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Abstract

An investment portfolio consists of n algorithmic trading strategies, which generate vectors of po-
sitions in trading assets. Sign opposite trades (buy/sell) cross each other as strategies are combined
in a portfolio. Then portfolio turnover becomes a non linear function of strategies turnover. It rises
a problem of effective (quick and precise) portfolio turnover estimation. Kakushadze and Liew (2014)
shows how to estimate turnover via covariance matrix of returns. We build a mathematical model for
such estimations; prove a theorem which gives a necessary condition for model applicability; suggest new
turnover estimations; check numerically the preciseness of turnover estimations for algorithmic strategies
on USA equity market.

Key words: algorithmic trading strategies, alphas, covariance matrix of returns, turnover estima-
tions, crossing of trades.

1 Introduction
Our work deals with turnover of an investment portfolio, which is build of n algorithmic trading strategies.
Worked out model may be applied to various strategies, including hedge funds ones. Algorithmic trading
in hedge funds is thoroughly discussed in books of Chan [1], Tulchinsky et al. [2]. One may find examples
of strategies and ideas for their research in the Kakushadze and Serur’s book [3], Kakushadze’s article
[4] and in the section 3.

We investigate the following practical problem: how to estimate portfolio turnover while sign opposite
trades cross, see example 1 below. There are such estimations (Kakushadze and Liew [5], Kakushadze
[6, 7]) via weights and turnovers of strategies and empirical covariance matrix of their returns. This
matrix is commonly used e.g. for determining portfolio quadratical risk and for portfolio optimization.
We built the mathematical model for the turnover estimates and find the necessary condition of their
correctness.

The remaining part of the article is organised as following. In the introduction below we discuss
hedge funds, define crossing of trades, set a task and show its applicability, enumerate known turnover
estimates and results of the paper. In the section 2 we build the mathematical model for portfolio
turnover, formulate and prove theoretical results, claim practical estimations for portfolio turnover. In
the section 3 we describe experiments, define numerical characteristics of trading strategies and «metrics»
for turnover estimates. We conclude with the section 4 discussing theoretical and practical applications
of the work.

1.1 Hedge fund industry and definitions.
Definition 1. A hedge fund uses complex methods of liquid assets management and risk control for
achieving good returns/risk values and for protection against market risk.

∗This work was supported by the grant of the state program of the «Sirius» Federal Territory «Scientific and technological
development of the «Sirius» Federal Territory» (Agreement №18-03 date 10.09.2024).
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E.g. long and short positions on the equity market hedge each other, as well as assets and options on
them do. First hedge fund was founded by A. W. Jones in 1949. There are1 about 15000 hedge funds in
the world, having in common about $4.5 trillions assets under management (AUM). Biggest hedge funds
allocate tens of billions dollars for algorithmic trading strategies2. One may build algorithmic strategies
on equity and cryptocurrencies markets, options and futures. As we know, algorithmic trading hedge
funds have the following divisions.

• Quantitative researchers, from couples to several hundreds of ones, seek out and test algorithmic
trading strategies based on market inefficiencies.

• Portfolio managers build portfolios from strategies, using optimization methods. One may use
returns/risk ratios (Markowitz type), risk budgeting method and so on3.

• Head division allocates capital among portfolio managers. Here are used models with transaction
costs and market impact as well as discretionary decisions.

• Execution division may use non trivial mathematical modelling for finding better market execution.

• Other divisions (data collection and processing and so on).

Definition 2. Algorithmic trading strategy (known in hedge funds and referred to below as alpha) is a
program, which generates vectors of assets positions to be taken by predefined moments of time.

Definition 3. Portfolio is a linear combination of n alphas, the coefficients of which we will call weights.

Definition 4. Moment turnover of an alpha (or portfolio) is l1 norm of difference of position vectors,
which are calculated at consecutive time moments. In other words, moment turnover is a sum over all
assets absolute values of position differences on the asset4. Alpha and portfolio moment turnover is not
constant in time. Later on we will consider time–averaged moment turnover and refer to it simply as
turnover.5

Definition 5. Return of the i–th alpha we will consider as a random variable αi, for which we have
samples based on historical data, and a new value is added after each time interval.

These definitions are quite general, enough for our work applications. In practice there are additional
restrictions on time moments, delay between calculations of positions and their realization, properties of
position vectors and market execution procedure. E.g. one use dollar neutrality condition, which means
that sum of positions for all assets is 0. Alpha numerical characteristics may be found in subsection 3.2.

1.2 Crossing of trades.
Key ingredient is the following assumption on the alpha execution. Trades of opposite signs (buys/sells)
of an asset cross each other when alphas are combined in a portfolio. Crossing of trades reduce transaction
costs, market impact and so on.

