
Value Function Decomposition in Markov Recommendation
Process

Xiaobei Wang ∗†

Kuaishou Technology
Beijing, China

wangxiaobei03@kuaishou.com

Shuchang Liu ∗

Kuaishou Technology
Beijing, China

liushuchang@kuaishou.com

Qingpeng Cai
Kuaishou Technology

Beijing, China
caiqingpeng@kuaishou.com

Xiang Li
Kuaishou Technology

Beijing, China
lixiang44@kuaishou.com

Lantao Hu
Kuaishou Technology

Beijing, China
hulantao@kuaishou.com

Han Li
Kuaishou Technology

Beijing, China
lihan08@kuaishou.com

Guangming Xie †

Peking University
Beijing, China

xiegming@pku.edu.cn

Abstract
Recent advances in recommender systems have shown that user-
system interaction essentially formulates long-term optimization
problems, and online reinforcement learning can be adopted to im-
prove recommendation performance. The general solution frame-
work incorporates a value function that estimates the user’s ex-
pected cumulative rewards in the future and guides the training of
the recommendation policy. To avoid local maxima, the policy may
explore potential high-quality actions during inference to increase
the chance of finding better future rewards. To accommodate the
stepwise recommendation process, one widely adopted approach
to learning the value function is learning from the difference be-
tween the values of two consecutive states of a user. However, we
argue that this paradigm involves an incorrect approximation in
the stochastic process. Specifically, between the current state and
the next state in each training sample, there exist two separate
random factors from the stochastic policy and the uncertain user
environment. Original temporal difference (TD) learning under
these mixed random factors may result in a suboptimal estimation
of the long-term rewards. As a solution, we show that these two
factors can be separately approximated by decomposing the origi-
nal temporal difference loss. The disentangled learning framework
can achieve a more accurate estimation with faster learning and

∗ The first two authors contributed equally to this work.
‡ Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WWW ’25, Sydney, NSW, Australia.
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1274-6/25/04
https://doi.org/10.1145/3696410.3714807

improved robustness against action exploration. As empirical veri-
fication of our proposed method, we conduct offline experiments
with online simulated environments built based on public datasets.

CCS Concepts
• Information systems → Recommender systems; • Comput-
ingmethodologies→Reinforcement learning;Markov decision
processes.

Keywords
Recommender Systems, Reinforcement Learning, Markov Decision
Process

ACM Reference Format:
Xiaobei Wang ∗†, Shuchang Liu ∗, Qingpeng Cai, Xiang Li, Lantao Hu, Han
Li, and Guangming Xie †. 2025. Value Function Decomposition in Markov
Recommendation Process. In Proceedings of the ACM Web Conference 2025
(WWW ’25), April 28–May 2, 2025, Sydney, NSW, Australia. ACM, New York,
NY, USA, 14 pages. https://doi.org/10.1145/3696410.3714807

1 Introduction
Recommender systems play a crucial role in enhancing user experi-
ence across a variety of online platforms such as e-commerce, news,
social media, and micro-video platforms. Their primary objective
is to filter and recommend content that aligns with users’ interests
and preferences, improving user engagement with the platform.
Early studies considered this as a ranking problem and built col-
laborative filtering solutions [27, 28, 49] aimed at minimizing the
errors between item-wise labels and the ranking score prediction.
Later approaches found that sequential modeling [24, 25, 52] of user
histories can better capture the dynamics of user interest and offer
more accurate predictions of the future. In recent studies, many
recommendation scenarios have shown that the learning target
should also go beyond immediate feedback and extend to the future
influence, in which reinforcement learning (RL) methods [2, 68]
can further improve the long-term cumulative reward and achieve
state-of-the-art recommendation performance.

ar
X

iv
:2

50
1.

17
40

9v
1

 [
cs

.I
R

]
 2

9
Ja

n
20

25

https://doi.org/10.1145/3696410.3714807
https://doi.org/10.1145/3696410.3714807

WWW ’25, April 28–May 2, 2025, Sydney, NSW, Australia. Xiaobei Wang et al.

Magnitude of Exploration Magnitude of Exploration

Average Reward Min Reward

Figure 1: The proposed decomposition method on the RL
backbone (i.e. HAC) in KuaiRand dataset improves the over-
all performance and is more robust to exploration of recom-
mendation actions.

The fundamental idea behind RL-based recommendation meth-
ods is considering the user-system interaction sequence as aMarkov
Decision Process (MDP) [45, 46, 51] so that each recommendation
action only depends on the current user state and optimize the long-
term performance. Specifically, each context-aware user request
consists of the user’s static profile features and dynamic interac-
tion history, which is later encoded as the user state. Between the
consecutive user states, the recommendation policy first takes the
current state as input and outputs a recommendation list (or item)
as the action, then the user environment receives this action and
generates user feedback that will determine the immediate reward
and the transition toward the next state. This interaction between
the policy and the user forms a full cycle in the Markov Recom-
mendation Process (MRP). Then the goal is usually formulated as
the maximization of the cumulative reward which represents the
long-term performance of the policy. In other words, RL-based
methods optimize the policy with the total effect in the future as
a target label, which is different from traditional learning-to-rank
methods [34] that only optimize the policy with immediate feed-
back. The key to effectively guiding the policy is finding an accurate
value function that approximates the expected long-term reward
for actions sampled in given states. To accommodate the stepwise
samples in recommendation problems and rapidly adapt the dy-
namic user interests in the online learning environment, a temporal
difference (TD) learning technique is adopted [54, 68] that either
minimizes the error between the two consecutive state evaluation
(denoted as Value-based TD) or minimize that between the two
consecutive state-action pairs (denoted as action’s Quality-based
TD), as illustrated in Figure 2-a.

Though they are effective, we find that it is challenging to obtain
a stable and accurate value function in online RL due to the severe
exploration-exploitation trade-off [4, 14, 33] in recommender sys-
tems. On one hand, TD learning may achieve better value function
accuracy when the policy’s exploration of actions is restricted to a
small variance (which may work well in simple scenarios with a
small item candidate pool), but it also reduces the chance of finding
better actions and has a higher chance being trapped in local max-
ima. On the other hand, the policy may increase the magnitude of
action exploration to find potentially better policies, but this also
makes it harder for stable and accurate value function learning due

to the increased variance. In this paper, we argue that one of the key
reasons that limit the accuracy of the value function is the mixed
view of the two random factors in the MRP: the policy’s random
action exploration and the stochastic user environment. As
we will illustrate in section 3.2 and Appendix A, mixing the two
random factors would introduce a negative effect on stepwise TD
learning. As a consequence, the resulting value function becomes
suboptimal and limits the effectiveness of exploration.

To address the aforementioned limitations, we propose to de-
compose the standard TD learning paradigm of the value function
into two separate sub-problems with respect to each random fac-
tor, as shown in Figure 2-b. In the first sub-problem, our primary
focus is developing an accurate approximation of the user state’s
long-term utility, mitigating the influences from the random policy.
In contrast, the second sub-problem focuses on refining a precise
function for the state-action pair, which captures the recommenda-
tion actions’ effectiveness, excluding the influence of the inherent
randomness of the user environment. We show that the decom-
posed objectives bound the original TD learning objective, and the
exclusion of unrelated random factors potentially speeds up the
learning process. As empirical verification, we show the superiority
of our solution in finding better policies through online evaluation
of simulated environments. Meanwhile, the resulting framework
becomes more robust to action exploration as exemplified in Fig-
ure 1. In extreme cases where the policy “overexplores” the action
space, the proposed method can still effectively optimize the value
function while the baseline crashes in terms of recommendation
performance.

In summary, our contributions are as follows:

• We specify the challenge of suboptimal TD learning under
the mixed random factors between policy action exploration
and stochastic user environment.

• We propose a decomposed TD learning framework that sep-
arately addresses the two random factors and empirically
shows its superiority in online RL-based solution.

• We verify that the proposed decomposition technique pro-
vides more robust performance under action exploration and
a faster learning process across multiple TD-learning-based
methods.

2 Related Work and Problem Definition
2.1 Sequential Recommendation
Sequential recommendation (SR)models aim to capture users’ evolv-
ing preferences by treating their historical interactions as a se-
quence. A widely adopted approach in SR is the use of sequential
encoders, which can be based on either Markov chains or Recur-
rent Neural Networks (RNNs). Markov chain-based models [21, 50]
predict the next item based on a limited number of previous inter-
actions and focus on first-order transition signals. In contrast, RNN-
based models like GRU4Rec [24] and HGN [37]recursively process
sequential inputs, allowing for a more nuanced understanding of
sequential data. SASRec [25] was the pioneering work that applied
the Transformer architecture to SR, followed by BERT4Rec [52],
which enhanced SASRec by incorporating bidirectional attention
mechanisms.

Value Function Decomposition in Markov Recommendation Process WWW ’25, April 28–May 2, 2025, Sydney, NSW, Australia.

a) Standard TD approach b) TD Decomposition approach

 ...

