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Abstract

We propose a framework for transfer learning of discount curves across different fixed-income product

classes. Motivated by challenges in estimating discount curves from sparse or noisy data, we extend

kernel ridge regression (KR) to a vector-valued setting, formulating a convex optimization problem in a

vector-valued reproducing kernel Hilbert space (RKHS). Each component of the solution corresponds to

the discount curve implied by a specific product class. We introduce an additional regularization term

motivated by economic principles, promoting smoothness of spread curves between product classes, and

show that it leads to a valid separable kernel structure. A main theoretical contribution is a decompo-

sition of the vector-valued RKHS norm induced by separable kernels. We further provide a Gaussian

process interpretation of vector-valued KR, enabling quantification of estimation uncertainty. Illustra-

tive examples demonstrate that transfer learning significantly improves extrapolation performance and

tightens confidence intervals compared to single-curve estimation.

Keywords: yield curve estimation, transfer learning, nonparametric estimator, machine learning in finance,

vector-valued reproducing kernel Hilbert space

JEL Classification: C14, E43, G12

1 Introduction

We introduce a framework for transfer learning of discount curves across different fixed-income product

classes. Since discount curves are inherently unobservable, they must be inferred from the observable prices

of fixed-income instruments. A key feature of the proposed framework is its ability to incorporate comple-

mentary market information across product classes. Accurate estimation is critical, as discount curves are

fundamental to finance, providing the basis for appropriately discounting future cash flows. Consequently,

their precise estimation holds significant practical relevance.

Numerous methods have been proposed for single discount curve estimation. Classical approaches include

the parametric Nelson–Siegel–Svensson model [NS87,Sve94,GSW07], as well as nonparametric methods such

as Fama–Bliss [FB87], Smith–Wilson [SW01], and Liu–Wu [LW21]. More recently, [FPY24] introduced a

kernel ridge regression (KR) framework, providing a theoretically grounded solution based on reproducing

kernel Hilbert space (RKHS) theory. KR yields a closed-form, linear estimator and empirically outperforms

benchmark models for U.S. and Swiss government bonds [FPY24,CF24]. However, like other methods, KR

struggles with extrapolation in maturity ranges where data are sparse or absent [CF24].
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This limitation motivates the use of transfer learning [WKW16, PY10], a well-established concept in

machine learning that is closely related to multitask learning [Car97]. Transfer learning seeks to improve

estimation by jointly solving related problems and sharing information across them, particularly when data

for the primary task are limited, noisy, or costly to obtain. In the context of discount curves, transfer

learning arises naturally across fixed-income product classes, with suitable adjustment for cross-currency

effects. A product class refers to a group of fixed-income instruments priced using a common discount

curve, denominated in the same currency and characterized by similar risk features such as issuer type,

collateralization, or credit quality. Examples include government bonds issued by the same sovereign, interest

rate swaps referencing a common overnight risk-free rate [SS19, SIX,MM,ECB,BoEa, Fed], and corporate

bonds within a given credit rating class.

This paper develops a theoretical framework for transfer learning of discount curves, complemented

by illustrative examples.1 Our methodology generalizes to any set of fixed-income products that can be

represented jointly under a discounted cash flow framework. Although limits to arbitrage may cause different

product classes to imply distinct discount curves even when all are considered risk-free [WJ24], we show that

the discounted cash flow principle can be naturally embedded into an arbitrage-free pricing framework.

We formulate the transfer learning problem as a vector-valued KR, leading to a convex optimization

problem in a vector-valued RKHS. Each component of the solution corresponds to the discount curve implied

by a specific product class. Analogous to the scalar case, we derive a closed-form expression for the vector-

valued KR estimator.

The theory of vector-valued RKHS is well-established [PR16,MP05], with operator-valued kernels, such

as matrix-valued kernels in Rn, playing a central role [KDP+16]. Fundamental results from RKHS theory,

including the representer theorem and Moore’s theorem, extend naturally to the vector-valued setting [PR16].

A particularly tractable subclass, separable kernels, has been extensively studied [BRBV12, She08,MP04,

ARL12]. Separable kernels are constructed as the product of a scalar kernel and a constant covariance

matrix, the latter encoding the transfer learning structure. They offer computational advantages, including

simple computation of inner products and induced norms [BRBV12].

Building on the scalar case, we introduce an additional regularization term motivated by economic princi-

ples, penalizing the spread between discount curves across product classes. A main theoretical contribution of

our work is a decomposition of the norm induced by separable kernels, generalizing a result from [BRBV12].

We prove that the resulting regularization yields a valid separable kernel, specifically tailored to our trans-

fer learning problem. Rather than enforcing identical curves, the regularization promotes smoothness of

spread curves under an economically motivated norm. This connects naturally to graph regularization tech-

niques [SK03,She08].

We further provide a Gaussian process [CWG19] interpretation of the vector-valued KR, enabling quan-

tification of estimation uncertainty for the discount curves. In doing so, we extend the well-known correspon-

dence between KR and Gaussian processes in the scalar case [RW05] to the setting of transfer learning. Our

illustrative examples show that the transfer learning framework significantly tightens confidence intervals

around the estimated discount curves.

The remainder of the paper is organized as follows. Section 2 formulates the transfer learning problem

for discount curves and presents the representation theorem essential for implementation. Section 3 develops

the Gaussian process perspective. Section 4 introduces separable kernels as a natural class of matrix-valued

1Two comprehensive empirical studies are in progress, one focusing on government bonds and swaps within the same currency
and the other on government bonds across currencies.
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kernels for our setting. Section 5 discusses how standard fixed-income products can be embedded into the

transfer learning formulation. Section 6 presents illustrative examples, focusing on transfer learning between

government bonds and swaps. The appendix provides a self-contained introduction to the theory of vector-

valued RKHS, collects all proofs, and details the embedding of the discounted cash flow principle into an

arbitrage-free pricing framework. An online appendix includes additional examples.

2 Transfer learning problem formulation

In this section, we present the general problem formulation for transfer learning of discount curves across

A different fixed-income product classes. Our framework requires only that the theoretical price of a fixed-

income product be expressed as the sum of its discounted cash flows.

Specifically, for every product class a = 1, . . . , A, there are Ma fixed-income securities with common

cash flow dates 0 < x1 < · · · < xN , stacked into the column vector x = (x1, . . . , xN )⊤.2 The total

number of securities is given by M = M1 + · · ·+MA. For each security we observe noisy ex-coupon prices,

Pa = (Pa,1, . . . , Pa,Ma
)⊤. We denote the associated Ma ×N cash flow matrix by Ca = (Ca,ij) where Ca,ij is

the cash flow of security i of product class a that occurs in xj .

In line with the discounted cash flow principle, we assume that for every product class a, there exists

a unique discount curve ga : [0,∞) → R with ga(0) = 1 and such that the price of every instrument i in

product class a is given by

Pa,i =

N∑
j=1

Ca,ijga(xj). (1)

The objective of this paper is to jointly estimate the discount curves g = (g1, . . . , gA)
⊤ from observed

market prices Pa. To this end, we decompose each curve ga as the sum of an exogenous prior function pa

and a hypothesis function ha, that is,

ga = pa + ha for all a = 1, . . . , A.

Here, the prior p = (p1, . . . , pA)
⊤ : [0,∞) → RA is assumed to satisfy p(0) = 1, and the hypothesis

h = (h1, . . . , hA)
⊤ : [0,∞) → RA is constrained to satisfy h(0) = 0.3 A natural and simple choice for the

prior is the constant function p ≡ 1.

We model h as an element of a vector-valued RKHS H over the domain E = [0,∞), taking values in

RA and satisfying h(0) = 0 for all h ∈ H. The associated reproducing kernel is a matrix-valued function

K : [0,∞) × [0,∞) → RA×A. Appendix A provides a self-contained introduction to the theory of vector-

valued RKHS, including its foundational properties and practical relevance for our setting.

To enable matrix notation, we introduce the following conventions. For any function f , we write f(x) =

(f(x1), . . . , f(xN ))⊤ for the corresponding array of function values. For a general matrix Q ∈ Rm×n, we

write Qi = (Qi1, . . . , Qin) for its i-th row vector, and define the vectorization of Q as the vector obtained by

stacking its columns, vec(Q) = (Q11, . . . , Qm1, Q12, . . . , Qm2, . . . , Q1n, . . . , Qmn)
⊤ ∈ Rnm. Accordingly, we

2Cash flow dates x are assumed to be common across all product classes without loss of generality.
3This additive specification mirrors the structure of linear-rational term structure models; see [FLT17].