Example 1. Let us take 4 tickers: SBER, VTBR, TCSG and POSI. Let yesterday money (e.g. in
thousands roubles) positions of alphas 1 and 2 be (0, 500, -200, -300) and (250, -400, 250, -100) corre-
spondingly, where negative number means short position on an asset. So alpha 1 shorts some papers of
POSI on 3006 th.r. Let today money positions of alphas be (100, 100, 300, -500) and (200, -300, 300,

1by January 2024, https://investingintheweb.com/blog/largest-hedge-funds-aum/
2E.g. Renaissance Technologies, Two Sigma Investments and D. E. Shaw have about $106, $67.4 and $45.7 billions AUM

correspondingly. Man Group (30.06.2024), Millennium Management and Citadel have about $178.2, $57.6 and $51.5 billions
AUM correspondingly, but allocate part of it for algorithmic trading strategies.

3there are plenty of literature devoted to portfolio optimization, let’s refer to [8, 9, 10] only.
4see subsection 3.2 for turnover formula.
5in practice alpha (or portfolio) turnover is time–averaged moment turnover, divided by average alpha (or portfolio) capital.

We assume that alpha capital is constant, portfolio capital is constant as there is no netting. Then we may omit dividing by
capital for simplification.

6we neglect the fact that number of papers is integer and we could only approximately achieve required positions
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-200) correspondingly. To achieve today positions alpha 1 needs to buy SBER for 100 th.r., sell VTBR
for 400 th.r., buy TCSG for 500 th.r. and sell POSI for 200 th.r. Alpha 2 needs to sell SBER for 50 th.r.,
buy VTBR for 100 th.r., buy TCSG for 50 th.r. and sell POSI for 100 th.r. So daily turnover of alphas
will be 1200 and 300 th.r. correspondingly. A portfolio is a sum of alphas 1 and 2, weights are equal to
1. If alphas are executed separately, then total exchange orders will be of 1500 th.r. While execution
with crossing of trades will be of 1200 th.r., needing to buy SBER for 50 th.r., sell VTBR for 300 th.r.,
buy TCSG for 550 th.r. sell POSI for 300 th.r. So crossing of trades reduces exchange orders from 1500
to 1200 th.r. and hence reduce transaction costs and so on.

Let us note that sign opposite positions do not reduce each other (reducing of positions is commonly
called netting). This means that every alpha is provided with some capital and it doesn’t change until
the next portfolio rebalance.

1.3 Setting and relevance of the problem.
Let us point out two facts.

1. Due to crossing of sign opposite trades portfolio turnover is less7 than linear combination of alpha
turnovers with the same weights.

2. Exact calculation of turnover is possible but too long8 for building portfolios via optimization
methods.

Practical problem. Find an approximation (estimation) for portfolio turnover in terms of alphas
weights and turnovers and any other available alpha data.

E.g. sample covariance matrix of returns was used in articles [5, 6, 7] as additional data. Alpha
weights usually are the solutions of an optimization problem (e.g. returns maximization for fixed risk).
Turnover estimations could be applied in hedge funds, where the following conditions hold.

1. Portfolio is built of n alphas, which take positions on s assets.

2. Sign opposite trades of an asset cross each other when corresponding alphas are combined in a
portfolio.

3. Portfolio returns take into account transaction costs, market impact and so on, which depend on
portfolio turnover.

4. Alpha weights calculation uses portfolio returns (e.g. as optimized function).

Portfolio turnover estimations are used in [11, 12, 13]. These articles show how to build optimal
portfolios of huge number of alphas (hundreds of thousands). Sample covariance matrix becomes generate
because its rank is not more than the number of observations, which is of order thousands usually. So
one replace the covariance matrix by «similar» non generate one, as in [14] or with risk factors for alphas
as in [11, 12, 13].

In [11] one maximizes portfolio Sharpe ratio9 with linear costs and non linear market impact. There
was built an algorithm, which give an exact solution by finite time.

In [12] one maximizes portfolio returns under a constraint on the Sharpe ratio. By using a factor
model for the covariance matrix the original optimization problem was reduced to a finite set of problems
of finding zeroes of the line defined functions.

In [13] were obtained alpha risk factors. Optimization of the Sharpe ratio for small deformed sample
covariance matrix is reduced to the problem of weighted regression with respect to principal components.

7theoretically «not more than», but always less in practice.
8for hundreds or thousands of assets for crypto or equity markets correspondingly.
9formula may be found in subsection 3.2
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1.4 Empirical estimations of portfolio turnover.
Articles [5, 6, 7] are key to our work, as they investigate the portfolio turnover provided crossing of sign
opposite trades of different alphas. Let us introduce the following notations.

• xi and τi — weight and turnover of the i-th alpha, where i = 1, . . . , n.

• Ψ — n× n covariance matrix of alpha returns.

• ψ(p) and V (p) =
(
V

(p)
1 , . . . , V

(p)
n

)
— eigenvalues and orthonormal eigenvectors of the matrix Ψ

correspondingly.

• ρ = Ψ12 — correlation of two alphas returns.

Kakushadze and Liew, [5, (4)]. Estimation for two alphas portfolio turnover, x1 > 0, x2 > 0:

T∗ =
1 + ρ

2
(τ1x1 + τ2x2) +

1− ρ

2
|τ1x1 − τ2x2|. (1.1)

Also in [5] a turnover limit for n → ∞ was found by multiple using of (1.1). If all alpha weights and
turnovers and pairwise correlations of returns are equal to each other and are equal to 1

n , τ and ρ
correspondingly, then the portfolio turnover limit is equal to τρ.

