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Towards user-centered interactive medical image
segmentation in VR with an assistive AI agent

Pascal Spiegler, Arash Harirpoush, and Yiming Xiao

Abstract—Crucial in disease analysis and surgical planning,
manual segmentation of volumetric medical scans (e.g. MRI, CT)
is laborious, error-prone, and challenging to master, while fully
automatic algorithms can benefit from user feedback. Therefore,
with the complementary power of the latest radiological AI
foundation models and virtual reality (VR)’s intuitive data
interaction, we propose SAMIRA, a novel conversational AI agent
that assists users with localizing, segmenting, and visualizing
3D medical concepts in VR. Through speech-based interaction,
the agent helps users understand radiological features, locate
clinical targets, and generate segmentation masks that can
be refined with just a few point prompts. The system also
supports true-to-scale 3D visualization of segmented pathology to
enhance patient-specific anatomical understanding. Furthermore,
to determine the optimal interaction paradigm under near-far
attention-switching for refining segmentation masks in an im-
mersive, human-in-the-loop workflow, we compare VR controller
pointing, head pointing, and eye tracking as input modes. With
a user study, evaluations demonstrated a high usability score
(SUS=90.0±9.0), low overall task load, as well as strong support
for the proposed VR system’s guidance, training potential, and
integration of AI in radiological segmentation tasks.

Index Terms—Medical image segmentation, Virtual reality,
Human-in-the-loop, AI agent, Foundation model, Attention
switching, Eye tracking, Medical visualization, Clinical decision
support

I. INTRODUCTION

Medical image segmentation is a critical task in clinical di-
agnosis and treatment planning, particularly for identifying and
quantifying abnormalities such as tumors, stroke lesions, and
other pathological anomalies. The process involves producing
segmentation masks that delineate and highlight regions of
interest to provide a basis for further analysis, treatment de-
cisions, and longitudinal tracking. However, traditional work-
flows for medical image segmentation are time-consuming and
labor-intensive, typically requiring experts to manually anno-
tate up to hundreds of 2D slices to isolate structures within 3D
MRI or CT scans. Furthermore, while segmenting pathologies
(e.g., tumor) accurately is itself a demanding skill, it often
requires extensive hours of supervision and training to develop
diagnostic confidence and anatomical precision [1]. Finally,
visualizations of these annotations are similarly challenging:
clinicians either scroll through superimposed binary masks on
2D slices across the axial, sagittal, and coronal planes, or view
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3D reconstructions rendered on flat screens, both of which lack
real spatial context and a true sense of scale.

While virtual reality (VR) can offer more intuitive 3D
medical data visualization and interaction, especially under
high spatial constraints (e.g., in the clinic), recent develop-
ments in foundation artificial intelligence (AI) models, such
as vision-language models (VLMs) have demonstrated early
promise to further enhance the efficiency, accuracy, and in-
teractability for tasks in VR in the form of AI agents [2],
[3]. As an alternative to conventional brush painting-based
segmentation paradigms, imagine a workflow that unites the
efficiency of AI with the spatial interaction advantages of a
virtual environment: a user reviews a brain tumor MRI in
VR assisted by an AI agent. First, the agent guides them
towards a representative tumor slice. When the user confirms
this slice contains a tumor, they issue a simple voice command,
triggering the AI agent to highlight the tumor and provide
a detailed patient-specific radiological description. Crucially,
this interaction goes beyond the role of a typical conversational
assistant: rather than passively responding to dialogue, the AI
agent actively executes a sequence of actions, from volumetric
segmentation to case-based guidance and full 3D rendering
with minimal input. If necessary, the user can easily refine the
segmentation using natural inputs, including head pointing,
gaze, or handheld controllers, and finally, the corrected mask
is rendered in 3D at true scale, offering enhanced spatial
interpretation of the tumor’s dimensions. Notably, as current
deep learning algorithms for radiological segmentation still
require human quality assurance [4]–[6], such a human-in-
the-loop approach preserves user oversight while dramatically
improving speed, accuracy, and spatial understanding through
immersive AI assistance.