 ...

Figure 2: The general Markov Recommendation Process. Standard TD approaches (left) either adopt𝑄-based or𝑉 -based TD. Our
solution (right) decomposes the learning into two objectives for random policy and stochastic user environment respectively.

Recent advancements in SR have led to the exploration of sev-
eral novel research areas, which include the graph [40], multi-task
learning [19, 41–43], lifelong behavior patterns [7, 11, 48], large
language models (LLMs) to model latent user interests [39], and
reinforcement learning (RL) for user’s long-term value.

2.2 Reinforcement Learning for
Recommendation

The RL-based recommendation system [1, 54, 68] operates within
the Markov Decision Process (MDP) framework, aiming to optimize
cumulative rewards which reflects the long-term user satisfaction.
While tabular-based methods [38] can optimize an evaluation table
in simple settings, they are constrained to a small fixed set of state-
action pairs. There exists some recent solutions [12, 35, 59, 65]that
solves different problems including offline RL problems such as
finding optimal ranking and click-through-rate prediction. For
larger action space and state space, studies have found solutions
with value-based methods [47, 55, 67, 70], policy gradient meth-
ods [5, 8, 9, 17, 18, 30, 60], and actor-critic methods [6, 57, 61–
64, 68, 69]. Among existing methods, the temporal difference (TD)
technique [22, 54?] has been widely used to learn and optimize
long-term rewards due to its stepwise learning framework that well-
suits the recommendation task and online learning environment.
Our method also aligns with this paradigm. Despite the efficacy of
TD learning, reinforcement learning encounters new challenges
in accommodating recommender systems, including exploration
in combinatorial state/actions space [14, 23, 32, 33], dealing with
unstable user behavior [3, 10], addressing heterogeneous user feed-
back [6, 13], and managing multi-task learning [15, 36, 56?].

Additionally, in the realm of general reinforcement learning [54],
there are several works that described possible alternatives for
TD learning [44, 53] in specific scenarios. One of the works that
is closer in methodology is the Dueling DQN [58]. It proposes a
way to decompose the 𝑄 function into a value function and advan-
tage function so that one can learn a 𝑉 function in the Q-learning
framework.

2.3 Problem Formulation
In this section, we present the Markov Recommendation Process
(MRP) for online RL. Assume a candidate pool of N items denoted by

I and assume a pre-defined reward function 𝑟 (·) for the observed
user feedback. Then, the MRP components are:
• S: the continuous representation space of the user state, and
each state 𝑠𝑡 encodes the user and context information upon the
recommendation request at step 𝑡 .

• A: the action space corresponds to the possible recommendation
lists. For simplicity, we consider the list of fixed size 𝐾 so the
action space isA = I𝐾 . In this paper,We set K=6 to alignwith the
configurations employed in several existing studies[33, 57, 66].

• 𝑟 (𝑠𝑡 , 𝑎𝑡): the immediate reward that captures the user feedback
for the recommendation action 𝑎𝑡 ∈ A on user state 𝑠𝑡 ∈ S. In
this paper, we denote 𝑟𝑡 = 𝑟 (𝑠𝑡 , 𝑎𝑡) .

• 𝜋 : S → A, the recommendation policy that outputs an item
or a list of items as an action for each request, and we assume
that the policy applies random action exploration in the online
learning setup.

• 𝑃 : S × A → S, the stochastic state transition function where
the randomness only comes from the user environment. In other
words, the recommendation problem has a stochastic partially
observable user environment, and the next-state distribution of
𝑃 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡) is assumed unknown.

Then, for each stepwise interaction cycle, a training sample collects
the information as a tuple D𝑡 = (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1, 𝑑) where 𝑑 ∈ {0, 1}
represents whether the session ends after taking action 𝑎𝑡 . Follow-
ing the intuition of long-term performance optimization, the Goal
is to learn a policy that can generate an action 𝑎𝑡 at any step 𝑡
that maximizes the user’s expected cumulative reward over the
interactions in the future:

E[𝑟𝑡] = E[
∞∑︁
𝑖=0

𝛾𝑖𝑟𝑡+𝑖] (1)

where 𝛾 ∈ [0, 1] is the discount factor that balances the focus of
immediate reward and the long-term rewards, and the expectation
term implicitly includes the two random sampling factors i.e. policy
and user environment. Note that in the online RL setting, we ignore
the user’s leave-and-return behavior (and the influence of signal
𝑑) by the end of each session, and assume an infinite horizon of
the MRP as reflected in Eq.(1). Additionally, the user state encoder
usually adopts neural networks to encode the user profile and
context features and uses sequential models to dynamically encode

WWW ’25, April 28–May 2, 2025, Sydney, NSW, Australia. Xiaobei Wang et al.

the user interaction history in practice. In this work, we consider
the detailed encoder design as complementary work and focus on
the reasoning of the learning framework.

3 Method
3.1 Reinforcement Learning with Temporal

Difference
Directly optimizing Eq.(1) requires the sampling of the user’s tra-
jectories, but this is impractical for recommendation scenarios with
large numbers of users and items. As an alternative, Temporal Dif-
ference (TD) learning can naturally accommodate the stepwise
online learning environment of the recommender system, taking
advantage of dynamic programming(DP) and Monte Carlo meth-
ods(MC). Specifically, for each given data sample D𝑡 it defines a
value function 𝑉 (𝑠𝑡) that estimates Eq.(1) at any step 𝑡 . Then the
temporal difference between two consecutive states can be captured
by the value function estimator:

𝑉 (𝑠𝑡) = E𝑎𝑡 |𝑠𝑡E𝑠𝑡+1,𝑟𝑡 |𝑠𝑡 ,𝑎𝑡
[
𝑟𝑡 + 𝛾𝑉 (𝑠𝑡+1)

]
(2)

where the first expectation considers the random policy and the
second expectation corresponds to the stochastic user environment.
Then we can (approximate it with sampling and) optimize the
difference between 𝑉 (𝑠𝑡) and 𝑉 (𝑠𝑡+1) through the error to the
observed immediate reward, which derives the standard value-
based TD loss:

LVTD =

(
𝑟𝑡 + 𝛾𝑉 (𝑠𝑡+1) −𝑉 (𝑠𝑡)

)2
(3)

Similarly, the difference between state-action pairs also has the
corresponding approximation:

𝑄 (𝑠𝑡 , 𝑎𝑡) = E𝑠𝑡+1,𝑟𝑡 |𝑠𝑡 ,𝑎𝑡
[
𝑟𝑡 + 𝛾E𝑎𝑡 |𝑠𝑡 [𝑄 (𝑠𝑡+1, 𝑎𝑡+1)]

]
(4)

which derives the following Q-based TD loss:

LQTD =

(
𝑟𝑡 + 𝛾𝑄 (𝑠𝑡+1, 𝑎𝑡+1) −𝑄 (𝑠𝑡 , 𝑎𝑡)

)2
(5)

These two types of functions describe different segments of the
MDP as illustrated in Figure 2-a. While the learned value function
𝑉 estimates the expected performance of the observed user state,
the learned 𝑄 function estimates the expected performance of an
action on a given state.

Ideally, when the value function or the Q function is well-trained
and accurately approximates the expected cumulative reward, we
can use them to guide the policy either through the advantage
boosting loss as in A2C [26]:

Lpolicy = −𝐴𝑡 log𝜋 (𝑎𝑡 |𝑠𝑡)
𝐴𝑡 = 𝑟𝑡 + 𝛾𝑉 (𝑠𝑡+1) −𝑉 (𝑠𝑡)

(6)

where the larger advantage 𝐴𝑡 an action generates, the more likely
this action gets selected; or we can optimize the policy in an end-to-
end manner through expected reward maximization as in DDPG:

Lpolicy = −𝑄 (𝑠𝑡 , 𝑎𝑡)
𝑎𝑡 ∼ 𝜋 (·|𝑠𝑡)

(7)

where a larger 𝑄 estimation of the action induces a higher chance
of selection.

3.2 The Challenge of Mixing Random Factors
Though the aforementioned TD learning has been proven effective,
the overall framework essentially ignores the effect of the mixed
random factors from policy and the user environment as described
in section 1. Specifically, the randomness in the user environment
merely depends on the user’s decision which is conditionally inde-
pendent from the policy, but it directly affects the observed reward
for a given state-action pair. For example, the user may still skip
the recommended item when something else draws the attention,
even if the item is attractive to the user. In contrast, the policy’s
action is a controllable random factor in terms of the exploration
magnitude. It is conditioned on the given state, but only indirectly
affects the observed reward with the existence of stochastic users.