Kakushadze, [6, (25)]. Turnover estimation for n alphas portfolio.

T∗ =
1√
n

n∑
p=1

ψ(p)

∣∣∣∣∣
n∑

i=1

V
(p)
i τi|xi|

∣∣∣∣∣ . (1.2)

Let us note, that (1.1) is a special case of the estimation (1.2). Also in [6] approximate formulas [6,
(31),(33),(34)] were obtained for portfolio turnover provided n → ∞ and some conditions on alpha
weights and turnovers and covariance matrix of returns. In [7] Kakushadze suggests that alpha returns
contain F risk factors. Then covariance matrix of returns could be approximated using covariance matrix
of risk factors, relationships between risk factors, alpha returns and specific alpha risks. Then one use
[6] formulas for approximated matrix to deduce asymptotic estimations for portfolio turnover.

1.5 New results.
• We build a mathematical model for portfolio turnover estimations which depend on the covariance

matrix of alpha returns, see section 2.1.

• Main theorem 1 is proved.

• We obtain a correctness condition 1 for applying portfolio turnover estimations, which depend on
the covariance matrix of alpha returns.

• New portfolio turnover estimations are proposed, see formulas (2.4).

• Numerical experiments are carried out to check exactness and compare turnover estimations, see
section 3.

2 Portfolio turnover model.

2.1 Mathematical model.
Definition 6. Let us call n–dimensional (n ≥ 2) random vector α = (α1, . . . , αn) on the probability
space (Ω,F ,P) admissible, it the variance Dαi = 1 for all i = 1, . . . , n and non-zero linear combination
of vector components cannot be equal to a constant almost surely.
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We may assume that the returns of n alphas form an admissible vector. Indeed, one may achieve
Dαi = 1 by dividing the position vector of the i-th alpha by

√
Dαi. For dollar-neutral alphas with delay

1 the return (holding pnl) is equal to the scalar product of the position vector and the vector of asset
returns for the previous trading interval, see formula (3.1).

Linear independence with a constant means that the alpha returns are linear independent and their
linear combinations cannot yield non-zero risk-free profit (it follows from market no-arbitrage axiom).

Definition 7. By V (α) we denote the linear space of linear combinations
∑n

i=1 xiαi, where xi ∈ R and
α = (α1, . . . , αn) is an admissible vector.

For a fixed set of alphas the space V (α) is the space of returns of all possible portfolios. The set
of numbers (x1, . . . , xn) uniquely determines both the portfolio and the random variable from V (α).
Functions on portfolios, such as turnover, can be considered as functions on the space V (α).

Definition 8. A function f : V → R defined on the linear space V is called absolutely homogeneous of
degree 1 if f(λv) = |λ|f(v) for all λ ∈ R and v ∈ V .

When a portfolio is multiplied by a constant λ, its turnover is multiplied by |λ|. This means that
turnover is an absolutely homogeneous function on V (α). Let us introduce the following notations.

• A portfolio P = P(x,A) =
∑n

i=1 xiAi is defined by the set of n weights x = (x1, . . . , xn) and the
set of n alphas A = (A1, . . . ,An).

• Let τ(P) and τ(A) = (τ(A1), . . . , τ(An)) be the turnovers of the portfolio and the set of alphas
correspondingly.

• Let α(A) and C(α(A)) be a random vector of alphas returns and its covariance matrix correspond-
ingly.

• Let A be a finite dimensional vector space including A1, . . . ,An.

Main assumption of the model. The portfolio turnover is expressed by some function of the alpha
weights, turnovers and covariance matrix of returns. That is

τ(P(x,A)) = g(x,C(α(A)), τ(A)) (2.1)

for all xi ∈ R and Ai ∈ A.

2.2 Theoretical results.
The following theorem describes absolutely homogeneous functions of degree 1, for which values of the
sum depend only on the covariance matrix and the values of the terms. It turns out that all such functions
f are equal to the standard deviation up to a multiplicative constant. Recall that C and D denote the
covariance matrix of several and the variance of one random variable correspondingly.

Theorem 1. Let α be an admissible random vector and f : V (α) → R be an absolutely homogeneous
function of degree 1. Then the existence of a function F such that

f(ξ1 + ξ2) = F (C(ξ1, ξ2), f(ξ1), f(ξ2)) for all ξ1, ξ2 ∈ V (α), (2.2)

is equivalent to the existence of a constant f0 such that f(ξ) = f0
√

D(ξ) for all ξ ∈ V (α).

Let us apply the model assumption (2.1) for weights x̄ = (1, 1, 0, . . . , 0) and alpha set Ā = (A1,A2, 0, . . . , 0).
Then for all A1,A2 ∈ A:

τ(A1 +A2) = g(x̄, C(α(Ā)), τ(Ā)) = ḡ(C(α(A1), α(A2)), τ(A1), τ(A2)).