3



denote the matrix h⊤(x) = (h1(x), . . . , hA(x)) ∈ RN×A, and we obtain the vector

vec(h⊤(x)) =


h1(x)

...

hA(x)

 = (h1(x1), . . . , h1(xN ), h2(x1), . . . , h2(xN ), . . . , hA(x1), . . . , hA(xN ))⊤ ∈ RAN .

We also stack the cash flow matrices and price vectors across product classes as

C =


C1

. . .

CA

 ∈ RM×AN , P =


P1

...

PA

 ∈ RM ,

where C is block diagonal with the individual cash flow matrices Ca along the diagonal, and all off-diagonal

blocks equal to zero. The discounted cash flow equation (1) then reads P = C vec(p⊤(x)+h⊤(x)). Including

pricing errors ϵ leads to

P = C vec(p⊤(x) + h⊤(x)) + ϵ. (2)

Such pricing errors occur due to market imperfections and data errors.

The estimation objective reduces to finding a function h ∈ H that balances the tradeoff between the

weighted mean-squared pricing error,

A∑
a=1

Ma∑
i=1

ωa,i

(
Pa,i − Ca,ipa(x)− Ca,iha(x)

)2
,

and the regularity of h, as quantified by the vector-valued RKHS norm ∥h∥H. The weights ωa,i > 0 are

exogenously specified and reflect the relative importance of the pricing terms. This setup corresponds to

a vector-valued KR. The regularity penalty depends on the choice of the matrix-valued kernel K, whose

structure is encoded in the kernel matrix

K =


K11 . . . K1A

...
. . .

...

KA1 · · · KAA

 ∈ RAN×AN , (3)

where each block Kab ∈ RN×N has entries Kab,ij = Kab(xi, xj). The following theorem formalizes this

formulation.

Theorem 2.1. The unique solution of the vector-valued KR problem

min
h∈H

{ A∑
a=1

Ma∑
i=1

ωa,i(Pa,i − Ca,ipa(x)− Ca,iha(x))
2 + λ∥h∥2H

}
(4)

is given by h̄ =
∑N

j=1 K(·, xj)βj where β = (β1, . . . , βN ) ∈ RA×N takes the form

vec(β⊤) = C⊤ (CKC⊤ +Λ
)−1

(P −C vec(p⊤(x))),

for the block diagonal matrix Λ = diag(Λ1, . . . ,ΛA) ∈ RM×M with Λa = diag(λ/ωa,1, . . . , λ/ωa,Ma
). The
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corresponding discount curves are given by ḡ = p+ h̄.

A common choice for the weights ωa,i is based on the duration of the underlying securities; see Section 6.2

for details. The choice of the kernel K is critical, as it should be both economically meaningful and compu-

tationally tractable. In our implementation, we use a separable kernel of the form K(x, y) = B k(x, y), where

B ∈ RA×A is a symmetric positive semi-definite matrix and k : [0,∞)× [0,∞) → R is a scalar-valued kernel.

This form decouples the dependence on product class, captured by the matrix B, from the time-to-maturity

dependence, captured by k. For further background on separable kernels and their properties, we refer to

Appendix A.

Remark 2.2. Theorem 2.1 can be extended towards infinite weights ωa,i = ∞, with the convention λ/∞ = 0,

which corresponds to an exact fit of Pa,i, for selected a, i. This requires that the corresponding block of CKC⊤

is invertible. See [FPY24, Theorem A.1] for details.

Remark 2.3. Theorem 2.1 remains valid even when no quotes are available for a given product class a, i.e.,

when Ma = 0. In this case, the corresponding rows in C and P are omitted, and we adopt the convention

that
∑0

i=1 = 0. Remarkably, the solution curve h̄a still depends on the other product classes via the joint

regularization term. In the extreme case where no quotes are available at all, M = 0, the solution h̄ is

identically zero, and the resulting discount curve reduces to the prior, ḡ = p.

3 Gaussian process view

Similar to the scalar case one can develop a Gaussian process perspective of the kernel ridge regression in

the vector-valued case. We first discuss the general case and then specialize to separable kernels.

3.1 Vector-valued Gaussian processes

We recap the theory of vector-valued Gaussian processes and prove the equivalence of the posterior mean

function and the vRK solution. We denote by N (m,Σ) the multivariate normal distribution with mean

vector m and covariance matrix Σ.

Definition 3.1 (vector-valued Gaussian process). We say g : E → RA is a vector-valued Gaussian process

with mean function m = (m1, . . . ,mA)
⊤ : E → RA and kernel function K(x, y) : E×E → RA×A if and only

if for any x = (x1, . . . , xN )⊤

vec(g⊤(x)) ∼ N (vec(m⊤(x)),K)

with m⊤(x) = (m1(x), . . . ,mA(x)) ∈ RN×A and K as in (3). In this case we write g ∼ MG(m,K).

Remark 3.2. There is no restriction to use x across all components of g. One can formulate a Gaussian

process for any finite collection of points {x1, . . . ,xn}, xi ∈ RN , such that (g1(x1), . . . , gA(xn)) ∈ RN×A.

We replicate the results [FPY24, Section A.4] for the vector-valued case which is straightforward. For

this we assume that g is a vector-valued Gaussian process with mean function m and kernel function K(x, y),

i.e., g ∼ MG(m,K). The pricing equation with errors is given by equation (2) where we assume ϵ ∼ N (0,Σ)
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with

Σ =


Σ1 0 . . . 0

0 Σ2 . . . 0
...

...
. . .

...

0 · · · 0 ΣA

 ∈ RM×M

for symmetric positive definite Ma ×Ma-matrices Σa.

For n arbitrary cash flow dates z = (z1, . . . , zn)
⊤ this implies that vec(g⊤(z)) and P are jointly Gaussian

distributed (
vec(g⊤(z))

P

)
∼ N

((
vec(m⊤(z))

C vec(m⊤(x))

)
,

(
K(z, z⊤) K(z,x⊤)C⊤

CK(x, z⊤) CKC⊤ +Σ

))
(5)

where K(x, z⊤) is the block matrix with entries K(xi, zj), similar for K(z, z⊤) such that K = K(x,x⊤).

Bayesian updating implies that the conditional distribution of g, given the observed prices P , is still

vector-valued Gaussian with posterior mean function

mpost(z) = m(z) +K(z,x⊤) vec(β⊤), (6)

with

vec(β⊤) = C⊤(CKC⊤ +Σ)−1(P −C vec(m⊤(x)), (7)

and posterior kernel function

Kpost(y, z) = K(y, z)−K(y,x⊤)C⊤(CKC⊤ +Σ)−1CK(x, z).

Hence we recovered the following vector-valued version of [FPY24, Lemma 9].

Theorem 3.3. Suppose the kernel K, the prior mean function m = p and Σ = Λ are as in Theorem 2.1.

Then the posterior mean function (6) coincides with the KR estimator ḡ(z) in Theorem 2.1.

The posterior mean is invariant with respect to scaling of K and Σ by a factor s > 0. That is to replace

K by K ′ = sK and Σ′ = sΣ. Similar as in [FPY24] one can use (5) to derive at a prior log-likelihood

function of s given prices P

L(s) = −q2
1

s
− M

2
log (s)− q1

for q2 = 1
2 (P−C vec(m⊤(x))⊤(CKC⊤+Σ)−1(P−C vec(m⊤(x))) and q1 = 1

2 log |CKC⊤+Σ|+M
2 log(2π).

The maximum log-likelihood is attained for

ŝ =
2q2
M

.

Remark 3.4. When Kab = 0 for all a ̸= b the posteriori mean estimator corresponds to A > 1 independent

scalar learned mean estimators. This can be seen from (7) as in this case the block diagonal structure of K

factors through, given that the matrices C and Σ are blockdiagonal by definition. However, the confidence

bands might differ as ŝ does. In the scalar case the optimal scaling is given by ŝa =
2q2,a
Ma

, for the respective

value q2,a. On the other hand, for the transfer learning case it holds by definition M =
∑

a Ma, and Kab = 0

implies q2 =
∑

a q2,a. Hence in general the scaling factors differ,
q2,a
Ma

̸=
∑

b q2,b∑
b Mb

, for individual classes a.
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3.2 Gaussian process view for separable kernels

The Gaussian process view reveals some additional interpretation for separable kernels. In particular, one

can use the theory of Gaussian matrix variate distributions to get some additional insights how different

components of g are correlated to each other. The key findings are given below. We first recall the definition

and some basic properties of matrix variate Gaussian distributions.

Definition 3.5. The random matrix X ∈ RN×A is said to have a matrix variate Gaussian distribution with

mean matrix M ∈ RN×A, covariance matrices Σ ∈ RN×N and B ∈ RA×A if and only if the probability

density function is given by

p(X|M,Σ, B) = (2π)−
AN
2 (detΣ)−

A
2 (detB)−

N
2 exp

(
−1

2
tr
(
B−1(X −M)⊤Σ−1(X −M)

))
We denote a matrix variate Gaussian distributed X as X ∼ MN (M,Σ, B).