However, TD learning in Eq.(3) and Eq.(5) does not distinguish
these two factors which results in suboptimal estimation. Partic-
ularly, we can define the random difference brought by the user
as Δ𝑢 which partially explains the error between the estimation of
next-state’s 𝑉 and the 𝑄 of the current state-action pair:

𝑟𝑡 + 𝛾𝑉 (𝑠𝑡+1) = 𝑄 (𝑠𝑡 , 𝑎𝑡) + Δ𝑢 (8)

which instantiates the statistical relation:

𝑄 (𝑠𝑡 , 𝑎𝑡) = E𝑠𝑡+1,𝑟𝑡 |𝑠𝑡 ,𝑎𝑡
[
𝑟𝑡 + 𝛾𝑉 (𝑠𝑡+1)

]
(9)

Similarly, we can define Δ𝜋 as the difference brought by the pol-
icy’s random action which partially explains the error between the
estimation the state value 𝑉 and 𝑄 of the state-action pair:

𝑄 (𝑠𝑡 , 𝑎𝑡) = 𝑉 (𝑠𝑡) + Δ𝜋 (10)

which instantiates the statistical relation:

𝑉 (𝑠𝑡) = E𝑎𝑡 |𝑠𝑡
[
𝑄 (𝑠𝑡 , 𝑎𝑡)

]
(11)

Then, combining Eq.(3) and Eq.(8), the value-based TD learning
for the value function 𝑉 becomes:

LVTD =

(
𝑄 (𝑠𝑡 , 𝑎𝑡) + Δ𝑢 −𝑉 (𝑠𝑡)

)2
(12)

where the existence of Δ𝑢 (which is conditionally independent
from 𝑄) makes it harder to reach the correct estimation of Eq.(11).
Furthermore, during policy optimization such as Eq.(6), the ad-
vantage term will also include this user random factor (i.e. 𝐴𝑡 =

𝑄 (𝑠𝑡 , 𝑎𝑡) + Δ𝑢 −𝑉 (𝑠𝑡)). This may misguide the policy because of
the user’s influence in Δ𝑢 . Similarly, combining Eq.(5) with Eq.(10),
the Q-based TD learning for the 𝑄 function becomes:

LQTD =

(
𝑟𝑡 + 𝛾𝑉 (𝑠𝑡+1) + 𝛾Δ𝜋 −𝑄 (𝑠𝑡 , 𝑎𝑡)

)2
(13)

where the existence of Δ𝜋 (which is independent of the previous
stochastic user state transition) introduces extra noise for the ap-
proximation of Eq.(9). This may potentially downgrade the effec-
tiveness of the 𝑄 function (e.g. using Eq.(7)) and become reluctant
to guide the policy learning.

In both cases, the inaccurate TD learning is suboptimal and re-
quires more sampling efforts to approach a valid approximation,
which potentially results in slower and harder training. Further-
more, when adopting action exploration in online RL, one may have
to restrict the exploration magnitude to a relatively low level in
order to keep Δ𝜋 small and increase the accuracy of the estimation.
However, this scarifies the model’s exploration ability and has a
lower chance of reaching global maxima.

Value Function Decomposition in Markov Recommendation Process WWW ’25, April 28–May 2, 2025, Sydney, NSW, Australia.

3.3 Exclude Irrelevant Random Factors in TD
Decomposition

As a straightforward derivation from the analysis in section 3.2,
we propose to eliminate the irrelevant terms during training. The
resulting framework consists of two separate learning objectives
for random policy and stochastic user environment respectively.

The first objective optimizes the 𝑄 function with the 𝑉 function
fixed (with stopped gradient):

LactionTD =

(
𝑟 (𝑠𝑡 , 𝑎𝑡) + 𝛾𝑉 (𝑠𝑡+1) −𝑄 (𝑠𝑡 , 𝑎𝑡)

)2
(14)

which directly matches Eq.(9). This objective focuses on learning
a correct estimate of 𝑄 (𝑠𝑡 , 𝑎𝑡), which is conditioned on the sam-
pled action. In other words, LactionTD optimizes 𝑄 to capture Δ𝜋
and eliminate the effect of Δ𝑢 by error minimization. The second
objective optimizes the 𝑉 function with the 𝑄 function fixed:

LstateTD =

(
𝑉 (𝑠𝑡) −𝑄 (𝑠𝑡 , 𝑎𝑡)

)2
(15)

which directly matches the goal of Eq.(11). This objective focuses on
learning the correct value function𝑉 (𝑠𝑡) of a given statewithout the
influence of a random action exploration. In other words, LstateTD
optimizes 𝑉 to capture Δ𝑢 and eliminate the effect of Δ𝜋 through
error minimization.

Combining the two objectives, we form the TD Decomposi-
tion framework that simultaneously optimizes 𝑄 and 𝑉 as shown
in Figure 2-b, and both functions can be approximated by neural
networks. While the state learning objective LstateTD uses𝑄 as the
label for 𝑉 , the LactionTD uses immediate reward 𝑟𝑡 and 𝑉 as tar-
gets for𝑄 . The combined learning framework is theoretically more
accurate due to the removed noise from irrelevant random factors
and consistently bounds the original TD learning. In comparison,
optimizing the standard LVTD and LQTD sometimes misguide the
learning of 𝑉 and 𝑄 . We present the details of these analyses in
Appendix A.

In addition to the improved accuracy, the decomposed TD also
has several extra advantages:
• Because the decomposition removes the irrelevant terms in each
separate learning task, the corresponding𝑉 and𝑄 can learn from
more accurate signals with fewer samples. In other words, we
expect a faster learning under this new framework as we will
verify in section 4.2.2.

• When increasing the exploration of action, the Δ𝜋 is only cap-
tured by 𝑄 (𝑠𝑡 , 𝑎𝑡) in Eq.(14). The large variance of Δ𝜋 does not
affect the learning of 𝑉 since it is removed from Eq.(15). Intu-
itively, this would help improve the robustness against action
exploration as we provide empirical evidence in section 4.3.1.

• The frameworkwill learn both𝑉 and𝑄 functionswhich can adapt
to TD-based methods that uses either Eq.(3) or Eq.(5). This means
that this decomposition is a general technique that can benefit
a wide range of RL-based recommender systems, including but
not limited to A2C and DDPG.

3.4 Action Discrepancy and Debiased
Decomposition

In online RL, another challenge that may affect the accuracy of TD
learning is the discrepancy between the action distribution in the

past and the present, especially when the policy frequently changes
along with user dynamics and continuous training. Without loss
of generality, let 𝜋 (𝑎𝑡 |𝑠𝑡) represent the likelihood of generating 𝑎𝑡
using the current policy and let 𝑝 (𝑎𝑡 |𝑠𝑡) represent the observed like-
lihood from the past policy when the sample is collected. Consider
the correct expected loss as:

E𝑎𝑡∼𝜋 [LstateTD] (16)

taking the derivative and the minimization point with zero gradient
corresponds to:

2
∫
𝑎𝑡

𝜋 (𝑎𝑡 |𝑠𝑡) (𝑉 (𝑠𝑡) −𝑄 (𝑠𝑡 , 𝑎𝑡)) = 0

⇒𝑉 (𝑠𝑡)
∫
𝑎𝑡

𝜋 (𝑎𝑡 |𝑠𝑡) =
∫
𝑎𝑡

𝜋 (𝑎𝑡 |𝑠𝑡)𝑄 (𝑠𝑡 , 𝑎𝑡))

⇒𝑉 (𝑠𝑡) = E[𝑄 (𝑠𝑡 , 𝑎𝑡)] = 𝑉 ∗

(17)

where 𝑉 ∗ represents the correct value estimation. Yet, the sampled
action in the past does not necessarily follow the distribution of 𝜋 ,
which explains the aforementioned discrepancy. As a countermea-
sure in our decomposed TD learning, we include an extra debias
term 𝛽 for the state TD:

L𝛽−stateTD = 𝛽

(
𝑉 (𝑠𝑡) −𝑄 (𝑠𝑡 , 𝑎𝑡)

)2
𝛽 =

𝜋 (𝑎𝑡 |𝑠𝑡)
𝑝 (𝑎𝑡 |𝑠𝑡)

(18)

which is theoretically derived from the following transformation:

E𝑎𝑡∼𝜋 [LstateTD] =
∫
𝑎𝑡

𝜋 (𝑎𝑡 |𝑠𝑡)
(
𝑉 (𝑠𝑡) −𝑄 (𝑠𝑡 , 𝑎𝑡)

)2
=

∫
𝑎𝑡

𝑝 (𝑎𝑡 |𝑠𝑡)
𝜋 (𝑎𝑡 |𝑠𝑡)
𝑝 (𝑎𝑡 |𝑠𝑡)

(
𝑉 (𝑠𝑡) −𝑄 (𝑠𝑡 , 𝑎𝑡)

)2
= E𝑎𝑡∼𝑝 [L𝛽−stateTD]

(19)

Intuitively, this debias term would help refine the learning of 𝑉
towards a closer estimation of the correct target 𝑉 ∗ of the current
policy even when the sample comes from a policy in the past.

4 Experiments
In this section, we illustrate the experimental support for our claims
through the evaluation of simulated online learning environments.
We summarize our research focus as follows:

• Verify the correctness and faster convergence of our decom-
position method by recommendation performance compari-
son with stepwise TD counterpart.