By theorem 1 there exists a constant f0 such that τ(Ai) = f0
√
D(α(Ai)) for all i = 1, . . . , n. So, we have

proved the following.
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Statement 1. Model correctness condition. If the turnover of a n alpha portfolio is expressed as
a function of the covariance matrix, weights and turnovers of alphas, then the ratio of turnover to the
standard deviation of alpha returns should be the same for all alphas.

From theorem 1 we also deduce the following.

Statement 2. Theoretical turnover estimation. Let the model assumption (2.1) be true, τi be the
turnover of i-th alpha for i = 1, . . . , n, C be the covariance matrix of returns. By κ we denote the ratio
τi√
Cii

(it doesn’t depend on i). Then the turnover of the portfolio with weights x = (x1, . . . , xn)
⊤ is equal

to
T∗ = κ

√
x⊤Cx. (2.3)

The formula (2.3) gives a different result compare to Kakushadze and Liew estimation [5, (19)] for
τi = κ and covariance matrix

Cij(α) =

{
ρ, i ̸= j

1, i = j
for all i, j ∈ {1, . . . , n}.

Indeed, in [5, (19)] estimation is T∗ = κ(ρ+ 1−ρ
n ), whereas by formula (2.3) estimation is T∗ = κ

√
ρ+ 1−ρ

n .
The difference of the results could be explained by the fact that in [5] the turnover estimation (1.1) used
many times, while it is incorrect due to the proposition 1.

Proposition 1. Let α be an admissible random vector and f : V (α) → R be an absolutely homogeneous
function which is not zero constantly. Then there exist random variables ξ1, ξ2 ∈ V (α) such that

f(ξ1 + ξ2) ̸=
1 + ρ(ξ1, ξ2)

2
(f(ξ1) + f(ξ2)) +

1− ρ(ξ1, ξ2)

2
|f(ξ1)− f(ξ2)|.

2.3 Practical turnover estimations.
In practice the ratio of turnover τi to the standard deviation of returns stdi =

√
Cii may differ by several

times10 among n alphas. Therefore, for κ from the formula (2.3) one can choose some «average» of
them. In the estimations T∗1 and T∗2 we use the arithmetic and geometric means correspondingly, in
the estimation T∗3 — the weighted average with weights x. Let us denote by σ =

√
x⊤Cx the standard

deviation of the portfolio return, where alpha weights are x.

T∗1 =
1

n

n∑
i=1

τi
stdi

σ, T∗2 =

(
τ1 · . . . · τn

std1 · . . . · stdn

) 1
n

σ,

T∗3 =

∑n
i=1

xiτi
stdi∑n

i=1 xi
σ, T∗4 =

∑n
i=1 τi∑n

i=1 stdi
σ. (2.4)

2.4 Proofs.
Lemma 1. For every admissible random vector α there exists an admissible random vector ᾱ such that
V (ᾱ) = V (α) and the matrix C(ᾱ) is identity.

If α = (α1, . . . , αn)
⊤ is a random vector written as a column, and A is a n×n matrix, then C(Aα) =

AC(α)A⊤. Indeed,

C(Aα) = M(Aα−MAα)((Aα)⊤ −M(Aα)⊤) =

= MA(α−Mα)(α⊤ −Mα⊤)A⊤ = AC(α)A⊤

10e.g. for dollar neutral alphas on USA equity market. Another evidence that this ratio isn’t constant may be found in the
article by Kakushadze and Tulchinsky [15, Fig. 4].
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A symmetric matrix C(α)can be reduced to the principal axes, i.e. find an orthogonal matrix H such
that C(Hα) = HC(α)H⊤ = B, where B is a diagonal matrix. Let ᾱ = B− 1

2Hα, then C(ᾱ) is a identity
matrix, ᾱ is an admissible random vector and V (α) = V (ᾱ). The non-degeneracy of the matrix B (and
the existence of B− 1

2 ) follows from the fact that the components of α are linearly independent with a
constant. □

The proof of proposition 1.
By lemma 1 we may assume that the matrix C(α) is identity. We can also assume that f(α1) ≥ f(α2)

and f(α1) ̸= 0. Indeed, since f ̸≡ 0 there exists β1 ∈ V (α) such that f(β1) ̸= 0 and Dβ1 = 1. We extend
β1 to an admissible random vector β = (β1, . . . , βn) with the identity matrix C(β), V (β) = V (α) and
assume that the vector α was initially equal to the vector β. The inequality f(α1) ≥ f(α2) could be
achieved by rearranging the components of the vector α.