It holds that X ∼ MN (M,Σ, B) if and only if vec(X) ∼ N (vec(M), B ⊗ Σ), see [CWG19, Theorem 2].

This again implies that the transpose X⊤ ∼ MN (M⊤, B,Σ), see [CWG19, Theorem 1]. Hence, in view

of Definition 3.1, for a separable kernel K(x, y) = Bk(x, y), we have that g ∼ MG(m,K) is equivalent to

g⊤(x) ∼ MN (m⊤(x),k, B) for K = B ⊗ k and m⊤(x) = (m1(x), . . . ,mA(x)), and where k denotes the

matrix with entries kij = k(xi, xj).

This leads to a natural interpretation of the variance and covariance structure of the discount curves.

From the above, we obtain Var(ga(x)) = Baak(x, x) and Cov(ga(x), gb(y)) = Babk(x, y). The separable

kernel structure allows us to interpret each entry Bab as the covariance between product classes a and

b, scaled by the scalar kernel k(x, y), which reflects the time-to-maturity effect and is independent of the

product class. The correlation is obtained by normalization. More details and a general decomposition result

for matrix-valued kernels are provided in Lemmas A.8 and A.9 in the appendix.

4 A workable class of separable kernels

In this section, we introduce the baseline model used for both theoretical analysis and empirical implemen-

tation. The formulation is motivated by economic reasoning and results in a tractable optimization problem

with a closed-form solution. It extends the single-curve model of [FPY24] to the vector-valued case. We

proceed in two steps. First, we heuristically construct a joint estimation objective that includes spread

penalties between curves. Second, we show that the resulting problem is equivalent to a vector-valued KR

with a separable matrix-valued kernel.

We begin with A scalar-valued estimation problems, each for a fixed-income product class a = 1, . . . , A,

min
ha∈Hk

Ma∑
i=1

ωa,i

(
Pa,i − Ca,ipa(x)− Ca,iha(x)

)2
+ γa∥ha∥2Hk

,

where k is a common scalar kernel with RKHS Hk, and γa > 0 is the regularity parameter for class a. Each

problem yields an individual estimator ha. Estimating the A curves independently is equivalent to solving

the joint optimization problem

min
h1,...,hA∈Hk

A∑
a=1

{
Ma∑
i=1

ωa,i(Pa,i − Ca,ipa(x)− Ca,iha(x))
2 + γa∥ha∥2Hk

}
.
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This can be viewed as a single objective over the product space (Hk)
A.

To introduce dependencies across product classes, we extend the regularization to the differences between

curves. Specifically, we add spread penalties of the form

A∑
a=1

∑
b>a

Θab∥ha − hb∥2Hk
,

where Θab ≥ 0 controls the strength of transfer learning between classes a and b.4 These terms encourage

similarity between curves without forcing equality. Instead, they penalize irregularities in the spread curves

through the RKHS norm ∥ · ∥Hk
. We use the terms regularity and smoothness interchangeably, referring

specifically to the notion of smoothness induced by the RKHS norm ∥ · ∥Hk
. In [FPY24], a specific kernel k

is proposed that encodes economically meaningful smoothness properties for discount curves. We adopt this

kernel specification in our implementations, see (14) and (15) below.

The complete transfer learning problem is

min
h1,...,hA∈Hk

A∑
a=1

{Ma∑
i=1

ωa,i(Pa,i − Ca,ipa(x)− Ca,iha(x))
2 + γa∥ha∥2Hk

+
∑
b>a

Θab∥ha − hb∥2Hk

}
. (8)

The following theorem shows that (8) can be interpreted as a vector-valued KR with a separable kernel.

This implies in particular that the optimization problem is convex and admits a unique solution.

Theorem 4.1. Let Θab ≥ 0 for a < b, and define Θba = Θab. Then the transfer learning problem (8) is

equivalent to the vector-valued KR problem (4) with λ = 1 and vector-valued RKHS norm

∥h∥2H =

A∑
a=1

γa∥ha∥2Hk
+

A∑
a=1

∑
b>a

Θab∥ha − hb∥2Hk
(9)

which corresponds to the separable reproducing kernel K(x, y) = Bk(x, y), where B = Q−1 and Q ∈ RA×A

is defined by

Qab =

γa +
∑

j ̸=a Θaj , if a = b,

−Θab, if a ̸= b.
(10)

The parameters Θab may be interpreted as edge weights on a graph with A nodes, each corresponding to

a product class. The matrix Q equals the sum of the diagonal matrix of γa and the Laplacian of the graph,

Q = diag(γ) + L(Θ). This formulation is known as graph regularization in the literature, see [BRBV12]

and [She08].

5 Standard fixed-income products

This section shows how standard fixed-income instruments can be expressed in the discounted cash flow

format (1), thereby enabling application of our estimation framework. While this formulation may lead

4We also considered adjusting the individual regularization parameters γa downward to keep the total regularization weight
constant when adding spread penalties. This corresponds to choosing λ < 1 in (4). However, in our empirical studies we found
that such scaling can introduce irregularities in the estimated discount curves, which is undesirable. We therefore recommend
keeping the values of γa fixed and setting λ = 1 to achieve a well-balanced and effective transfer learning outcome, as stated in
Theorem 4.1.
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to distinct discount curves across different product classes, we demonstrate in Appendix C how, under an

arbitrage-free pricing framework, a single risk-free curve and the corresponding function g may be recovered.

We proceed as follows: we first show how coupon bonds can be cast into the pricing format (1), then

extend this formulation to fixed–floating interest rate swaps. Finally, we examine cross-currency swaps and

show how transfer learning facilitates joint estimation of discount curves and forward exchange rates, offering

insights into multi-currency pricing.

5.1 Coupon bonds

The transformation of fixed-coupon bonds into the discounted cash flow format (1) is straightforward. Con-

sider a bond with notional normalized to one and coupons c1, . . . , cn paid at dates 0 < T1 < · · · < Tn, where

Tn denotes the bond’s maturity at which the notional is paid.5 Assuming the bond is default-free, the price

is given by

P =

n∑
j=1

cjg(Tj) + g(Tn).

Defaultable bonds are treated in Appendix C under an arbitrage-free pricing framework.

5.2 Interest rate swaps

We consider a standard fixed–floating interest rate swap with start (first reset) date T0 ≥ 0 and maturity

date Tn. We denote the reset and cash flow dates of the fixed payments leg by T0 < T1 < · · · < Tn and of

the floating payments leg by T0 = t0 < t1 < · · · < tm = Tn. For simplicity, the accrual periods along both

legs are assumed to be constant and denoted by ∆ = Ti − Ti−1 and δ = ti − ti−1, respectively.
6 The swap is

spot starting when T0 = 0 and forward starting when T0 > 0.

The present values of the fixed and floating legs are given by

PVfixed = ∆R

n∑
i=1

g(Ti),

PVfloating = g(T0)− g(Tn),

where R denotes the corresponding fixed swap rate. At inception, the swap has zero value, so that PVfloating =

PVfixed. We bring this into the desired format (1) as follows. For a spot-starting swap, T0 = 0, the price is

set to P = 1, which gives

1 = g(Tn) + ∆R

n∑
i=1

g(Ti). (11)

For a forward-starting swap, T0 > 0, the price is set to P = 0, which gives

0 = g(Tn)− g(T0) + ∆R

n∑
i=1

g(Ti). (12)

5The generic time grid (xi) used in (1) is assumed to be fine enough to cover all potential cash flow dates across product
classes. Hence, most entries in each row of C are zero.

6This can be generalized to specific day count conventions for both legs where the accrual periods depend on the actual
dates, replacing the constant ∆ and δ by ∆(Ti−1, Ti) and δ(tj−1, tj), respectively.
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5.3 Cross-currency swaps

Cross-currency swaps (XCCY) involve cash flows in two currencies and combine features of both interest

rate and foreign exchange (FX) instruments. See, e.g., [Ran23,BHJ+19] for introductions. We denote the

spot exchange rate prevailing at time t as Xab(t), defined as the price of one unit of (base) currency a in

terms of (quote) currency b.

A typical use case involves a domestic, say Swiss, firm that holds CHF and wishes to buy a USD-

denominated bond. To hedge currency risk, the firm enters a XCCY swapping USD coupon payments

against CHF cash flows.7

The most standardized and actively traded XCCY is the floating–floating type used in the interbank

market. At the start date t0, notional amounts in both currencies are exchanged at the prevailing spot

exchange rate Xab(t0). Thereafter, floating interest payments are made in each currency at dates t0 < t1 <

· · · < tm, typically quarterly and based on overnight risk-free rates (RFRs). The initial notional amounts

are re-exchanged at maturity date tm. A basis spread s is typically added to the less liquid currency leg to

reflect liquidity differences and funding imbalances between the two currencies. Figure 1 illustrates this.