• Verify that the proposed TD decomposition is more robust
to action exploration.

• Analyze the behavior of the state TD loss and action TD loss
and the stability of the combined optimization.

4.1 Experimental Settings
4.1.1 Datasets andOnline Simulator. We include three public datasets
in our experiments: MovieLens-1M[20], Amazon(book)[29] and
KuaiRand1K[16]. The ML1M dataset contains one million user
ratings of movies, while KuaiRand1K is a dataset that includes
multi-behavior user interaction records with short videos sampled

WWW ’25, April 28–May 2, 2025, Sydney, NSW, Australia. Xiaobei Wang et al.

for one thousand users. Note that the traditional offline evalua-
tion in the recommender system is not well-suited for online RL
methods since they do not provide the estimation of dynamically
changing environment and labels for unseen interaction sequences.
Instead, we preprocess the datasets and construct the simulated en-
vironment for online learning similar to that in KuaiSim[66]. Both
datasets were cleaned by removing users/items with fewer than 10
interactions and reconstructed records chronologically. In order to
generate realistic user feedback, a user response model is trained
to estimate the probability of a user’s click based on their dynamic
interaction history and static profile features. During online RL,
the user simulator will produce immediate feedback (of user clicks)
according to this model and serve as the interactive environment.
The reward design follows the KuaiSim system which considers
a reward of 1.0 for a click and -0.2 for a missing click. The maxi-
mum episode depth is limited to 20 by the temper-based user leave
model which maintains a user’s budget of temper, and the budget
decreases during the online interactions until it reaches a threshold
and triggers the leaving of the user.

4.1.2 Evaluation Protocol. After preparing datasets and their cor-
responding online simulators, we can use the simulated user en-
vironment to engage in training of online RL models. Empirically,
all tested methods converge within 30,000 steps and we evaluate
their average performance in the last 100 episode steps. As main
evaluation metrics, we include the average total reward (without
discount) of a user session and session depth as accuracy indicators.
For extreme cases, we include the minimum reward metric of
user sessions in each batch sample. We would identify the superior
performance as the aforementioned accuracy metrics have higher
values. In addition, to observe the stability of the method, we also
include the reward variance for each batch of samples.

4.1.3 Baselines. We implemented the following baselines to pro-
vide a comparison in our evaluation:

• Supervision (Non-RL): a supervised learning method similar
to [25], which uses transformer to encode user history and neu-
ral networks to encode user profile. The item-wise score is a
dot product between user encoding and item encoding, and we
optimize it through binary cross-entropy loss.

• A2C [26]: a family of actor-critic RL methods that combine the
policy gradient optimizationwith Eq.(6) andV-learning approaches
with Eq.(3).

• DQN [45]: a model-free RL method that uses a deep neural net-
work to approximate the Q-value function with Eq.(5). DQN
employs an epsilon-greedy strategy to balance exploration and
exploitation during the learning process.

• DDPG [31]: an actor-critic framework that optimizes the critic
with Eq.(5), and optimizes the policy actions in the continuous
action space with Eq.(7) with Gaussian-based exploration.

• HAC [33]: an advanced version of DDPG specifically designed
for recommendation. It extends the actor-critic framework for
request-level scenarios and uses a vectorized hyper action to
represent each item list. HAC includes additional action space
regularization and item-wise supervision to further improve per-
formance and learning stability.

Figure 3: Performance between original and decomposed TD
method on A2C in KuaiRand dataset.

Figure 4: Performance between original and decomposed TD
method on HAC in KuaiRand dataset.

• SQN [61]: SQN augments existing recommendation models with
an additional reinforcement learning output layer that serves as
a regularizer, allowing the model to focus on specific rewards.

• Dueling DQN [58] (D-DQN): a model-free RL algorithm that
extends the Q-Learning algorithm to deal with the problem of
learning in continuous action spaces. The key innovation of
Dueling DQN is the introduction of a dueling network architec-
ture that separates the computation of state-value function as
𝑄 (𝑠𝑡 , 𝑎𝑡) = 𝑉 (𝑠𝑡) +𝐴(𝑠𝑡 , 𝑎𝑡), which achieves the value estimation
under the Q-learning objective.
For all methods, we implement an experience replay buffer for

the online learning process and the exploration of action will di-
rectly influence the sample distribution in the buffer. For frame-
works that use TD learning (i.e. A2C, DQN, DDPG, and HAC), we
apply the proposed TD decomposition to verify its effectiveness
across various RL backbones. D-DQN cannot integrate TD decom-
position since it is already a decomposition method. To ensure fair
comparison, we adopt the same neural network structure across 𝑉
functions, and the same structure across 𝑄 as well. The user states
are obtained using the same structure as the user encoder in the
Supervision baseline, and all RL methods use this same state en-
coder design. For reproduction of our empirical study, we provide
implementation and training details in our released source code 1.

4.2 Main results
4.2.1 Recommendation Performance: For each experiment of all
models, we conducted five rounds of online training with different
random seeds and reported the average results in Table (1). We
can see that the A2C, DDPG, and HAC can consistently improve
performance over supervision baselines, indicating the superiority
of RLmethods that can optimize long-term user rewards. The DDPG

1https://anonymous.4open.science/r/TD_Decomposition

Value Function Decomposition in Markov Recommendation Process WWW ’25, April 28–May 2, 2025, Sydney, NSW, Australia.

Table 1: Online simulation performance of all methods and their corresponding decomposition.The better performances
compared with original and decomposed in bold and the best in Underline. The “Improv.” denotes the relative improvements
over the original method.

Model Total Reward in ML1M Total Reward in KuaiRand Total Reward in Amazon

Original Decomposed Improv. Original Decomposed Improv. Original Decomposed Improv.

Non-RL 15.97 ±(2.21) - - 10.28 ±(3.78) - - - - -
D-DQN 15.83 ±(0.31) - - 10.79 ±(4.38) - - 10.43 ±(3.27) - -
A2C 17.19 ±(0.34) 17.62 ±(0.23) 2.50% 11.91 ±(0.90) 15.91 ±(0.36) 33.59% 11.24 ±(0.78) 13.11 ±(0.92) 16.64%
DQN 15.95 ±(0.53) 16.14 ±(0.42) 1.19% 10.74 ±(4.68) 13.44 ±(1.41) 25.14% 10.36 ±(3.60) 11.94 ±(1.41) 15.25%
DDPG 13.52 ±(1.83) 17.05 ±(1.01) 26.11% 12.86 ±(1.65) 13.78 ±(1.59) 7.15% 10.99 ±(1.85) 11.58 ±(1.52) 5.37%
HAC 16.89 ±(1.80) 17.76 ±(0.42) 5.15% 12.47 ±(1.00) 16.89 ±(0.52) 35.45% 12.17 ±(0.63) 13.31 ±(1.02) 9.37%
SQN 16.33 ±(0.45) 16.88 ±(0.38) 3.37% 11.22 ±(0.76) 15.42 ±(0.70) 37.43% 6.94 ±(0.53) 11.74 ±(0.83) 69.16%

Table 2: The effect of action exploration in HAC. 𝜎 represents the magnitude of action exploration. The better performances
compared with native and decomposed in bold and the best in Underline.

𝜎
Total Reward in ML1M Total Reward in KuaiRand Total Reward in Amazon

Original Decomposed Original Decomposed Original Decomposed

1 11.95 ±(5.28) 17.70 ±(0.45) 3.14 ±(0.12) 8.54 ±(0.22) 1.20 ±(0.18) 2.01 ±(0.28)
0.9 12.48 ±(5.31) 17.66 ±(0.34) 3.24 ±(0.23) 9.01 ±(0.30) 1.17 ±(0.12) 2.14 ±(0.17)
0.7 13.35 ±(5.18) 17.38 ±(0.68) 3.33 ±(0.28) 11.76 ±(0.14) 1.25 ±(0.22) 2.82 ±(0.37)
0.5 14.32 ±(4.43) 17.58 ±(0.27) 4.32 ±(0.87) 14.86 ±(0.49) 1.31 ±(0.33) 4.17 ±(0.49)
0.3 15.48 ±(2.52) 17.59 ±(0.59) 5.89 ±(0.75) 16.19 ±(0.25) 2.30 ±(1.11) 9.31 ±(0.68)
1e-1 16.89 ±(1.80) 17.76 ±(0.42) 10.07 ±(1.09) 16.89 ±(0.52) 6.75 ±(0.84) 12.97 ±(0.86)
1e-2 17.06 ±(1.03) 17.37 ±(0.94) 12.47 ±(1.00) 16.15 ±(0.59) 12.17 ±(0.63) 13.31 ±(1.02)

Figure 5:LstateTD andLactionTD curves for TD decomposition
methods

only improves the results in KuaiRand but is inferior to supervision
in ML1M, which might indicate that the ML1M environment is
easier as a recommendation task. TheDuelingDQNmethod learns V
and Advantage simultaneously and generates Q for the TD learning
process. However, this decomposition does not solve the problem
of mixing random factors and may introduce extra learning costs

to achieve the same level of accuracy. As a result, its performance
appears to be suboptimal compared to other advanced RL methods.