Let us assume the contrary, i.e. that for all ξ1, ξ2 ∈ V (α)

f(ξ1 + ξ2) =
1 + ρ(ξ1, ξ2)

2
(f(ξ1) + f(ξ2)) +

1− ρ(ξ1, ξ2)

2
|f(ξ1)− f(ξ2)|. (2.5)

Let us use (2.5) for ξ1 = α1, ξ2 = α2 and for ξ1 = α1, ξ2 = −α2:

f(α1 + α2) =
f(α1) + f(α2)

2
+

|f(α1)− f(α2)|
2

= f(α1 − α2) = max{f(α1), f(α2)}

Let us use (2.5) for ξ1 = α1 + α2, ξ2 = α1 − α2, taking into account that f(α1 + α2) = f(α1 − α2) and
ρ(α1 + α2, α1 − α2) = 0:

f(2α1) = f((α1 + α2) + (α1 − α2)) =
f(α1 + α2) + f(α1 − α2)

2
= max{f(α1), f(α2)}

So, 2f(α1) = f(2α1) = max{f(α1), f(α2)} = f(α1), hence f(α1) = 0, contradiction. □

The proof of the theorem 1.
Step 0. From the existence of a constant f0 it easily follows the existence of function F . Indeed,

f(ξ1 + ξ2) = f(ξ1)

√
C11(ξ1, ξ2) + 2C12(ξ1, ξ2) + C22(ξ1, ξ2)

C11(ξ1, ξ2)
.

The proof of the other part of the theorem consists of 4 steps. By lemma 1 we may assume that the
matrix C(α) is identity, whereα = (α1, . . . , αn). Let us introduce the denotation:

Cφ =

(
cos2(φ) 0

0 sin2(φ)

)
Step 1. Let us prove that f(α1+α2√

2
) = f(α1−α2√

2
). Let us apply the formula 2.2 for ξ1 = α1√

2
, ξ2 = α2√

2
and for ξ1 = α1√

2
, ξ2 = − α2√

2
, taking into account that function f is absolutely homogeneous:

f

(
α1 + α2√

2

)
= F

(
Cπ

4
,
f(α1)√

2
,
f(α2)√

2

)
= f

(
α1 − α2√

2

)
.

Let us consider a random vector ᾱ = (ᾱ1, . . . , ᾱn), where

ᾱ1 =
α1 + α2√

2
, ᾱ2 =

α1 − α2√
2

, ᾱi = αi for all i = 3, . . . , n.

Easy to see that ᾱ is an admissible vector, V (α) = V (ᾱ) and C(ᾱ) = E. Without loss of generality we can
assume that the vector ᾱ was chosen as the initial value of the vector α. Then we have f(α1) = f(α2).

Step 2. Let us define a function T : R → R by T (φ) = f(cos(φ)α1 + sin(φ)α2) for all φ ∈ R. Let us
prove that

T (φ) = T
(
φ+

π

2

)
for all φ ∈ R. (2.6)
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Let us apply the formula 2.2 for ξ1 = cos(φ)α1, ξ2 = sin(φ)α2 and for ξ1 = cos(φ)α2, ξ2 = − sin(φ)α1,
taking into account f(α1) = f(α2) and the fact that the function f is absolutely homogeneously:

T (φ) = f(cos(φ)α1 + sin(φ)α2) =

= F (Cφ, | cos(φ)|f(α1), | sin(φ)|f(α2)) =

= F (Cφ, | cos(φ)|f(α2), | sin(φ)|f(α1)) =

= f(cos(φ)α2 − sin(φ)α1) = T
(
φ+

π

2

)
.

Step 3. Let us take an arbitrary number z ∈ R and prove that

T (z + φ) = T (z − φ) for all φ ∈ R. (2.7)

Let us define random variables

β1 = cos(z)α1 + sin(z)α2, β2 = − sin(z)α1 + cos(z)α2.

From (2.6) it follows that f(β1) = T (z) = T
(
z + π

2

)
= f(β2). Then

T (z ± φ) = f(cos(z + φ)α1 + sin(z ± φ)α2) = f(cos(φ)β1 ± sin(φ)β2) =

= F (Cφ, | cos(φ)|f(β1), | sin(φ)|f(β2)).

Substituting φ = z in (2.7) yields T (0) = T (2z). This means that the function T (z) is constant and on
the two-dimensional space of linear combinations α1 and α2 the function f(ξ) is equal to f0

√
Dξ.

Step 4. Now we are ready to complete the proof of the theorem. Let us prove that for any random
variables ξ1 ∈ V (α), ξ2 ∈ V (α) it holds that f(ξ1)√

Dξ1
= f(ξ2)√

Dξ2
. Without loss of generality we may assume

that Dξ1 = Dξ2 = 1 and that ξ1 is linear independent with ξ2. Let us define

γ1 =
ξ1 + ξ2√
D(ξ1 + ξ2)

, γ2 =
ξ1 − ξ2√
D(ξ1 − ξ2)

.

Then Dγ1 = Dγ2 = 1 and cov(γ1, γ2) = 0. We extend γ1 and γ2 to an admissible random vector
γ = (γ1, . . . , γn), such that V (γ) = V (α) and C(γ) = E. Let us repeat the steps 1 — 3 for the vector γ
instead the vector α. We obtain that on the two dimensional space of linear combinations γ1 and γ2 the
function f(ξ) = f0

√
Dξ, i.e. f(ξ1) = f0 = f(ξ2). □

3 Numerical experiments.
Aim. We want to check the accuracy of the approximation of portfolio turnover by the estimations (1.1),
(1.2) and (2.4), depending on the «spread width» of the ratio τ

std for alphas.

