target at different
times obtained by Monte Carlo simulation. Figure reproduced from [18].

(a) 0 s (b) 45 s (c) 90 s

Fig. 9 Samples of the learned probability density function of the position of the target at different times. Figure
reproduced from [18].

(a) 0 s (b) 45 s (c) 90 s

Fig. 10 Learned probability density function of the position of the target at different times. Figure reproduced
from [18].
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Table 3 Parameters of the Neural Network. Table adapted from [18].

Parameter Value
Number of hidden layers 2
Number of hidden units 32
Activation function ReLU
Batch size 1000
Learning rate 0.003
Number of epochs 1000
Optimizer Adam
Loss function Negative log-likelihood

Table 4 Parameters of the Conditional Normalizing Flows model. Table adapted from [18].

Parameter Value
Number of flow layers 𝑛𝑙 4
Base distribution Standard Gaussian
Number of trajectories 104

Training data 80%
Validation data 20%
Noise injection standard deviation 0.01

2. Deterministic Maneuvers

To prove that a CNFs model with the same architecture can also be used for deterministic maneuvers, it is applied

to predict the position of the target described in Sec. V.A after a deterministic maneuver of infinite duration. The

maneuvers tested were flying straight, a left turn, and a right turn, each with a fixed lateral acceleration of 3 m/s2. In

essence, this means the target can choose one of three different deterministic trajectories. Compared to the previous

scenario, the target dynamics have changed, thus new training data is created in a similar way as before, but with the

new target dynamics. Figure 11 depicts the distribution of the target positions at different instances in the test data.

With the help of the new training data, the model is trained to predict the PDF of the position of the target at different

times. Figure 12 depicts samples of the learned distribution of the predicted target positions for different times. When

comparing it to the test data in Fig. 11, it can be seen that the model is able to predict the position of the target quite

well. Nevertheless, there are some outliers, which are caused by the fact that the values of the learned PDF are not

exactly zero. Thus, the model predicts a very low, but non-zero, probability for the target to be at a position other than

the three possible positions.

3. Ballistic Targets

The same CNFs model as in the previous sections is used to predict the distribution of the ballistic trajectories

described in Sec. V.B, but with a latent dimension (the dimension of the base distribution) of three, since the ballistic
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(a) 0 s (b) 45 s (c) 90 s

Fig. 11 Test data: Histograms of samples of the probability density function of the position of the target at
different times. Figure reproduced from [18].

(a) 0 s (b) 45 s (c) 90 s

Fig. 12 Learned distribution: Histograms of samples of the probability density function of the position of the
target at different times which does not change maneuvers. Figure reproduced from [18].
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trajectories are simulated in three dimensions. The training process was similar to the previous sections and required

about 119 s.

With the help of the trained model, the distribution of the ballistic trajectory can be predicted without the need to

simulate the ballistic trajectory multiple times. The required computation time for the prediction of 104 samples using

the CNFs is about 0.27 s, compared to the 178 s of the Monte Carlo simulation which was used to generate the training

data.

Figure 14 depicts the samples of 𝑝(x | 𝑡, 𝜓) created for 𝑡 ∈ {0, 45, 90} s into the flight of the ballistic trajectory

and 𝜓 = BC = 500 kg/m2. When comparing the learned distribution to the test data depicted in Fig. 13, which was

obtained through costly Monte Carlo simulation, we observe that the model is able to predict the distribution of the

ballistic trajectory quite well. While there are some samples (e.g., three samples in Fig. 14c) that do not fit the training

data, the overall shape of the distribution is similar to the test data depicted in Fig. 13, with a correct position of the

mean of the distribution and a correct shape of the distribution. Comparing this to the total of 104 samples generated by

the model, the number of such anomalies is considrabily low.

Only the distribution of the position of the target at 0 s is not predicted correctly: Whereas the mean of the

distribution is predicted correctly, the shape of the distribution is not predicted correctly, being elongated along the

direction of flight. A reason for this could be the training data: According to Table 2, all trajectories start at the position

[0, 0, -1000] m, leading to a singularity in the PDF at this position, since the value of the PDF at this position is infinite

to conserve an integral of 1. The injection of noise mitigates this problem but does not solve it completely.

B. Generation of Virtual Target Trajectories

Through the use of the CNFs, stochastic predictions of the target’s position can be made for any given time and

target dynamics. To make use of these predictions in applications such as guidance laws, path planning, etc., a set of

representative trajectories is generated from the samples as described in Sec. IV. In the following, the results of the

generation of virtual target trajectories are presented for various numbers of real targets and virtual targets, using the

stochastically moving target from Sec. VI.A.1 as an example. Table 5 shows the parameters used in the clustering

process.

Table 5 Parameters of the clustering process.

Parameter Value
Number of samples per target and time step 104

Number of time steps 10
Tolerance to stop the clustering algorithm 10−4
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(a) 0 s (b) 45 s (c) 90 s

Fig. 13 Monte Carlo simulation: samples of the probability density function of the position of the target with
BC = 500 kg

m2 at different times. Figure reproduced from [18].