In general, the proposed TD decomposition demonstrates stronger
performance than the original TD, and this observation is consis-
tent across all four backbones (A2C, DQN, DDPG, and HAC) and
across both datasets. Specifically, in the ML1M environment, the
decomposed methods exhibit slight improvements in rewardsin
DDPG and HAC are statistically significant. All improvements in
KuaiRand and Amazon are statistically significant (student-t test
with 𝑝 < 0.05). Note that the overall improvement of TD decom-
position is larger in KuaiRand than in ML1M and Amazon, which
indicates a harder recommendation environment. This difference
might be related to the fact that short-video platforms involve more
dynamics of users’ intensive interactions, compared with movie
and book recommendations.

4.2.2 Faster Learning of TD Decomposition. To further illustrate
the training behavior of the TD decomposition method, we plot
the learning curves of the two most effective baselines (i.e. A2C
and HAC) and compare them with TD decomposition counterparts
in Figure 3 and Figure 4. We can see that the TD decomposition
achieves a faster and better reward boost in the beginning and
the converged point reveals consistently better performance. In
the extreme cases illustrated by the minimum reward plot, the
value functions from the original TD learning become reluctant to
guide the policy in the later training process, but the decomposition

WWW ’25, April 28–May 2, 2025, Sydney, NSW, Australia. Xiaobei Wang et al.

Figure 6: Performance of stepwise TD approach with respect
to 𝛽 in KuaiRand dataset.

methods achieve continuous improvement over time indicating a
more accurate guidance with continuous exploration. We present
more details about these learning curves with longer training steps
in Appendix C.

Note that the decomposition framework is a general technique
that can accommodate any RL methods that engage TD learning,
but the policy learning and action exploration might still behave dif-
ferently even with an improved value function. Figure 5 shows the
comparison of different RL backbones with the TD decomposition.
Except for the DDPG backbone is relatively unstable, all other RL
methods achieve stable learning for both LactionTD and LstateTD.

4.3 Ablation

Table 3: Comparison between past policy (upon sampling)
and the current policy under different exploration magni-
tude. 𝛽 represents the debias term in L𝛽−stateTD. 𝛼 represents
the absolute difference between action likelihood of the past
and the present.

𝜎 1 0.9 0.7 0.5 0.3 0.1 0.01

𝛽

ML1M 0.96 0.96 0.94 0.89 0.76 0.37 0.04

KuaiRand 1.00 1.00 1.00 0.99 0.94 0.62 0.10

Amazon 0.99 0.98 0.98 0.97 0.96 0.80 0.10

𝛼

ML1M 8e-4 1e-3 2e-3 9e-3 8e-2 3.55 7.4e2

KuaiRand 5e-6 8e-6 3e-5 4e-4 1e-2 1.47 6.5e2

Amazon 2e-4 4e-4 8e-4 3e-3 1e-2 0.59 6.5e2

4.3.1 The Robustness under Action Exploration. As we have dis-
cussed in section 3.3, the TD decomposition requires less sample to
achieve accurate value function estimation and makes it easier for
action exploration. To verify this claim, we compare the impact of
different variances 𝜎 in policy action exploration and summarize
the results of the best model HAC (with decomposition) in Table
2. We can see that TD decomposition consistently outperforms
the original TD learning across all settings of 𝜎 and appears to be

more robust to the action exploration. Specifically, in the KuaiRand
environment, the original TD crashes when the exploration magni-
tude increases to 𝜎 > 0.1, but the TD decomposition still achieves
accurate RL with even more improvement in the recommendation
performance, corresponding to the Figure 1. In the ML1M environ-
ment, the TD decomposition achieves remarkable stability even
when the exploration magnitude reaches 𝜎 = 1, while the original
TD gradually deteriorates.

4.3.2 Debased StateTD Learning and Stability. To validate the effec-
tiveness of the debias term in L𝛽−stateTD we conduct an ablation
study that removes 𝛽 during learning on all four RL methods of
TD decomposition. The results are summarized in Figure 6. We
can see that the removal of the debias term of 𝛽 may generate
suboptimal performance across all methods on both environments.
Additionally, we investigate the 𝛽 term and the action discrepancy
(mentioned in section 3.4) under different action exploration by
changing the magnitude of 𝜎 . Specifically, we observe the TD de-
composition in the best backbone method HAC and Table 3 shows
this comparison in terms of 𝛽 and the average absolute difference
𝛼 = |𝜋 (𝑎𝑡 |𝑠𝑡) − 𝑝 (𝑎𝑡 |𝑠𝑡) |. We can see that a larger exploration
magnitude would end up with a closer distribution between the
past and present, and the current policy has a higher chance of
generating actions in the past (i.e. larger 𝛽 and smaller 𝛼). Note
that most baseline methods achieve the best results with small 𝜎
in action exploration so that they can adapt to better states and
actions. In contrast, TD decomposition achieves the same level of
performance even with larger 𝜎 which indicates that it works well
for both stochastic policies and deterministic policies.

5 Conclusion
In this paper, we focus on the reinforcement learning methods that
adopt temporal difference (TD) learning in recommender systems.
We address the challenge of mixing random factors from stochastic
policy and uncertain user environment and show that the tradi-
tional TD learning for long-term reward estimation is suboptimal or
misguided. To achieve a more accurate approximation, we propose
to engage a decomposed TD learning that eliminates the irrelevant
random factors for each part and separates the approximation of 𝑉
and 𝑄 . The resulting framework achieves better recommendation
performance, a faster learning process, and improved robustness
against action exploration. While the proposed TD decomposition
focuses on the value function learning which indirectly affects the
policy learning in many RL methods, we believe that the investiga-
tion of the interactions between the value function and the actor
may provide new perspectives on the interplay between users and
the recommender system. In addition, our experiments and analysis
originally emerged from the stochastic natural in recommendation
problems, but we note that the proposed decomposition method
can potentially be generalized to other RL problems as long as
TD-based RL is adopted.

References
[1] M Mehdi Afsar, Trafford Crump, and Behrouz Far. 2021. Reinforcement learning

based recommender systems: A survey. ACM Computing Surveys (CSUR) (2021).
[2] M Mehdi Afsar, Trafford Crump, and Behrouz Far. 2022. Reinforcement learning

based recommender systems: A survey. Comput. Surveys 55, 7 (2022), 1–38.

Value Function Decomposition in Markov Recommendation Process WWW ’25, April 28–May 2, 2025, Sydney, NSW, Australia.

[3] Xueying Bai, Jian Guan, and HongningWang. 2019. Amodel-based reinforcement
learning with adversarial training for online recommendation. Advances in Neural
Information Processing Systems 32 (2019).

[4] Oded Berger-Tal, Jonathan Nathan, Ehud Meron, and David Saltz. 2014. The
exploration-exploitation dilemma: a multidisciplinary framework. PloS one 9, 4
(2014), e95693.

[5] Qingpeng Cai, Shuchang Liu, Xueliang Wang, Tianyou Zuo, Wentao Xie, Bin
Yang, Dong Zheng, Peng Jiang, and Kun Gai. 2023. Reinforcing User Retention
in a Billion Scale Short Video Recommender System. In Companion Proceedings
of the ACM Web Conference 2023. 421–426.

[6] Qingpeng Cai, Zhenghai Xue, Chi Zhang, Wanqi Xue, Shuchang Liu, Ruohan
Zhan, Xueliang Wang, Tianyou Zuo, Wentao Xie, Dong Zheng, et al. 2023. Two-
Stage Constrained Actor-Critic for Short Video Recommendation. In Proceedings
of the ACM Web Conference 2023. 865–875.

[7] Jianxin Chang, Chenbin Zhang, Zhiyi Fu, Xiaoxue Zang, Lin Guan, Jing Lu, Yiqun
Hui, Dewei Leng, Yanan Niu, Yang Song, et al. 2023. TWIN: TWo-stage interest
network for lifelong user behavior modeling in CTR prediction at kuaishou. In
Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining. 3785–3794.

[8] Haokun Chen, Xinyi Dai, Han Cai, Weinan Zhang, Xuejian Wang, Ruiming Tang,
Yuzhou Zhang, and Yong Yu. 2019. Large-scale interactive recommendation with
tree-structured policy gradient. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 33. 3312–3320.

[9] Minmin Chen, Alex Beutel, Paul Covington, Sagar Jain, Francois Belletti, and
Ed H Chi. 2019. Top-k off-policy correction for a REINFORCE recommender
system. In Proceedings of the Twelfth ACM International Conference on Web Search
and Data Mining. 456–464.

[10] Minmin Chen, Bo Chang, Can Xu, and Ed H Chi. 2021. User response models
to improve a reinforce recommender system. In Proceedings of the 14th ACM
International Conference on Web Search and Data Mining. 121–129.