Figure 1: Schematic cash flows of a floating–floating XCCY swap

t
t0 t1 t2

. . .
tm

Receive floating in leg a

Pay floating in leg b

Xab(t0)

1

s s s

1

Xab(t0)

The figure shows the cash flow diagram of a floating–floating XCCY swap. We take the view of receiving leg a while making
periodically payments in leg b. Thus, downward pointed arrows reflect a cash flow we have to pay. The wiggled lines denote
the floating payments. Straight line are the exchange of notionals and basis spread payments. We assume the basis spread s is
added on leg a. It is common that this spread is negative, indicated by the downward pointed arrow. We use the convention
to normalize the notional of leg a to 1 so that the corresponding notional of leg b is given by Xab(t0).

An additional feature common in interbank markets is mark-to-market (MTM) resets of the notional leg.

These reduce counterparty risk but, as shown in Appendix C, have no impact on present values.

End clients generally prefer fixed interest payments. Banks accommodate this by combining floating—

floating XCCY with standard fixed–floating interest rate swaps. This composite structure is also necessary

for estimating the discount curve using our framework. We focus on the non-liquid leg (currency a), and

bring this now into the desired format (1). Thereto, let Ra be the fixed swap rate of a standard RFR-

based swap in currency a with the same maturity as the XCCY. We assume this rate is observable from the

market.8 More specifically, let t0 = T0 < T1 < · · · < Tn = tm be the fixed leg’s payment dates with constant

accrual period ∆ = Ti − Ti−1, and assume that currency b is the more liquid leg, so the basis spread s is

added to leg a. For a spot-starting XCCY, T0 = 0, we set P = 1. The corresponding discounted cash flow

7Another example is two firms located in different countries with different currencies. Each exhibits cheaper local funding
sources. To raise funds abroad they can enter into a bilateral XCCY.

8This is standard practice in well-developed swap markets.
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equation becomes

1 = ga:b(Tn) + ∆Ra

n∑
i=1

ga:b(Ti) + δs

m∑
j=1

ga:b(tj).

For a forward-starting XCCY, T0 > 0, the price is set P = 0 and we obtain

0 = ga:b(Tn)− ga:b(T0) + ∆Ra

n∑
i=1

ga:b(Ti) + δs

m∑
j=1

ga:b(tj).

Here, ga:b(·) denotes the discount curve for currency a induced by currency b via an XCCY. It incorporates

the cross-currency basis and is generally distinct from the discount curve ga(·) that corresponds to standard

interest rate swaps in currency a. If the basis spread s is zero, ga:b(·) coincides with ga(·).
An important byproduct of this formulation is an expression for the forward exchange rate that incorpo-

rates the cross-currency basis. Let Fab(x) denote the forward exchange rate fixed at time 0 for maturity x.

Then

Fab(x) = Xab(0)
ga:b(x)

gb(x)
. (13)

This identity can be derived by considering a spot-starting XCCY in combination with an interest rate swap

with a single payment at t1 = T1 = x. Investing one unit of currency a via this XCCY and swapping the

floating payment for fixed results in a fixed payoff of 1
ga:b(x)

units of currency a at maturity x. Alternatively,

the same initial amount can be used to purchase Xab(0)
gb(x)

units of the discount bond with maturity x in

currency b. At maturity, this yields a cash flow in currency b, which is then converted back into currency a

at the forward exchange rate Fab(x), resulting in a payoff of Xab(0)
gb(x)Fab(x)

in currency a. Since both strategies

yield deterministic payoffs, the absence of arbitrage implies that they must be equal, which proves (13).

Remark 5.1. Textbook covered interest parity (CIP) posits that Fab(x) = Xab(0)
ga(x)
gb(x)

. However, in practice,

deviations from CIP are persistent, as ga:b(x) ̸= ga(x) due to liquidity differences and funding constraints.

Most currencies exhibit a negative basis against USD, meaning counterparties are willing to accept a lower

return to obtain USD funding, which manifests as s < 0 in observed XCCY swaps.

6 Implementation and examples

This section illustrates the effects of transfer learning through a series of representative examples. While not

intended as a full empirical study, these examples demonstrate the model’s behavior in realistic scenarios.

We focus on transfer learning across A = 2 product classes, government bond and RFR-based swaps within

the same currency, for four currencies. We first introduce the data, followed by a description of the base

model and implementation details. We conclude with an illustration of the effects of transfer learning.

6.1 Data

We source data of government bonds and RFR-based swaps from Bloomberg9 for four currencies, CHF,

EUR, GBP, and USD, on five representative business days of the years 2020 to 2024. Following the approach

in [CF24], we select the mid-June (nearest available) business day of each year: 2020-06-15, 2021-06-15,

2022-06-15, 2023-06-15, and 2024-06-14.

9Bloomberg Finance L.P.
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For government bonds, we use dirty prices, assuming same-day settlement. Our selection includes all

fully taxable, non-callable coupon bonds, applying filters consistent with [FB87,LW21]. Following [GSW07],

we exclude bonds with fewer than 90 days to maturity and omit all bills. The CHF market has the smallest

number of bonds, while the USD market has the largest. Maturity distributions vary across markets. CHF

and GBP markets contain bonds with maturities over 40 and 50 years, respectively. EUR and USD maturities

initially extend to about 35 years, tapering to around 30 years. Overall, maturity coverage is denser in USD

and EUR.

Swap data consists of rates for standard fixed–floating interest rate swaps, where the floating leg is linked

to transaction-based overnight RFRs [SS19]. For Switzerland, the reference rate is the Swiss Average Rate

Overnight (SARON) [SIX], which is collateralized. In the euro area, two benchmarks exist: EURIBOR and

the Euro Short-Term Rate (ESTR) [ECB]. We use ESTR, which is unsecured but still considered risk-free.

In the UK, the reformed RFR is the Sterling Overnight Index Average (SONIA) [BoEb], also unsecured. In

the U.S., the Secured Overnight Financing Rate (SOFR) [Fed] serves as the RFR and is collateralized. The

number of available swap tenors is broadly comparable across currencies, ranging from overnight to 50 years.

Both ESTR and SONIA tenors even extend to 60 years.

6.2 Base model and implementation details

To implement the KR estimator in (4), we adopt duration-based weights ωi, as commonly used in the

literature; see, e.g., [FPY24,CF24]. For any fixed-income instrument i with cash flows Cij at dates xj , its

price as a function of yield-to-maturity (YTM) Y is given by

Y 7→ Πi(Y ) =

n∑
j=1

Cije
−Y xj .

The market-implied YTM Yi is defined by Πi(Yi) = Pi, where Pi denotes the observed market price. The

model-implied YTM Y g
i , based on a discount curve g, satisfies Πi(Y

g
i ) = P g

i = Cig(x), consistent with the

discounted cash flow equation (1). Using a first-order approximation, P g
i −Pi ≈ Π′

i(Yi)(Y
g
i −Yi), we express

the squared YTM error as an approximately weighted squared price error,

(Y g
i − Yi)

2 ≈ 1

(Π′
i(Yi))

2 (P
g
i − Pi)

2.

YTM is often used to compare fixed-income instruments across maturities. Weighting squared price errors

by ωi = 1
M

1

(Π′
i(Yi))

2 therefore ensures that estimation errors are more uniformly comparable across the

maturity spectrum.

This logic also applies to swaps, for which either Pi = 1 (spot-starting) or Pi = 0 (forward-starting). The

following result links YTM to the swap rate R:

Lemma 6.1. If Tj − Tj−1 ≡ ∆ for all j = 1, . . . , n, then ∆Y = log(1 + ∆R). That is, in first order the

YTM equals the swap rate, Y ≈ R.

The following example illustrates this for a single-period overnight swap.

Example 6.2. In the U.S., the overnight RFR is SOFR, here denoted by RSOFR. Consider a single-period

overnight swap maturing at T1 = 1
365 . The pricing equation (11) here is P g

SOFR =
(
1 + T1RSOFR

)
g(T1)− 1.

12



The corresponding YTM YSOFR satisfies

0 =
(
1 + T1RSOFR

)
e−YSOFRT1 − 1,

which implies

YSOFR =
1

T1
log(1 + T1RSOFR) ≈ RSOFR.

The derivative of the YTM–price function is Π′
SOFR(YSOFR) = −T1, so the corresponding duration-based

weight becomes ωSOFR = 1
MT 2

1
.