Procedure.

• We start with constructing several alphas and select 3 sets of them with big, medium and small
«spread width» of the ratio τ

std correspondingly.

• Then we suggest «metrics» for portfolio turnover estimations to measure the accuracy of the real
turnover approximation.

• For each pair of alphas from a set we calculate «metrics» for turnover estimations for all two–alphas
portfolios and average it by all pairs of alphas.

• We calculate averaged «metrics» for turnover estimations for 100 portfolios consisting of all alphas
of a set with weights which are proportional to coordinates of Sobol pseudorandom sequence of
points.

8



3.1 Building and examples of alphas.
We use daily data open, high, low, close, volume from Yahoo Finance for approximately 1400 most liquid
USA stocks. For alpha research we use 2010 — 2014 as in-sample, and use 02.01.2018 – 14.06.2024 for
testing as out-of-sample. Below are some alpha examples (without operations):

1. sum(volume,4)
√
high∗low

sum(close∗volume,4) − 1,

2.
(
delay(close,14)

close − 1
)(

volume
sum(volume,30)

)
,

3. correlation (close, volume, 20)
(
1− delay(close,10)

close

)
,

4. −rsi(close, 14), where rsi — is the relative strength index.

For research we use also alpha operations: truncate, decay, cutting extremes or middles, neutralization
and normalization (the latter two are obligatory).

3.2 Alpha numerical characteristics.
For the given dataset with daily data let us enumerate days from 1 to p in chronological order, i.e. the
eldest day is 1. Let’s enumerate the stocks with numbers from 1 to s.
Alpha position vector at the day d for d = 1, . . . , p is the following:

a(d) = (a1(d), . . . , as(d))
⊤.

Return of the i-th stock at the day d for i = 1, . . . , s and d = 2, . . . , p:

returni(d) =
closei(d)

closei(d− 1)
− 1.

Alpha PnL11 at the day d for d = 2, . . . , p:

PnL(d) =
s∑

i=1

returni(d)ai(d− 1). (3.1)

Cumulative PnL by the day k for k = 2, . . . , p:

cumPnL(k) =

k∑
d=2

PnL(d).

Volatility (sample standard deviation of returns vector):

stdPnL(k) =

√√√√ 1

k − 2

k∑
d=2

(
PnL(d)− 1

k − 1
cumPnL(k)

)2

Sharpe ratio12 (252 is a number of trading days in a year):

sharpe =

√
252

p− 1

cumPnL(p)

stdPnL(p)
.

11It is holding PnL for delay 1 alphas, see the book [2] for details. These alphas calculate position vectors by the beginning
of the trading day, so the execution has the whole day to achieve the required positions. This provide the possibility to increase
the size of investments.

12For non dollar neutral portfolios Sharpe ratio use the risk-free rate Rf : sharpe =
√
T

meanPnl(k)−Rf

stdPnl(k) .
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Alpha turnover at the day d for d = 2, . . . , p:

τ(d) =
s∑

i=1

|ai(d)− ai(d− 1)|.

Kakushadze in [4] and Kakushadze with Tulchinsky in [15] investigated numerical characteristics of
alphas, which are real traded on USA stock market. Regression analysis shows that the PnL essentially
depends on the alpha returns volatility, return by share depends on the Sharpe ratio and position holding
period, while PnL and pairwise correlations weakly depend on the turnover.

3.3 «Metrics» for turnover estimations.
Let T∗(d), τ(d) and Tmax(d) be the portfolio turnover estimation, real portfolio turnover (i.e. with
crossing of trades) and turnover of the portfolio without crossing of trades at the day d correspondingly.
Let p be the number of trading days in the testing dataset. Let us define the following «metrics»:

ρ1(T∗) =
1

p

p∑
d=1

(T∗(d)− τ(d)), ρ2(T∗) =
1

p

p∑
d=1

|T∗(d)− τ(d)|,

ρ3(T∗) =
ρ1(T∗)

ρ1(Tmax)
, ρ4(T∗) =

ρ2(T∗)

ρ1(Tmax)
, ρ5(T∗) =

p∑
d=1

|T∗(d)− τ(d)|
τ(d)

. (3.2)

Note that ρ2 and ρ5 are the absolute and the relative errors correspondingly. Also ρ1(Tmax) > 0.

3.4 Experiment results.
Alpha sets 1 – 3 are developed to produce low pairwise correlations of returns and appropriate returns.
Alpha can be included in several sets: so sets 1 and 2 have alphas 2, 3, 5, 6, 9, 10 in common, and alpha
1 is in all three sets. Alpha characteristics from the table 3 (cumulative PnL, Sharpe ratio, standard
deviation of returns, daily averaged turnover and the ratio of the daily averaged turnover to standard
deviation of returns) and pairwise correlations from the table 4 are calculated during the testing period
02.01.2018 – 14.06.2024. Alpha cumulative PnLs are shown on figures 1 — 3. It happens that the ratio

τ
stdPnL differs up to 7 times, up to 4 times and up to 24% for alphas in 1, 2 and 3 set correspondingly.