[11] Qiwei Chen, Changhua Pei, Shanshan Lv, Chao Li, Junfeng Ge, and Wenwu
Ou. 2021. End-to-End User Behavior Retrieval in Click-Through RatePrediction
Model. CoRR abs/2108.04468 (2021). arXiv preprint arXiv:2108.04468 (2021).

[12] Xiaocong Chen, Siyu Wang, Julian McAuley, Dietmar Jannach, and Lina Yao.
2024. On the opportunities and challenges of offline reinforcement learning for
recommender systems. ACM Transactions on Information Systems 42, 6 (2024),
1–26.

[13] Xiaocong Chen, Lina Yao, Aixin Sun, Xianzhi Wang, Xiwei Xu, and Liming Zhu.
2021. Generative inverse deep reinforcement learning for online recommenda-
tion. In Proceedings of the 30th ACM International Conference on Information &
Knowledge Management. 201–210.

[14] Gabriel Dulac-Arnold, Richard Evans, Hado van Hasselt, Peter Sunehag, Timothy
Lillicrap, Jonathan Hunt, Timothy Mann, Theophane Weber, Thomas Degris, and
Ben Coppin. 2015. Deep reinforcement learning in large discrete action spaces.
arXiv preprint arXiv:1512.07679 (2015).

[15] Jun Feng, Heng Li, Minlie Huang, Shichen Liu, Wenwu Ou, Zhirong Wang,
and Xiaoyan Zhu. 2018. Learning to collaborate: Multi-scenario ranking via
multi-agent reinforcement learning. In Proceedings of the 2018 World Wide Web
Conference. 1939–1948.

[16] Chongming Gao, Shijun Li, Yuan Zhang, Jiawei Chen, Biao Li, Wenqiang Lei,
Peng Jiang, and Xiangnan He. 2022. KuaiRand: An Unbiased Sequential Rec-
ommendation Dataset with Randomly Exposed Videos. In Proceedings of the
31st ACM International Conference on Information and Knowledge Management
(Atlanta, GA, USA) (CIKM ’22). 5 pages. doi:10.1145/3511808.3557624

[17] Yingqiang Ge, Shuchang Liu, Ruoyuan Gao, Yikun Xian, Yunqi Li, Xiangyu Zhao,
Changhua Pei, Fei Sun, Junfeng Ge, Wenwu Ou, and Yongfeng Zhang. 2021.
Towards Long-term Fairness in Recommendation. In Proceedings of the 14th ACM
International Conference on Web Search and Data Mining. 445–453.

[18] Yingqiang Ge, Xiaoting Zhao, Lucia Yu, Saurabh Paul, Diane Hu, Chu-Cheng
Hsieh, and Yongfeng Zhang. 2022. Toward Pareto efficient fairness-utility trade-
off in recommendation through reinforcement learning. In Proceedings of the
fifteenth ACM international conference on web search and data mining. 316–324.

[19] Wei Guo, ChangMeng, Enming Yuan, ZhichengHe, Huifeng Guo, Yingxue Zhang,
Bo Chen, Yaochen Hu, Ruiming Tang, Xiu Li, et al. 2023. Compressed interaction
graph based framework for multi-behavior recommendation. In Proceedings of
the ACM Web Conference 2023. 960–970.

[20] F Maxwell Harper. 2015. The movielens datasets: History and context. Acm
transactions on interactive intelligent systems (tiis) 5 4 (2015) 1–19. F Maxwell
Harper and Joseph A Konstan. 2015. The movielens datasets: History and context.
Acm transactions on interactive intelligent systems (tiis) 5 4 (2015) 1–19.

[21] Ruining He and Julian McAuley. 2016. Fusing similarity models with markov
chains for sparse sequential recommendation. In 2016 IEEE 16th international
conference on data mining (ICDM). IEEE, 191–200.

[22] Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostro-
vski, Will Dabney, Dan Horgan, Bilal Piot, Mohammad Azar, and David Silver.
2018. Rainbow: Combining improvements in deep reinforcement learning. In
Proceedings of the AAAI conference on artificial intelligence, Vol. 32.

[23] Eugene Ie, Vihan Jain, Jing Wang, Sanmit Narvekar, Ritesh Agarwal, Rui Wu,
Heng-Tze Cheng, Tushar Chandra, and Craig Boutilier. 2019. SlateQ: A Tractable

Decomposition for Reinforcement Learning with Recommendation Sets. In Pro-
ceedings of the Twenty-eighth International Joint Conference on Artificial Intelli-
gence (IJCAI-19). Macau, China, 2592–2599. See arXiv:1905.12767 for a related
and expanded paper (with additional material and authors)..

[24] Dietmar Jannach and Malte Ludewig. 2017. When recurrent neural networks
meet the neighborhood for session-based recommendation. In Proceedings of the
eleventh ACM conference on recommender systems. 306–310.

[25] Wang-Cheng Kang and Julian McAuley. 2018. Self-attentive sequential recom-
mendation. In 2018 IEEE international conference on data mining (ICDM). IEEE,
197–206.

[26] Vijay Konda and John Tsitsiklis. 1999. Actor-critic algorithms. Advances in neural
information processing systems 12 (1999).

[27] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization tech-
niques for recommender systems. Computer 42, 8 (2009), 30–37.

[28] Yehuda Koren, Steffen Rendle, and Robert Bell. 2021. Advances in collaborative
filtering. Recommender systems handbook (2021), 91–142.

[29] Himabindu Lakkaraju, Julian McAuley, and Jure Leskovec. 2013. What’s in a
name? understanding the interplay between titles, content, and communities
in social media. In Proceedings of the international AAAI conference on web and
social media, Vol. 7. 311–320.

[30] Zelong Li, Jianchao Ji, Yingqiang Ge, and Yongfeng Zhang. 2022. AutoLossGen:
Automatic Loss Function Generation for Recommender Systems. In Proceedings
of the 45th International ACM SIGIR Conference on Research and Development in
Information Retrieval. 1304–1315.

[31] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and Daan Wierstra. 2016. Continuous control
with deep reinforcement learning. In 4th International Conference on Learning
Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track
Proceedings, Yoshua Bengio and Yann LeCun (Eds.). http://arxiv.org/abs/1509.
02971

[32] Feng Liu, Ruiming Tang, Xutao Li, Weinan Zhang, Yunming Ye, Haokun Chen,
Huifeng Guo, Yuzhou Zhang, and Xiuqiang He. 2020. State representation mod-
eling for deep reinforcement learning based recommendation. Knowledge-Based
Systems 205 (2020), 106170.

[33] Shuchang Liu, Qingpeng Cai, Bowen Sun, Yuhao Wang, Ji Jiang, Dong Zheng,
Peng Jiang, Kun Gai, Xiangyu Zhao, and Yongfeng Zhang. 2023. Exploration and
Regularization of the Latent Action Space in Recommendation. In Proceedings of
the ACM Web Conference 2023. 833–844.

[34] Tie-Yan Liu et al. 2009. Learning to rank for information retrieval. Foundations
and Trends in Information Retrieval 3, 3 (2009), 225–331.

[35] Ziru Liu, Shuchang Liu, Zijian Zhang, Qingpeng Cai, Xiangyu Zhao, Kesen Zhao,
Lantao Hu, Peng Jiang, and Kun Gai. 2024. Sequential recommendation for
optimizing both immediate feedback and long-term retention. In Proceedings of
the 47th International ACM SIGIR Conference on Research and Development in
Information Retrieval. 1872–1882.

[36] Ziru Liu, Jiejie Tian, Qingpeng Cai, Xiangyu Zhao, Jingtong Gao, Shuchang Liu,
Dayou Chen, Tonghao He, Dong Zheng, Peng Jiang, et al. 2023. Multi-Task
Recommendations with Reinforcement Learning. In Proceedings of the ACM Web
Conference 2023. 1273–1282.

[37] Chen Ma, Peng Kang, and Xue Liu. 2019. Hierarchical gating networks for
sequential recommendation. In Proceedings of the 25th ACM SIGKDD international
conference on knowledge discovery & data mining. 825–833.

[38] Tariq Mahmood and Francesco Ricci. 2007. Learning and adaptivity in interactive
recommender systems. In Proceedings of the ninth international conference on
Electronic commerce. 75–84.

[39] Wenyu Mao, Jiancan Wu, Weijian Chen, Chongming Gao, Xiang Wang, and
Xiangnan He. 2024. Reinforced Prompt Personalization for Recommendation
with Large Language Models. arXiv preprint arXiv:2407.17115 (2024).

[40] Wenyu Mao, Jiancan Wu, Haoyang Liu, Yongduo Sui, and Xiang Wang. 2024.
Invariant Graph Learning Meets Information Bottleneck for Out-of-Distribution
Generalization. arXiv preprint arXiv:2408.01697 (2024).