We use the separable kernel K(x, y) = Bk(x, y) from Theorem 4.1 with scalar kernel given by

k(x, y) = −min{x, y}
α2

e−αmin{x,y} +
2

α3

(
1− e−αmin{x,y}

)
− min{x, y}

α2
e−αmax{x,y} (14)

for a maturity weight parameter α > 0, which is introduced in [FPY24].10 They show that the corresponding

RKHS Hk is the weighted Sobolev space consisting of twice weakly differentiable functions h : [0,∞) → R
with h(0) = 0, limx→∞ h′(x) = 0, and finite smoothness norm given by

∥h∥2Hk
=

∫ ∞

0

h′′(x)2eαx dx. (15)

In sum, this specification includes the following hyperparameters: α (scalar kernel parameter), γa (discount

curve smoothness), Θab (spread smoothness). To reduce complexity, we set γa = γ for all a and Θab = θ for

all a < b.

We set α = 0.05 and γ = 10−4, as calibrated in [FPY24] for U.S. data.11 The remaining tuning parameter

is θ, which governs the strength of transfer learning. We consider values θ ∈ {0, 1, 10, 100}. Setting θ = 0

corresponds to independent estimation without transfer learning.

6.3 Illustrative effects of transfer learning

To demonstrate the effects of transfer learning, we present two representative examples in the main text:

EUR and USD market, both for the date 2024-06-14. For size reasons, we show only these two instances here.

The full set of results across all currencies and dates is provided in the supplementary online appendix.12

Figure 2 shows yield curves (left column) and forward curves (right column) for the EUR market on 2024-

06-14, estimated under varying values of the transfer learning parameter θ.13 Shaded areas represent 3σ

confidence bands derived from the Gaussian process view of the KR estimator, cut at ±2% for readability.14

German government bond maturities extend to 30 years, while ESTR swap tenors reach up to 60 years.

Transfer learning leverages this longer maturity coverage to improve extrapolation for the bond yield curve.

10The RKHS introduced in [FPY24] is more flexible, as its norm (15) includes both first- and second-order derivatives.
However, their empirical analysis on U.S. data finds that only the second-order term is relevant for the performance of the KR
estimator. [CF24] confirm this finding for Swiss data as well.

11In fact, [FPY24] use γ = 1/(365 · xN ) for the prevailing last maturity date xN , although the differences are economically
negligible. [CF24] find that α = 0.02 and γ = 10−3 are statistically optimal for Swiss data. However, they also show that
variations in α and γ within this range have no economically significant impact on the KR estimation.

12Available at Online Appendix for Transfer Learning Across Fixed-Income Product Classes.
13The yield curve consists of the annualized zero-coupon log returns, y(x) = − 1

x
log g(x), and the forward curve is defined as

the logarithmic derivative f(x) = − d
dx

log g(x), for a scalar-valued discount curve g(x).
14Confidence bounds for the discount curve are computed as ḡa,low(x) = max(ḡa(x)− 3σa(x), ḡa(x)e−0.02x) and ḡa,up(x) =

min(ḡa(x) + 3σa(x), ḡa(x)e0.02x), where σa(x) = (ŝKpost
aa (x, x))1/2. Confidence bands are not available for forward curves.

13

https://drive.google.com/file/d/1hMiGpFmGxiBHHjx2KRubtX4zpj1tfZkv/view?usp=drive_link


As θ increases, the confidence band for the bond yield curve narrows beyond 30 years, reflecting reduced

uncertainty. In contrast, the swap yield curve, supported by denser data, remains largely unchanged. Within

the interpolation range (up to 30 years), the bond yield curve is unaffected, confirming that transfer learning

acts locally and preserves robustness in data-rich regions. As swaps typically span a broader maturity

spectrum, information transfer tends to flow from swaps to bonds. The effects are even more apparent in

the forward curves. For θ = 0, the bond forward curve is visibly less smooth than the swap curve. For

moderate values (θ = 1 and 10), the swap forward curve imparts a smoothing effect on the bond forward

curve. However, for large values (θ = 100), the direction of influence reverses, and the bond forward curve

begins to distort the swap forward curve, illustrating the risk of excessive transfer.

To quantify the transfer learning effects, Table 1 reports the change in yield ∆y = yxN
(θ > 0)−yxN

(θ = 0)

at the longest available maturity xN for each currency at each date. Across all five reference dates, changes

for the swap yield curve remain negligible (below 1 basis point), whereas the bond yield curve exhibits

economically meaningful shifts ranging from −26.3 to 22.0 basis points.15

Table 1: Effect of transfer learning on EUR yield curves (in basis points)

Date θ = 1 θ = 10 θ = 100

Swap Bond Swap Bond Swap Bond

2020-06-15 0.3 -8.5 0.4 -18.6 0.4 -26.3
2021-06-15 -0.1 1.8 -0.3 0.6 -0.3 -3.5
2022-06-15 0.2 6.2 0.2 5.2 0.1 -2.1
2023-06-15 -0.4 8.6 -0.7 1.0 -0.9 -8.5
2024-06-14 -0.4 13.9 -0.7 22.0 -0.8 20.8

Figure 3 and Table 2 provide the corresponding results for the USD market on the same date. The

patterns closely mirror those observed in the EUR case, reinforcing the conclusions above.

Table 2: Effect of transfer learning on USD yield curves (in basis points)

Date θ = 1 θ = 10 θ = 100

Swap Bond Swap Bond Swap Bond

2020-06-15 0.1 4.8 0.1 12.3 -0.3 -2.5
2021-06-15 -0.1 3.0 -0.2 12.1 -0.4 12.8
2022-06-15 0.3 -4.8 0.6 13.3 0.4 25.2
2023-06-15 0.1 -3.0 0.2 14.5 0.1 33.5
2024-06-14 0.1 -3.8 0.1 12.0 0.0 34.0

These two examples are chosen for illustration due to their economic relevance and visual clarity. The

full set of results, provided in the supplementary online appendix, consistently confirms the same qualitative

pattern across all currencies and reference dates. In each case, transfer learning improves the estimation in

data-scarce regions, particularly for government bond curves, while preserving robustness in well-identified

segments.

15For context, [FPY24] and [CF24] report YTM root mean squared errors (RMSE) between 5 and 8 basis points.
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Figure 2: Transfer learning across government bonds and swaps: EUR yield and forward curves

(a) θ = 0 (b) θ = 0

(c) θ = 1 (d) θ = 1

(e) θ = 10 (f) θ = 10

(g) θ = 100 (h) θ = 100

This figure displays yield curves (left column) and forward curves (right column) estimated on 2024-06-14 for German gov-
ernment bonds (Bond KR) and ESTR swaps (Swap KR), under varying values of the transfer learning parameter θ. In all
panels, the vertical dashed lines indicate the longest available data point in the respective product class. The shaded areas
show the 3σ confidence bands derived from the Gaussian process view and are capped at ±2%.
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Figure 3: Transfer learning across government bonds and swaps: USD yield and forward curves

(a) θ = 0 (b) θ = 0

(c) θ = 1 (d) θ = 1

(e) θ = 10 (f) θ = 10

(g) θ = 100 (h) θ = 100

This figure displays yield curves (left column) and forward curves (right column) estimated on 2024-06-14 for U.S. government
bonds (Bond KR) and SOFR swaps (Swap KR), under varying values of the transfer learning parameter θ. In all panels, the
vertical dashed lines indicate the longest available data point in the respective product class. The shaded areas show the 3σ
confidence bands derived from the Gaussian process view and are capped at ±2%.
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7 Conclusion

We introduce a transfer learning framework for jointly estimating discount curves across fixed-income product

classes. Building on the discounted cash flow principle, our approach extends kernel ridge regression to a

vector-valued setting, resulting in a convex optimization problem with a closed-form solution in a vector-

valued RKHS. A key feature is the use of separable operator-valued kernels, which enable regularization of

curve spreads in an economically meaningful way.

We derive a norm decomposition for separable kernels, generalizing prior results and leading to a princi-

pled spread regularization term. The framework admits a Gaussian process interpretation, allowing uncer-

tainty quantification in the vector-valued setting.

We show how standard fixed-income instruments, including coupon bonds, interest rate swaps, and cross-

currency swaps, can be embedded in this structure. Empirical illustrations across CHF, EUR, GBP, and

USD markets demonstrate that transfer learning improves extrapolation while leaving well-identified regions

unaffected. A comprehensive empirical assessment is left for future work.
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Definition A.1. An RA-valued RKHS on E is a Hilbert space H consisting of functions h = (h1, . . . , hA)
⊤ :

E → RA such that for every x ∈ E, the linear evaluation map Ex : H → RA given by Ex(h) = h(x) is

bounded.