For tables 1 and 2 the mean alpha turnover and covariance matrix of returns for estimations T∗1−T∗4
are calculated in rolling window of 250 days. For estimation TKL covariance matrix of returns is calculated
using all testing period, then we find its eigenvectors and eigenvalues which are used in the estimation.
The table 1 is built as follows. Each pair of alphas form a portfolio with weights x1 = x2 = 1

2 . Then
we calculate turnover estimations and the real turnover, «metrics», take the absolute value for ρ1 and
ρ3, and average by all pairs of alphas in a set. In turn, the table 2 is built as follows. For every set of
alphas we take 100 portfolios of n alphas, so that weights of the k-th portfolio are proportional to the
coordinates of the k-th point of Sobol pseudorandom sequence in Rn, where n = 10 for sets 1 and 2 and
n = 8 for set 3, also k = 1, . . . , 100. For each portfolio we calculate turnover estimations and the real
turnover. Then we take absolute value of «metrics» and average it by 100 portfolios of the corresponding
set. Estimations T∗1 – T∗4 are the same as in 3.2; estimation TKL is given by 1.1 and 1.2 for tables 1 and
2 correspondingly; estimation Tmax is a turnover without crossing of trades, i.e. is the linear combination
of alphas turnover.

The estimation is better, if the «metric» is less. Tables results allow us to make the following
observations.

• «Metrics» ρ1 and ρ2 for sets 1 and 2 differ a little. This mean that estimations are typically (for
most of days) shifted in one direction.

• For all estimations their absolute error ρ2 and also ρ1 decrease while moving from set 1 to set 3
through set 2.
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• The relative error ρ5, ρ3 and ρ4 stay approximately the same for estimation TKL and decrease for
estimations T∗1 − T∗4 while moving from set 1 to set 3.

• Estimations T∗1 − T∗4 outperform the estimation TKL for the set 3.

Set 1 Set 2 Set 3
ρ1 ρ2 ρ3 ρ4 ρ5 ρ1 ρ2 ρ3 ρ4 ρ5 ρ1 ρ2 ρ3 ρ4 ρ5

TKL 0.023 0.028 0.527 0.597 0.089 0.023 0.027 0.561 0.628 0.108 0.013 0.016 0.528 0.628 0.125
T∗1 0.039 0.044 0.613 0.720 0.122 0.030 0.034 0.567 0.674 0.138 0.007 0.012 0.278 0.458 0.095
T∗2 0.058 0.062 1.092 1.150 0.152 0.025 0.029 0.570 0.662 0.112 0.008 0.012 0.309 0.469 0.093
T∗3 0.039 0.044 0.613 0.720 0.122 0.030 0.034 0.567 0.674 0.138 0.007 0.012 0.278 0.458 0.095
T∗4 0.029 0.033 0.542 0.603 0.087 0.023 0.027 0.493 0.563 0.102 0.007 0.011 0.280 0.409 0.084
Tmax 0.067 0.067 1.000 1.000 0.185 0.052 0.052 1.000 1.000 0.211 0.027 0.027 1.000 1.000 0.215

Table 1: Averaged by all alpha pairs «metrics» of turnover estimations.

Set 1 Set 2 Set 3
ρ1 ρ2 ρ3 ρ4 ρ5 ρ1 ρ2 ρ3 ρ4 ρ5 ρ1 ρ2 ρ3 ρ4 ρ5

TKL 0.112 0.112 0.677 0.677 0.405 0.076 0.076 0.644 0.644 0.401 0.033 0.033 0.604 0.604 0.328
T∗1 0.054 0.061 0.355 0.394 0.243 0.059 0.059 0.508 0.510 0.326 0.009 0.015 0.157 0.276 0.152
T∗2 0.036 0.043 0.223 0.269 0.153 0.031 0.034 0.269 0.292 0.189 0.007 0.014 0.118 0.255 0.138
T∗3 0.052 0.055 0.321 0.336 0.210 0.058 0.058 0.491 0.491 0.314 0.009 0.014 0.154 0.260 0.143
T∗4 0.040 0.046 0.261 0.297 0.182 0.039 0.041 0.342 0.354 0.228 0.007 0.014 0.132 0.253 0.138
Tmax 0.161 0.161 1.000 1.000 0.591 0.117 0.117 1.000 1.000 0.624 0.055 0.055 1.000 1.000 0.540

Table 2: «Metrics» for turnover estimations, a portfolio consists of all alphas of a set.

4 Conclusions.
We investigate the approximations of an n-alpha portfolio turnover via covariance matrix of alpha returns,
alpha turnovers and weights, provided crossing of trades of opposite signs. Estimations become more
precise in the case when the ratios τi

stdi
differ a little for alphas of portfolio. In this case proposed

estimations (2.4) seems to be better choice. Else, if ratio τi
stdi

differ significantly, then estimations (1.1)
or (1.2) are preferred.