[41] Chang Meng, Chenhao Zhai, Yu Yang, Hengyu Zhang, and Xiu Li. 2023. Parallel
knowledge enhancement based framework for multi-behavior recommendation.
In Proceedings of the 32nd ACM International Conference on Information and
Knowledge Management. 1797–1806.

[42] Chang Meng, Hengyu Zhang, Wei Guo, Huifeng Guo, Haotian Liu, Yingxue
Zhang, Hongkun Zheng, Ruiming Tang, Xiu Li, and Rui Zhang. 2023. Hierarchical
projection enhanced multi-behavior recommendation. In Proceedings of the 29th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining. 4649–4660.

[43] Chang Meng, Ziqi Zhao, Wei Guo, Yingxue Zhang, Haolun Wu, Chen Gao,
Dong Li, Xiu Li, and Ruiming Tang. 2023. Coarse-to-fine knowledge-enhanced
multi-interest learning framework for multi-behavior recommendation. ACM
Transactions on Information Systems 42, 1 (2023), 1–27.

[44] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Tim-
othy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. 2016. Asyn-
chronous methods for deep reinforcement learning. In International conference
on machine learning. PMLR, 1928–1937.

https://doi.org/10.1145/3511808.3557624
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1509.02971

WWW ’25, April 28–May 2, 2025, Sydney, NSW, Australia. Xiaobei Wang et al.

[45] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. 2015. Human-level control through deep reinforcement learning.
nature 518, 7540 (2015), 529–533.

[46] Ling Pan, Qingpeng Cai, and Longbo Huang. 2020. Softmax deep double deter-
ministic policy gradients. Advances in Neural Information Processing Systems 33
(2020), 11767–11777.

[47] Changhua Pei, Xinru Yang, Qing Cui, Xiao Lin, Fei Sun, Peng Jiang, Wenwu Ou,
and Yongfeng Zhang. 2019. Value-aware recommendation based on reinforcement
profit maximization. In The World Wide Web Conference. 3123–3129.

[48] Qi Pi, Guorui Zhou, Yujing Zhang, Zhe Wang, Lejian Ren, Ying Fan, Xiaoqiang
Zhu, and Kun Gai. 2020. Search-based user interest modeling with lifelong
sequential behavior data for click-through rate prediction. In Proceedings of the
29th ACM International Conference on Information & Knowledge Management.
2685–2692.

[49] Steffen Rendle. 2010. Factorization machines. In 2010 IEEE International conference
on data mining. IEEE, 995–1000.

[50] Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. 2010. Factor-
izing personalizedmarkov chains for next-basket recommendation. In Proceedings
of the 19th international conference on World wide web. 811–820.

[51] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347
(2017).

[52] Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang.
2019. BERT4Rec: Sequential recommendation with bidirectional encoder rep-
resentations from transformer. In Proceedings of the 28th ACM international
conference on information and knowledge management. 1441–1450.

[53] Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vini-
cius Zambaldi, Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl
Tuyls, et al. 2017. Value-decomposition networks for cooperative multi-agent
learning. arXiv preprint arXiv:1706.05296 (2017).

[54] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-
duction. MIT press.

[55] Nima Taghipour, Ahmad Kardan, and Saeed Shiry Ghidary. 2007. Usage-based
web recommendations: a reinforcement learning approach. In Proceedings of the
2007 ACM conference on Recommender systems. 113–120.

[56] Hongyan Tang, Junning Liu, Ming Zhao, and Xudong Gong. 2020. Progressive
layered extraction (ple): A novel multi-task learning (mtl) model for personalized
recommendations. In Proceedings of the 14th ACM Conference on Recommender
Systems. 269–278.

[57] Xiaobei Wang, Shuchang Liu, Xueliang Wang, Qingpeng Cai, Lantao Hu, Han Li,
Peng Jiang, Kun Gai, and Guangming Xie. 2024. Future Impact Decomposition
in Request-level Recommendations. In Proceedings of the 30th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining. 5905–5916.

[58] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and Nando
Freitas. 2016. Dueling network architectures for deep reinforcement learning. In
International conference on machine learning. PMLR, 1995–2003.

[59] Zeng Wei, Jun Xu, Yanyan Lan, Jiafeng Guo, and Xueqi Cheng. 2017. Reinforce-
ment learning to rank with Markov decision process. In Proceedings of the 40th
international ACM SIGIR conference on research and development in information
retrieval. 945–948.

[60] Yikun Xian, Zuohui Fu, Shan Muthukrishnan, Gerard De Melo, and Yongfeng
Zhang. 2019. Reinforcement knowledge graph reasoning for explainable rec-
ommendation. In Proceedings of the 42nd international ACM SIGIR conference on
research and development in information retrieval. 285–294.

[61] Xin Xin, Alexandros Karatzoglou, Ioannis Arapakis, and Joemon M Jose. 2020.
Self-supervised reinforcement learning for recommender systems. In Proceedings
of the 43rd International ACM SIGIR conference on research and development in
Information Retrieval. 931–940.

[62] Xin Xin, Tiago Pimentel, Alexandros Karatzoglou, Pengjie Ren, Konstantina
Christakopoulou, and Zhaochun Ren. 2022. Rethinking reinforcement learning for
recommendation: A prompt perspective. In Proceedings of the 45th International
ACM SIGIR Conference on Research and Development in Information Retrieval.
1347–1357.

[63] Wanqi Xue, Qingpeng Cai, Zhenghai Xue, Shuo Sun, Shuchang Liu, Dong Zheng,
Peng Jiang, Kun Gai, and Bo An. 2023. PrefRec: Recommender Systems with
Human Preferences for Reinforcing Long-Term User Engagement. In Proceedings
of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
(Long Beach, CA, USA) (KDD ’23). Association for Computing Machinery, New
York, NY, USA, 2874–2884. doi:10.1145/3580305.3599473

[64] Wanqi Xue, Qingpeng Cai, Ruohan Zhan, Dong Zheng, Peng Jiang, and Bo An.
2022. ResAct: Reinforcing Long-term Engagement in Sequential Recommendation
with Residual Actor. arXiv preprint arXiv:2206.02620 (2022).

[65] Zeyu Zhang, Yi Su, Hui Yuan, Yiran Wu, Rishab Balasubramanian, Qingyun Wu,
Huazheng Wang, and Mengdi Wang. 2024. Unified off-policy learning to rank: a
reinforcement learning perspective. Advances in Neural Information Processing
Systems 36 (2024).

[66] Kesen Zhao, Shuchang Liu, Qingpeng Cai, Xiangyu Zhao, Ziru Liu, Dong Zheng,
Peng Jiang, and Kun Gai. 2023. KuaiSim: A comprehensive simulator for recom-
mender systems. arXiv preprint arXiv:2309.12645 (2023).

[67] Xiangyu Zhao, Changsheng Gu, Haoshenglun Zhang, Xiwang Yang, Xiaobing
Liu, Hui Liu, and Jiliang Tang. 2021. DEAR: Deep Reinforcement Learning for
Online Advertising Impression in Recommender Systems. In Proceedings of the
AAAI Conference on Artificial Intelligence, Vol. 35. 750–758.

[68] Xiangyu Zhao, Long Xia, Liang Zhang, Zhuoye Ding, Dawei Yin, and Jiliang
Tang. 2018. Deep reinforcement learning for page-wise recommendations. In
Proceedings of the 12th ACM conference on recommender systems. 95–103.

[69] Xiangyu Zhao, Long Xia, Lixin Zou, Hui Liu, Dawei Yin, and Jiliang Tang. 2020.
Whole-chain recommendations. In Proceedings of the 29th ACM international
conference on information & knowledge management. 1883–1891.

[70] Xiangyu Zhao, Liang Zhang, Zhuoye Ding, Long Xia, Jiliang Tang, and Dawei Yin.
2018. Recommendations with negative feedback via pairwise deep reinforcement
learning. In Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. 1040–1048.

https://doi.org/10.1145/3580305.3599473

Value Function Decomposition in Markov Recommendation Process WWW ’25, April 28–May 2, 2025, Sydney, NSW, Australia.

Value
space

Value
space

Value
space

Value
space

a)

b)

c)

d)

Aligned

Misguided

Aligned

Misguided

Figure 7: Different cases of error and the corresponding rela-
tionship between𝑉 and𝑄 . The original TD lossmaymisguide
the value estimation, while the decomposed method always
minimizes the original TD.

A Relation with stepwise TD Learning
Suppose that the two objectives achieve a certain degree of accuracy
with LactionTD < 𝛿21 and LstateTD < 𝛿22 for some small constants
𝛿1 and 𝛿2. Note that the action TD loss is semantically equivalent
to the random user error Δ𝑢 and the state TD loss is equivalent to
the random policy error Δ𝜋 . Then, we can also state Δ𝑢 < 𝛿1 and
Δ𝜋 < 𝛿2. And we can derive that the original stepwise TD loss is
also bounded as LVTD < (𝛿1 + 𝛿2)2 in the worst case scenario.