An RA-valued RKHSH has a reproducing kernel functionK : E×E → RA×A defined byK(x, y) = ExE
∗
y ,

where we identify a linear operator on RA with its A × A-matrix representation in the standard Euclidean

basis of RA. E∗
y denotes the adjoint operator. We immediately obtain that K(·, y)v = E∗

yv ∈ H and

⟨K(·, y)v, h⟩H = v⊤h(y), for any y ∈ E, v ∈ RA, h ∈ H. Moreover, we see that K is symmetric in the

following sense,

K(x, y)⊤ = K(y, x). (16)

Note, however, that the matrices K(x, y) are not symmetric for x ̸= y in general.16 Moreover, for any finite

points x1, . . . , xn ∈ E the operator (K(xi, xj)) on (RA)A is positive semi-definite in the sense that for all

choices of vectors v1, . . . , vn ∈ RA we have

n∑
i,j=1

v⊤i K(xi, xj)vj ≥ 0. (17)

Conversely, this leads to the following definition.17

Definition A.2. A function K : E × E → RA×A satisfying (16) and (17) is called a RA×A-valued kernel

function.

It follows by inspection that a function K : E×E → RA×A is a RA×A-valued kernel function if and only

if there exists a scalar kernel function k on {1, . . . , A} × E such that Kab(x, y) = k((a, x), (b, y)).

Example A.3. The concept of matrix-valued kernels is surprisingly strong as it is somewhat difficult

to generate examples easily. However, one possible way is to let k1, k2, . . . , kA be scalar kernels on E,

then K(x, y) = diag(k1(x, y), . . . , kA(x, y)) is a RA×A-valued kernel. Indeed, property (16) holds because

K(x, y) = K(y, x) is symmetric. Property (17) is valid since

n∑
i,j=1

v⊤i K(xi, xj)vj =

n∑
i,j=1

A∑
a=1

vi,aka(xi, xj)vj,a =

A∑
a=1

( n∑
i,j=1

vi,aka(xi, xj)vj,a︸ ︷︷ ︸
≥0

)
≥ 0,

where the inner sums are non-negative due to the kernel property of each scalar kernel ka.

Moore’s vector-valued theorem [PR16, Theorem 6.12] states that for every RA×A-valued kernel function

K there exists a unique RA-valued RKHS H such that K is its reproducing kernel function. Moreover,

functions of the form

h(x) =

n∑
j=1

K(x, yj)vj , vj ∈ RA, y1, . . . , yn ∈ E, n ∈ N, (18)

16Many papers in the literature assume that the matrices K(x, y) are symmetric. But this is not the case in general, and, in
fact, it excludes many examples.

17Note that [PR16, Definition 6.11] does not require (16) because they work on complex Hilbert spaces, where the non-
negativity, that is, (17) with vi replaced by its complex conjugate, already implies that K(x, y)∗ = K(y, x).
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are dense in H, see [PR16, Proposition 6.7].18 A special class of RA×A-valued kernels are separable kernels.

In fact, as it turns out they are tractable and easy to interpret.

Definition A.4. A RA×A-valued kernel K on E is separable if it can be written as K(x, y) = Bk(x, y) for

some A × A-matrix B and a scalar kernel k on E. In view of (16), the matrix B is necessarily symmetric

positive semi-definite.

Remark A.5. Separable kernels are one of the simplest matrix-valued kernel. If we regard kernels as

similarity measures, B encodes similarity across components while k encodes similarity across the space E.

The following theorem provides an important representation result, which is at the heart of transfer

learning in this paper.

Theorem A.6. Let H be the vector-valued RKHS corresponding to the separable kernel K(x, y) = Bk(x, y).

Let Hk denote the RKHS corresponding to the scalar kernel k. Let Q be any generalized inverse A×A-matrix

of B such that BQB = B. Then the following hold.

(i) H is isomorphic to the direct sum
⊕Ã

a=1 Hk, where Ã = rankB.

(ii) H ⊆ (Hk)
A = Hk × · · · × Hk as sets, with equality if and only if B is non-singular.

(iii) For any h = (h1, . . . , hA)
⊤ ∈ H, the H-norm can be expressed as

∥h∥2H =

A∑
a,b=1

Qab⟨ha, hb⟩Hk
. (19)

(iv) If Q is symmetric then (19) can also be written as

∥h∥2H =

A∑
a=1

γa∥ha∥2Hk
−

A∑
a=1

∑
b>a

Qab∥ha − hb∥2Hk
, (20)

where γa =
∑A

b=1 Qab denote the row sums.

Proof. We define the linear subspace D of H that consists of all functions of the form

h(·) =
n∑

j=1

Bvjk(·, yj), vj ∈ RA, y1, . . . , yn ∈ E, n ∈ N. (21)

From (18) we know that D is dense in H. Similarly, we define the dense subspace Dk of Hk of all functions

of the form g(·) =
∑n

j=1 cjk(·, yj), for cj ∈ R. Consequently, the direct sum
⊕Ã

a=1 Dk is a dense subspace of⊕Ã
a=1 Hk.

We prove the theorem in two steps. First, we prove all statements for H and Hk replaced by D and Dk.

Second, we argue by the continuous extension principle that all results carry over to H and Hk.

We let B = USU⊤ denote the reduced spectral decomposition where U is an orthogonal A × Ã-matrix

such that U⊤U = IÃ, and S = diag(s1, . . . , sÃ) contains the positive eigenvalues s1 ≥ · · · ≥ sÃ > 0 of B.

We define the linear operator U : D →
⊕Ã

a=1 Dk, by Uh(·) = U⊤∑n
j=1 Bvjk(·, yj) =

∑n
j=1 SU

⊤vjk(·, yj).
The operator U is injective, because Uh(·) = 0 implies that SU⊤vj = 0 and thus vj = 0 for all j = 1, . . . , n,

18Note that (18) differs from the corresponding formulas in [ARL12, page 209] and the wikipedia page [Wik]. The latter
formulas are correct only if K(x, y) is a symmetric matrix, which in view of (16) is not true in general.
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hence h = 0. Here we assume that n is minimal in the sense that k(·, y1), . . . , k(·, yn) are linearly independent

in Hk, without loss of generality. We claim that U is also surjective, U(D) =
⊕Ã

a=1 Dk. Indeed, any

g ∈
⊕Ã

a=1 Dk can be written as g(·) =
∑n

j=1 wjk(·, yj), for some wj ∈ RÃ, y1, . . . , yn ∈ E, n ∈ N. Define the

linear operator V :
⊕Ã

a=1 Dk → D by Vg(·) = U
∑n

j=1 wjk(·, yj). As the Ã × A-matrix SU⊤ has full rank

Ã, there exist vj ∈ RA such that wj = SU⊤vj . Then h ∈ D given by h(·) = Vg(·) =
∑n

j=1 Bvjk(·, yj) is

a pre-image of g, because Uh(·) = U⊤U
∑n

j=1 wjk(·, yj) = g(·). We conclude that U : D →
⊕Ã

a=1 Dk is a

linear bijection with inverse given by U−1 = V, which proves (i).

We also obtain that the components ha of any h ∈ D are linear combinations of functions gb ∈ Dk and

thus elements in Dk themselves. As Ã = A if and only if B is non-singular, this proves (ii).

Next we claim that (19) holds for h ∈ D. Indeed, on one hand we have

∥h∥2H =

n∑
i,j=1

⟨Bvik(·, yi), Bvjk(·, yj)⟩H =

n∑
i,j=1

v⊤i Bvjk(yi, yj)

by the basic reproducing kernel property of K(·, yi) = Bk(·, yi). On the other hand, the right hand side of

(19) equals

A∑
a,b=1

Qab⟨ha, hb⟩Hk
=

n∑
i,j=1

A∑
a,b=1

Qab(Bvi)a(Bvj)bk(yi, yj) =

n∑
i,j=1

v⊤i BQBvjk(yi, yj),

which equals the former and thus proves (iii).

As for (20), straightforward rearrangement of sums shows that the right hand side of (20) equals

RHS =

A∑
a=1

Qaa∥ha∥2Hk
+

A∑
a=1

∑
b ̸=a

Qab

(
∥ha∥2Hk

− 1

2
∥ha − hb∥2Hk

)

=

A∑
a=1

Qaa∥ha∥2Hk
+

A∑
a=1

∑
b ̸=a

Qab⟨ha, bb⟩Hk
=

A∑
a,b=1

Qab⟨ha, hb⟩Hk
.

In view of (19), this proves (iv).