Practical value of the work. Portfolio managers got an understanding that turnover estimations
may be more precise and the possibility to achieve it. One need to make the ratios τi

stdi
closer to each

other.
More precise turnover estimations produce more adequate optimized function for portfolio construc-

tion via optimization methods, provided accounting transaction costs. This may lead to «better» port-
folio.

Theoretical value of the work. The theorem 1 could help to analyse the models of other absolutely
homogeneous functions of portfolio, which depend on covariance matrix of returns.
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Set 1 alpha 1 alpha 2 alpha 3 alpha 4 alpha 5 alpha 6 alpha 7 alpha 8 alpha 9 alpha 10
cumPnL 0.870 0.530 0.510 0.400 0.330 0.310 0.290 0.220 0.130 0.130
Sharpe 1.482 1.179 0.932 0.861 0.692 1.344 0.704 0.795 0.369 0.385
T 0.217 0.571 0.297 0.963 0.176 0.213 0.767 0.735 0.223 0.216
stdPnL 0.0057 0.0044 0.0054 0.0045 0.0047 0.0023 0.004 0.0027 0.0034 0.0032
T/stdPnL 37.69 130.29 55.42 212.30 37.48 92.87 190.77 276.31 64.96 67.57
Set 2 alpha 1 alpha 2 alpha 3 alpha 4 alpha 5 alpha 6 alpha 7 alpha 8 alpha 9 alpha 10
cumPnL 0.870 0.530 0.510 0.400 0.330 0.310 0.240 0.200 0.130 0.130
Sharpe 1.482 1.179 0.932 0.857 0.692 1.344 0.598 0.816 0.369 0.385
T 0.217 0.571 0.297 0.355 0.176 0.213 0.430 0.383 0.223 0.216
stdPnL 0.0057 0.0044 0.0054 0.0046 0.0047 0.0023 0.0039 0.0024 0.0034 0.0032
T/stdPnL 37.69 130.29 55.42 77.20 37.48 92.87 110.16 157.02 64.96 67.57
Set 3 alpha 1 alpha 2 alpha 3 alpha 4 alpha 5 alpha 6 alpha 7 alpha 8
cumPnL 0.870 0.510 0.430 0.390 0.210 0.120 0.060 0.030
Sharpe 1.482 0.911 0.890 0.857 0.920 0.395 0.169 0.153
T 0.217 0.231 0.209 0.163 0.098 0.119 0.152 0.090
stdPnL 0.0057 0.0055 0.0048 0.0044 0.0022 0.003 0.0035 0.002
T/stdPnL 37.69 42.20 43.83 36.60 43.94 39.77 42.93 45.35

Table 3: Alpha characteristics.
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Set 1 alpha 2 alpha 3 alpha 4 alpha 5 alpha 6 alpha 7 alpha 8 alpha 9 alpha 10
alpha 1 0.27 0.61 0.19 0.24 0.13 0.13 0.10 0.05 0.24
alpha 2 1.00 0.60 0.65 0.74 0.56 0.65 0.62 0.59 0.46
alpha 3 1.00 0.38 0.52 0.36 0.35 0.27 0.19 0.51
alpha 4 1.00 0.32 0.27 0.42 0.59 0.33 0.22
alpha 5 1.00 0.73 0.55 0.47 0.72 0.46
alpha 6 1.00 0.49 0.52 0.62 0.34
alpha 7 1.00 0.52 0.51 0.28
alpha 8 1.00 0.47 0.2
alpha 9 1.00 0.05
Set 2 alpha 2 alpha 3 alpha 4 alpha 5 alpha 6 alpha 7 alpha 8 alpha 9 alpha 10

alpha 1 0.27 0.61 0.24 0.24 0.13 0.16 0.08 0.05 0.24
alpha 2 1.00 0.60 0.85 0.74 0.56 0.64 0.66 0.59 0.46
alpha 3 1.00 0.54 0.52 0.36 0.40 0.28 0.19 0.51
alpha 4 1.00 0.79 0.61 0.80 0.70 0.68 0.44
alpha 5 1.00 0.73 0.79 0.68 0.72 0.46
alpha 6 1.00 0.62 0.71 0.62 0.34
alpha 7 1.00 0.63 0.64 0.34
alpha 8 1.00 0.64 0.27
alpha 9 1.00 0.05
Set 3 alpha 2 alpha 3 alpha 4 alpha 5 alpha 6 alpha 7 alpha 8

alpha 1 0.62 0.24 0.33 0.14 0.30 0.06 0.42
alpha 2 1.00 0.52 0.62 0.28 0.63 0.09 0.40
alpha 3 1.00 0.90 0.49 0.49 0.56 0.08
alpha 4 1.00 0.59 0.50 0.67 0.19
alpha 5 1.00 0.24 0.65 -0.03
alpha 6 1.00 -0.03 0.03
alpha 7 1.00 0.10

Table 4: Pairwise correlations of alpha returns.

Figure 1: cumulative PnL of alphas in the set 1.

14



Figure 2: cumulative PnL of alphas in the set 2.

Figure 3: cumulative PnL of alphas in the set 3.
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