To further investigate the relationship amongLactionTD,LstateTD,
LVTD, and LQTD, we analyze the common cases in Figure 7. With-
out loss of generality, in case a) where 𝑄 is in between the two
consecutive𝑉 s or case c) where𝑉 is in between the two consecutive
𝑄s, optimizing the stepwise TD loss LVTD and LQTD would also
minimize Δ𝜋 +Δ𝑢 , which indirectly optimizes LactionTD +LstateTD.
We consider these two cases as aligned cases where the original
TD loss and the decomposed loss agree with each other. However,
in case b) where consecutive 𝑉 s locate on the same side of 𝑄 or in
case d) where consecutive 𝑄s locate on the same side of 𝑉 , min-
imizing the original stepwise TD loss no longer guarantees the
correct minimization of LactionTD and LstateTD. For example, case
b) may trivially learn the bias of all states, so that the error between
the two consecutive states’ 𝑉 approaches zero, while the error of

the policy’s effect Δ𝜋 and that of the user’s randomness Δ𝑢 are
significantly larger. This further explains why stepwise TD is subop-
timal under the mixing of random factors. In contrast, minimizing
LactionTD and LstateTD guarantees a bounded minimization of the
original TD loss for all four cases.

B Full Results of main experiments
Tables 4 and 5 present the depth performance results from the main
experiments and the action exploration experiments.

C Training curves for longer steps
We extend the number of online learning steps to 80,000 to further
illustrate the converged performance, as shown in Figure 8.

D Performance for different learning rate
Recall that in our TD decomposition method, we perform two
separate learning objectives for 𝑉 and 𝑄 . This means that we can
separately manipulate the learning rates for𝑉 and𝑄 . In Figure 9 (a)
and (c) we show the effect of learning rate of 𝑉 with learning rate
of𝑄 fixed, and in Figure 9 (b) and (d) we show the effect of learning
rate of𝑄 with the learning rate of𝑉 fixed. We can generally observe
the under-fitting and over-fitting on the two sides of the reward
performance. And there are several patterns that worth noticing:

• the reward performance is negatively correlated with the
reward variance;

• LactionTD and LstateTD behave in opposite directions when
changing the learning rate of 𝑉 , which mean that aligning
𝑉 with 𝑄 under more restrictions may loss the ability of
expectation approximation and introduce larger error in the
learning of 𝑄 ;

• LactionTD and LstateTD behave in the same directions when
changing the learning rate of𝑄 , which means that achieving
a more accurate 𝑄 estimation results in more accurate 𝑉
estimation.

E RL4Rec Simulator
E.1 The Details of Simulator
The online Simulator setting we generally follow the KuaiSim[66].
• We first construct a sequential recommendation data based on
the original dataset: sort the user’s records in chronological order,
pick a position, set the sequence before it as input history and K
items later as the exposed list.

• Then we train a user response model with binary cross-entropy
loss for each of the user behavior based on the new dataset, and
the model consists of item feature encoding layer, an SASRec-
style history encoder, and a scoring module that takes user profile
features and the history encoding as input.

• When serving as environment, the user interaction history in
the raw data is directly used as initial state of the user, the user
response model capture the dynamic user state transition and
provide user feedback that sampled according to the predicted
scores, then the feedback and the recommended list updates the
user history for the next round of interaction.

• Finally, a temper-based user-leave model determines the end of
a session when the user’s patience is depleted.

WWW ’25, April 28–May 2, 2025, Sydney, NSW, Australia. Xiaobei Wang et al.

Table 4: The depth of action exploration in HAC.

𝜎
Total Reward in ML1M Total Reward in KuaiRand Total Reward in Amazon

Original Decomposed Original Decomposed Original Decomposed

1 13.13 ±(4.51) 18.04 ±(0.39) 5.68 ±(0.10) 10.25 ±(0.18) 4.11 ±(0.16) 4.77 ±(0.23)
0.9 13.58 ±(4.54) 18.01 ±(0.29) 5.77 ±(0.19) 10.64 ±(0.26) 4.09 ±(0.11) 4.87 ±(0.14)
0.7 14.32 ±(4.43) 17.78 ±(0.58) 5.84 ±(0.23) 12.96 ±(0.12) 4.17 ±(0.26) 5.44 ±(0.30)
0.5 14.90 ±(3.73) 17.94 ±(0.24) 6.69 ±(0.72) 15.62 ±(0.42) 4.21 ±(0.19) 6.57 ±(0.40)
0.3 16.15 ±(2.16) 17.95 ±(0.50) 8.03 ±(0.63) 16.75 ±(0.21) 5.03 ±(0.00) 10.89 ±(0.58)
1e-1 17.35 ±(1.54) 18.10 ±(0.36) 11.55 ±(0.91) 17.35 ±(0.45) 8.72 ±(0.71) 14.00 ±(0.73)
1e-2 17.49 ±(0.88) 17.76 ±(0.81) 13.59 ±(0.84) 16.72 ±(0.50) 13.33 ±(0.53) 14.31 ±(0.87)

Table 5: The depth of all methods and their correspongding decomposition.

Model Depth in ML1M Depth in KuaiRand Depth in Amazon

Original Decomposed Improv. Original Decomposed Improv. Original Decomposed Improv.

Non-RL 16.55 ±(1.90) - - 11.75 ±(3.17) - - - - -
Dueling DQN 16.45 ±(0.26) - - 12.17 ±(3.69) - - 11.88 ±(2.01) - -

A2C 17.61 ±(0.29) 17.97 ±(0.20) 2.04% 13.10 ±(0.76) 16.51 ±(0.31) 26.03% 12.53 ±(0.66) 14.13 ±(0.78) 12.77%
DQN 16.55 ±(0.45) 16.71 ±(0.36) 0.97% 12.14 ±(3.94) 14.41 ±(1.19) 18.70% 11.79 ±(2.22) 13.12 ±(1.20) 11.28%
DDPG 14.47 ±(1.55) 17.49 ±(0.87) 20.87% 13.92 ±(1.41) 14.69 ±(1.35) 5.53% 12.08 ±(1.81) 13.05 ±(1.98) 8.03%
HAC 17.35 ±(1.55) 18.10 ±(0.36) 4.32% 13.59 ±(0.84) 17.35 ±(0.45) 27.67% 13.33 ±(0.53) 14.31 ±(0.87) 7.35%
SQN 16.33 ±(0.45) 16.88 ±(0.38) 3.37% 11.22 ±(0.76) 15.42 ±(0.70) 37.43% 8.05 ±(0.45) 12.95 ±(0.71) 60.87%

In general, this simulation framework directly uses real user inter-
action data for simulator pretraining and the initial state of user
(instead of fake user generation) during serving, so we believe that
it guarantees a certain degree of real-world alignment. Note that it
is still an open question on how to achieve a more realistic user en-
vironment for online recommender systems, and the KuaiSim paper
have mentioned that one can evaluate the simulators through the
performance consistency across different recommendation models,
which is consistent with our experimental results.

E.2 State Transition with Simulator
In the MDP formulation, we define that the user state encodes the
corresponding user request, which follows a more industrial-like
design that takes user profiles (e.g. gender and age) and interac-
tion histories as input. In our implementation, we intentionally
make the ground-truth user state and the state transition model in
the user environment unobservable to the recommendation model.
Specifically, a SASRec-style model is pretrained to simulate the
ground-truth user state transition, and a certain randomness is in-
jected when serving as user environment and generating "observed"
user feedback.

Value Function Decomposition in Markov Recommendation Process WWW ’25, April 28–May 2, 2025, Sydney, NSW, Australia.

(a) Performance in ML1M (b) Performance in KuaiRand

Figure 8: Longer steps for Training curves of TD Decomposition with HAC.

WWW ’25, April 28–May 2, 2025, Sydney, NSW, Australia. Xiaobei Wang et al.

(a) X-axis correspond to the learning rate for𝑉 learning (b) X-axis correspond to the learning rate for𝑄 learning

(c) X-axis correspond to the learning rate for𝑉 learning (d) X-axis correspond to the learning rate for𝑄 learning

Figure 9: The effect of TD decomposition with HAC , where (a) and (b) denote the ML1M dataset, and the others correspond to
KuaiRand dataset .

	Abstract
	1 Introduction
	2 Related Work and Problem Definition
	2.1 Sequential Recommendation
	2.2 Reinforcement Learning for Recommendation
	2.3 Problem Formulation

	3 Method
	3.1 Reinforcement Learning with Temporal Difference
	3.2 The Challenge of Mixing Random Factors
	3.3 Exclude Irrelevant Random Factors in TD Decomposition
	3.4 Action Discrepancy and Debiased Decomposition

	4 Experiments
	4.1 Experimental Settings
	4.2 Main results
	4.3 Ablation

	5 Conclusion
	References
	A Relation with stepwise TD Learning
	B Full Results of main experiments
	C Training curves for longer steps
	D Performance for different learning rate
	E RL4Rec Simulator
	E.1 The Details of Simulator
	E.2 State Transition with Simulator