We now extend the validity of the above proved properties to H and Hk. Thereto, when writing h = U−1g

for g = Uh ∈
⊕Ã

a=1 Dk, we observe that the right hand side of (19) becomes

∥h∥2H =

Ã∑
a=1

s−1
a ∥ga∥2Hk

. (22)

Indeed, BQB = B implies U⊤QU = S−1, and thus v⊤Qv = w⊤S−1w for any v = Uw, which shows (22).19

We obtain the bounds s−1
1 ∥g∥2⊕Ã

a=1 Hk

≤ ∥h∥2H ≤ s−1

Ã
∥g∥2⊕Ã

a=1 Hk

We infer that U : D ⊂ H →
⊕Ã

a=1 Hk is bounded with operator norm ∥U∥ = s1. In the same vein,

U−1 :
⊕Ã

a=1 Dk ⊂
⊕Ã

a=1 Hk → H is bounded with operator norm ∥U−1∥ = s−1

Ã
. By the extension principle

for bounded densely defined operators on Banach spaces, [Kat95, Section III.2.2], U uniquely extends to

an invertible bounded operator U : H →
⊕Ã

a=1 Hk with inverse given by the respective extension of U−1.

As norm convergence in H and
⊕Ã

a=1 Hk implies point-wise convergence, we have Uh(·) = U⊤h(·) and

19In more detail: we have ha =
∑Ã

i=1 Uaigi, and hence
∑A

a,b=1 Qab⟨ha, hb⟩Hk
=

∑Ã
i,j=1

∑A
a,b=1 UaiQabUbj⟨gi, gj⟩Hk

, which

equals the right hand side of (22).
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U−1g(·) = Ug(·), for all h ∈ H and g ∈
⊕Ã

a=1 Hk. The validity of (i), (ii), (iii), (iv) for H and Hk now

follows by continuity arguments.

Remark A.7. Equation (19) is also proved in [BRBV12, Proposition 1], however, only for simple functions

of the form (21), which corresponds to the first step in our proof of Theorem A.6.

The following two auxiliary lemmas are of independent interest and potentially useful for the specification

of a matrix-valued kernel. They provide general elementary decomposition results, which are known as kernel

normalization in the scalar case.

Lemma A.8. Any RA×A-valued kernel K can be decomposed in the following way

K(x, y) = S(x)R(x, y)S(y) (23)

where R is a normalized RA×A-valued kernel such that Raa(x, x) = 1, and S(x) is a diagonal matrix with

non-negative elements, for all a = 1, . . . , A and x ∈ E.

A particular decomposition is given by

Saa(x) = Kaa(x, x)
1
2 (24)

and

Rab(x, y) =

1, if a = b and x = y,

Saa(x)
−1Kab(x, y)Sbb(y)

−1, if Saa(x) > 0 and Sbb(y) > 0,
(25)

and we set

Rab(x, y) = 0 otherwise. (26)

On the other hand, any such decomposition necessarily satisfies (24) and (25).20

Proof. Necessity of (24) and (25) follows by inspection.

It remains to prove that Rab(x, y) given by (25) and (26) defines a RA×A-valued kernel. It is readily

verified that Rab(x, y) = Rba(y, x), which proves (16). As for (17), we define the index set I0 = {(a, i) |
Saa(xi) = 0} and its complement I1 = Ic

0. Now let v1, . . . , vn ∈ RA, and define wi ∈ RA by wia =

viaSaa(xi)
−1 for (a, i) ∈ I1 and wia = 0 otherwise. Then we have

n∑
i,j=1

v⊤i R(xi, xj)vj =

A∑
a,b=1

n∑
i,j=1

viaRab(xi, xj)vjb =
∑

(a,i)∈I0

v2ia +
∑

(a,i),(b,j)∈I1

viaRab(xi, xj)vjb

≥
∑

(a,i),(b,j)∈I1

wiaKab(xi, xj)wjb =

n∑
i,j=1

w⊤
i K(xi, xj)wj ≥ 0

by the kernel property (17) of K. This completes the proof.

In the special case of separable kernels, Lemma A.8 extends as follows.

20Property (26) does not necessarily hold. Indeed, consider the finite set E = {x1, x2} and A = 1 and suppose that
K(x1, x1) = 1 and K(x1, x2) = K(x2, x2) = 0. Then R(x1, x1) = 1, R(x1, x2) = 1/2 and R(x2, x2) = 1 is a normalized kernel
satisfying the decomposition (23), but not (26).
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Lemma A.9. Let K(x, y) = Bk(x, y) be a separable kernel. Then the normalized kernel given by (25) and

(26) is separable of the form R(x, y) = Cρ(x, y) for the symmetric positive semi-definite matrix C given by

Cab =

1, if a = b,

B
− 1

2
aa BabB

− 1
2

bb , if Baa > 0 and Bbb > 0,

and we set Cab = 0 otherwise and the scalar kernel ρ given by

ρ(x, y) =

1, if x = y,

k(x, x)−
1
2 k(x, y)k(y, y)−

1
2 , if k(x, x) > 0 and k(y, y) > 0,

and we set ρ(x, y) = 0 otherwise. In particular, C and ρ are normalized in the sense that Caa = 1 and

ρ(x, x) = 1, for all a = 1, . . . , A and x ∈ E.

Proof. It is enough to show that C is a symmetric positive semi-definite matrix and ρ a scalar kernel. This

can both be proved using similar arguments as in the proof of Lemma A.8.

B Proofs

This appendix provides the proofs of the results stated in the main text, based on the foundational material

presented in Appendix A.

B.1 Proof of Theorem 2.1

Let S be the sampling operator as in equation (27). For any m ∈ {1, . . . ,M} define a(m), i(m) such that

Cm = (. . . , Ca(m),i(m), . . . ) is the m-th row of C, and Pm = Pa(m),i(m) is the m-th component of P , and

ωm = ωa(m),i(m) the corresponding weight. Then the weighted mean-squared pricing error can be written as

M∑
m=1

ωm(Pm −Cm vec(p⊤(x))−CmSh)2.

Similarly for the constraints, where ωm = ∞.

It then follows that the solution of the KR problem must lie in the orthogonal complement of the null

space of CS. That is, h = S∗C⊤q, for some q ∈ RM . The rest of the proof now follows as in the scalar

case [FPY24, Theorem A.1], using Lemma B.1 below. This completes the proof of Theorem 2.1.

Lemma B.1. Define the sampling operator S : H → RAN by

Sh = vec(h⊤(x)). (27)

The adjoint S∗ : RAN → H is given by

S∗v =

N∑
j=1

K(·, xj)V
⊤
j (28)

where Vj is the j-th row of the matrix V ∈ RN×A with vec(V ) = v. Moreover, K is the matrix representation

of the linear operator SS∗ : RAN → RAN in the standard Euclidean basis of RAN .
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Proof of Lemma B.1. Let v ∈ RAN and V ∈ RN×A its matricization such that vec(V ) = v. Then

⟨Sh, v⟩RAN =

N∑
j=1

A∑
a=1

ha(xj)Vja =

N∑
j=1

Vjh(xj) =

N∑
j=1

⟨h,K(·, xj)V
⊤
j ⟩H,

which proves (28). In coordinates, (28) reads as

S∗v =

A∑
b=1

N∑
j=1

(K1b(·, xj),K2b(·, xj), . . . ,KAb(·, xj))
⊤
Vjb,

and thus we obtain

SS∗v =

A∑
b=1

N∑
j=1

vec (K1b(x, xj),K2b(x, xj), . . . ,KAb(x, xj))Vjb = Kv,

as desired.

B.2 Proof of Theorem 4.1

According to Theorem A.6(iv) it is enough to construct a symmetric positive definite matrix Q such that

γa =
∑A

b=1 Qab and Qab = −Θab for a < b. Therefore, we parameterize Q by the A(A − 1)/2 spread

smoothness parameters Θab ≥ 0, as defined in (10).

By construction, the matrix Q is strictly diagonally dominant, Qaa >
∑

b ̸=a |Qab|, for all a, and hence

positive definite, see [HJ12, Theorem 6.1.10]. Hence B = Q−1 is symmetric and positive definite leading to

a valid separable kernel. Theorem A.6 implies that the norm of the vector-valued RKHS H with separable

kernel K(x, y) = Bk(x, y) is given by (9). Theorem A.6 also implies that the optimization problem (8) over

the product space (Hk)
A is equivalent to the KR problem (4) with norm (9) for λ = 1.