(a) 0 s (b) 45 s (c) 90 s

Fig. 14 Samples of the learned probability density function of the position of the target with the additional
parameter 𝜓 = BC = 500 kg/m2 at different times. Figure reproduced from [18].

1. Single Target

The prediction for a single real target is shown in Fig. 15 with one to four virtual targets. When only one virtual target

(Fig. 15a) is predicted, the virtual target trajectory is similar to the average of the samples of the real target trajectories.

For applications where multiple virtual targets are required, the number of clusters can be increased. The prediction

of two virtual targets (Figures 15b) splits the samples roughly symmetrically in the East-West direction, implying the

possibility of a left and a right turn. When three virtual targets are predicted (Fig. 15c), the samples are assigned to three

clusters: a left turn, a right turn, and a straight flight. Interestingly, this concides with the multi-hypothesis approach

in [5] where the target is assumed to perform one of multiple maneuvers, including a left turn, a right turn, and a straight

flight. However, the problem of defining the radii of the turns is avoided by the virtual target approach as the k-means

clustering algorithm automatically determines the representative trajectories. When four virtual targets are predicted

(Fig. 15d), the samples of the real target are clustered into four virtual targets, resulting in a more detailed prediction of

the target’s future position.

Overall, the trajectories cover a wide range of possible virtual target trajectories, without explicitly defining the
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maneuvers. While the trajectories are not very smooth, the quality of the prediction can be improved by increasing the

number of samples and the number of time steps. Furthermore, smoothing techniques can be applied to the generated

trajectories to obtain smoother trajectories if required.

(a) One virtual target (b) Two virtual targets

(c) Three virtual targets (d) Four virtual targets

Fig. 15 Prediction of virtual target trajectories for a single real target (initial position: [0, 0] km, flying
northbound) with (a) one, (b) two, (c) three, and (d) four virtual targets and the respective clustered samples at
time 90 s.

2. Multiple Targets

As described in Sec. IV.A, the approach can be extended to multiple real targets by generating samples for each

target or type of target and then clustering the samples to obtain a set of representative trajectories. In the following, the

results for three real targets are shown, first for spatially separated targets and then for targets close to each other. The

total computation time to generate the 200 samples for each of the 10 time steps is 0.042 s. Clustering the samples takes
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about 0.1 s, regardless of the number of real and virtual targets.

Figure 16 shows the prediction for three real spatially separated targets with one to four virtual targets. When only

one virtual target is predicted for each real target, the virtual target trajectories are similar to the average of the real

target trajectories (Fig. 16a). Increasing the number of virtual targets to two or three still results in the prediction of

straight trajectories, just the position of the virtual targets is shifted (Figures 16b, 16c). When the number of virtual

targets is higher than the number of real targets (Fig. 16d), the samples of one real target are clustered into multiple

virtual targets, similar to Fig. 15.

When the real targets are close to each other, as shown in Fig. 17, the distributions of the target positions overlap,

leading to one left turn, one right turn, and one straight flight as virtual target trajectories.

(a) One virtual target (b) Two virtual targets

(c) Three virtual targets (d) Four virtual targets

Fig. 16 Prediction of virtual target trajectories for three real spatially separated targets (initial positions:
[0,−40] km, [0, 0] km, [0, 40] km, all targets flying northbound) with (a) one, (b) two, (c) three, and (d) four
virtual targets and the respective clustered samples at time 90 s.
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(a) One virtual target (b) Two virtual targets

(c) Three virtual targets (d) Four virtual targets

Fig. 17 Prediction of virtual target trajectories for three real targets close to each other (initial positions:
[0,−5], km[0, 0] km, [0, 5] km, all targets flying northbound) with (a) one, (b) two, (c) three, and (d) four virtual
targets and the respective clustered samples at time 90 s.
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VII. Conclusion
In this paper, an approach for the prediction of the representative trajectories of a stochastic target, denoted as virtual

target trajectories, and the probability density function of its future position is presented. The approach is based on

the usage of Conditional Normalizing Flows, which are trained with the help of Monte Carlo simulation data, and

time series k-means clustering to generate a set of representative trajectories. The presented results demonstrate the

method’s effectiveness in predicting target positions for various scenarios, including targets with stochastic maneuvers,

deterministic maneuvers, and ballistic trajectories with additional parameters. The approach is target-agnostic and can

be applied to different target types with appropriate training data.

Using Conditional Normalizing Flows, the position of the target at any given time can be predicted either by

directly calculating the learned probability density function or by sampling from it. This approach is useful in various

applications where predicting the target’s position is essential. Compared to Monte Carlo simulations, the approach is

computationally more efficient and allows for the calculation of the probability density function of the target’s position.

Since most targets do not follow perfectly deterministic trajectories, the usage of a stochastic predictor can take the

uncertainty of the target trajectory into account, potentially leading to more robust downstream applications. When

deterministic trajectories are required, the samples can be clustered to obtain a set of representative trajectories. Thus,

the presented approach allows to predict deterministic trajectories for stochastically moving targets, making it a versatile

tool for trajectory prediction. It can be used as a drop-in replacement for deterministic trajectory predictions used in

areas such as guidance laws, path planning, and other applications where a prediction of the target’s trajectory is needed.
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