Remark B.2. The matrix Q in (10) is strictly diagonally dominant, by construction. This is sufficient

for Q being positive definite. However, not every symmetric positive definite matrix is strictly diagonally

dominant. An example is given by

Q =

(
4 q

q 1

)
,

for any 1 < q < 2. Indeed, the characteristic polynomial is (4 − λ)(1 − λ) − q2 = λ2 − 5λ + 4 − q2. Hence

the eigenvalues of Q are positive, λ1,2 =
5±

√
25−4(4−q2)

2 > 0, and Q is positive definite. However, Q is

not diagonally dominant, as Q22 = 1 < q = Q21. In that sense, specification (9) is a special case of a

vector-valued RKHS with separable kernel as discussed in Theorem A.6

B.3 Proof of Lemma 6.1

Under the assumption of the lemma, we have after multiplication with eT0Y

0 = ∆R

n∑
j=1

e−∆Y j + e−∆Y n − 1 = ∆R
q

1− q
(1− qn)− (1− qn),

where we write q = e−∆Y . Therefore ∆R = 1−q
q , which proves the claim.
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C Arbitrage-free pricing framework

In this appendix, we place the discounted cash flow equation (1) within an arbitrage-free pricing framework,

following standard principles of asset pricing theory (see, e.g., [Bjo09]).

Let (Ω,F ,Q) be a probability space equipped with a filtration (Ft)t≥0 representing the flow of market

information. All processes are assumed to be adapted to this filtration. The pricing measure Q is risk-neutral

with respect to a numeraire B(t), interpreted as the money market account, satisfying B(0) = 1 and accruing

at the overnight RFR. The present value at time 0 of an FT -measurable cash flow Z paid at time T > 0 is

PVZ = EQ

[
Z

B(T )

]
= EQT [Z] g0(T ), (29)

where g0(T ) = EQ
[

1
B(T )

]
is the price of a risk-free discount bond maturing at T , and QT denotes the

T -forward measure defined via the Radon–Nikodym derivative dQT

dQ = 1
g0(T )B(T ) .

C.1 Non-defaultable bonds

Bonds issued by highly rated sovereigns, such as U.S. Treasuries or German government bonds, are typically

regarded as non-defaultable (or risk-free). The discounted cash flow equation (1) applies directly with ga = g0

for such a bond paying nominal coupons c1, . . . , cn at dates 0 < T1 < · · · < Tn and the notional of one at

the maturity Tn.

C.2 Defaultable bonds

Defaultable (or credit-risky) bonds include corporate debt and sovereign debt issued by less creditworthy

countries. These instruments generally trade at a spread over the risk-free curve to reflect credit risk. Let τ

denote the default time (which is a stopping time). Under the widely used recovery-of-treasury assumption

(see [JT95]), the cash flow at Ti is modeled as

Zi = ci 1{τ>Ti} + ci δi 1{τ≤Ti},

where δi ∈ [0, 1) is a deterministic recovery rate. Applying (29), we obtain

PVZi
= EQT [Zi] g0(Ti) = ci

(
QTi [τ > Ti] + δi QTi [τ ≤ Ti]

)
g0(Ti),

which motivates the effective discount factor

ga(Ti) =
(
QTi [τ > Ti] + δi QTi [τ ≤ Ti]

)
g0(Ti). (30)

Defaultable bonds are typically grouped by credit rating. Assuming all bonds within a given rating

class a share the same default distribution and recovery profile, the class admits a common discount curve

ga(x), and the discounted cash flow equation (1) applies.

C.3 RFR-based swaps

An RFR-based swap is an interest rate swap whose floating leg is linked to the money market account B(t),

which accrues at the RFR, such as SOFR in the United States or SARON in Switzerland, see [Fed, SIX].
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Under the no-arbitrage assumption, RFR-based swap contracts should be priced using the same discount

curve g0 as creditworthy government bonds denominated in the same currency. In practice, however, a

swap–government bond spread is observed. This spread arises due to market frictions and regulatory effects,

and lies outside the scope of our simple arbitrage-free pricing framework, see, e.g., [WJ24].

As for the fixed leg, let T0 < T1 < · · · < Tn denote the payment dates, with notional normalized to one.

For a given annualized swap rate R, the fixed cash flow at time Ti is ∆R with ∆ = Ti − Ti−1. By (29), the

present value of the fixed leg is

PVfixed = ∆R

n∑
i=1

g0(Ti).

Let T0 = t0 < · · · < tm = Tn denote the reset and payment dates of the RFR floating leg, again with

notional normalized to one. The floating cash flow at time ti > 0 corresponds to the simple return of the

money market account over the accrual period [ti−1, ti], given by B(ti)
B(ti−1)

− 1. Using (29) and observing the

telescoping structure of the discounted cash flows, we obtain
∑m

i=1
1

B(ti)

( B(ti)
B(ti−1)

− 1
)
= 1

B(T0)
− 1

B(Tn)
, from

which the present value of the RFR floating leg follows as

PVRFR–floating = g0(T0)− g0(Tn). (31)

Although the above specification, where floating cash flows are ”fixed in arrears,” has become the stan-

dard, see, e.g., [Int20, Tea21], an alternative is to define the floating rate over [ti−1, ti] as the simple re-

turn on a discount bond, Rterm(ti−1, ti) = 1
g0(ti−1,ti)

− 1. Here, with a slight abuse of notation, we de-

note by g0(t, T ) = EQ
[

1
B(T ) | Ft

]
the time-t value of a risk-free discount bond maturing at T , such that

g0(x) = g0(0, x). Under this alternative specification, the present value of the floating leg remains given by

(31), which follows directly as a simple consequence of the arbitrage-free pricing formula (29).

C.4 IBOR swaps

Interest rate swaps whose floating leg is tied to an interbank loan term rate (IBOR) reflect credit and liquidity

risk, which we model by adding a spread to the floating cash flows. For example, EURIBOR can be viewed

as the sum of the risk-free ESTR and a credit spread capturing interbank risk.21

Formally, using the same tenor structures for the floating and fixed legs as in Subsection C.3, the floating

cash flow of an IBOR swap at time ti is given by Rterm(ti−1, ti) + S(ti−1, ti), where S(ti−1, ti) denotes a

spread that reflects the credit and liquidity risk of lending in the interbank market over the period [ti−1, ti].

The present value of the IBOR swap’s floating leg is then

PVIBOR–floating = g0(T0)− g0(Tn) +

n∑
i=1

EQti [S(ti−1, ti)] g0(ti). (32)

As in the case of defaultable bonds discussed in Subsection C.2, we classify IBOR swaps according to

the length of the accrual period (tenor) of the floating leg, such as quarterly, semiannual, or annual. We

assume that all IBOR swaps within a given tenor class a share the same spread structure, which gives rise

to a common discount curve ga(x). This curve is determined from the discounted cash flow equation (1),

in conjunction with the expressions for the floating and fixed cash flows, resulting from (11) and (12),

respectively.

21Strictly speaking, ESTR is not secured, unlike SOFR. However, as an overnight rate, its credit risk is considered negligible,
and we treat it as risk-free for our purposes.
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For positive spreads S(ti−1, ti) > 0, the discount curve implied by the IBOR swap is strictly below the

RFR-based swap curve, that is, ga(x) < g0(x). However, as seen from (32), this relationship is not as explicit

as in the recovery-of-treasury model for defaultable bonds, as given in (30).

C.5 Cross-currency swaps

We are considering a standard floating–floating XCCY swap. The tenor structure of the cash flows is given

by 0 ≤ t0 < t1 < · · · < tm. The XCCY consists of two legs, leg a and leg b. Leg b is treated as the liquid

leg. Thus, the basis spread s is added to leg a which has a normalized notional of 1. The initial notional of

leg b is set to the spot exchange rate, Xab(t0). The MTM feature is sometimes applied to leg b.

We now show that, when present, the MTM adjustments do not affect the present value of leg b. According

to Clarus Financial Technology,22 the floating cash flow Zi at each payment date ti > 0 consists of the simple

return on the money market account applied to the MTM notional over the accrual period [ti−1, ti], minus

the change in MTM notionals over that period, and plus the MTM notional at maturity if ti = tm. Formally,

this gives

Zi = Xab(ti−1)

(
Bb(ti)

Bb(ti−1)
− 1

)
− (Xab(ti)−Xab(ti−1)) +Xab(T ) 1ti=tm ,

where Xab(t) denotes the MTM notional in currency b at time t, and Bb(t) is the corresponding money

market account.

Discounting each cash flow by the money market account and simplifying the telescoping sum yields

m∑
i=1

Zi

Bb(ti)
=

m∑
i=1

(
Xab(ti−1)

Bb(ti−1)
− Xab(ti)

Bb(ti)

)
+

Xab(tm)

Bb(tm)
= Xab(t0),

which is known (deterministic) at time t0 and equal to the initial notional. Hence, the present value of leg b

is given by Xab(t0), as in the case without MTM. This demonstrates that MTM adjustments, while relevant

for risk management, do not affect the arbitrage-free valuation of the liquid leg.

22Clarus FT is a data and analytics provider focused on OTC derivatives markets. See [Chr17] for a discussion of MTM
mechanics in cross-currency swaps.
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