In our work, we present such a VR-based, AI-assisted med-
ical image segmentation system that supports medical image
review for both diagnostic decision-making and education.
To the best of our knowledge, this system is the first of its
kind, not only automating segmentation across image slices
via a conversational AI agent, but also investigating optimal
interaction paradigms for human-in-the-loop mask refinement.
Our novel contributions are as follows: First, we systemat-
ically investigate optimal interaction paradigms for human-
in-the-loop segmentation refinement that transitions between
proximal corrections and distal menu interactions, comparing
natural inputs from handheld controllers, head pointing, and
gaze. Second, we introduce a new 3D segmentation algorithm
based on the BiomedParse and SAM2 foundation models
which reduces mask drift from noise during slice-to-slice
annotation propagation in medical images. Finally, we present
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SAMIRA, a conversational AI agent that assists with seg-
menting 3D radiological scans via voice commands, provides
interactive guidance, supports iterative refinement to preserve
expert oversight, and enables life-scale 3D visualization of
results in immersive VR.

II. RELATED WORK

Although research on AI assistants for clinical training in
VR is still in its infancy, early work has begun to demonstrate
its potential to support clinical workflows and healthcare
education. For example, Liaw et al. [7] developed a conversa-
tional AI assistant within a VR simulation for sepsis training,
which matched human-controlled scenarios in clinical and
communication performance and led to significantly higher
test scores. Furthermore, Chheang et al. [8] introduced a gen-
erative AI-based virtual assistant in a VR anatomy education
environment, highlighting the potential of such assistants to
support anatomy education. Although these systems leverage
large language models (LLMs) to provide educational support
via dialogue, they primarily function as virtual assistants
focused on delivering information. In contrast, AI agents
should autonomously execute sequential tasks in response
to high-level user prompts, for example, as in our scenario,
performing segmentation, providing clinical context via text
and images, and rendering 3D models. Retrieval-Augmented
Generation (RAG) often powers such agents by retrieving
relevant examples from a structured knowledge database and
combining similarity search results with generative models
to offer refined responses to queries. This contextualized
guidance is particularly useful for medical tasks, where visual
patterns vary across cases. To our knowledge, no prior work
has integrated AI agents into immersive VR for interactive 3D
radiological segmentation.

Recent development in foundation models has paved the
way for interactive medical image analysis with multi-modal
inputs. One such model, BiomedParse [9], is a Transformer-
based vision-language model that uses separate encoders for
medical images and clinical text data. Trained on 1.2 million
paired 2D radiological images and reports, it supports detec-
tion, classification, and segmentation of 82 clinical concepts
(e.g. tumor) across 9 imaging modalities using natural lan-
guage prompts. On the other hand, SAM2 [10] is a foundation
model for segmenting objects in images and video using
user-provided point and/or box prompts that enables prompt-
based segmentation mask refinement and leverages a memory
encoder to propagate masks across video frames. Although
developed for natural image domains, SAM2’s ability to
handle sequential image data positions itself as a promising
tool for 3D medical imaging segmentation, where volumetric
scans, such as CT or MRI can be viewed as series of 2D
images analogous to videos [11], [12]. This opens up the
possibility of combining BiomedParse’s language-driven label
mask generation with SAM2’s interactive label refinement and
propagation capabilities to enable human-in-the-loop segmen-
tation workflows for 3D medical imaging, an underexplored
area, particularly in immersive VR environments. While prior
VR segmentation systems have allowed users to paint regions

of interest using hand gestures [13], [14] or have used prede-
fined anatomy-specific deep learning models [15], none have
integrated foundation segmentation models with agent-driven
guidance to support interactive refinement.

In immersive medical image segmentation with SAM2,
users will need to frequently switch their visual and motor
attention between the image being annotated and a spatially
decoupled user interface (UI) menu for triggering actions (e.g.,
toggling between negative/positive prompts, resetting prompts,
etc.), thus creating a dual-focus challenge. Previously, Rashid
et al. [16] compared proximal (on-device) versus distal (re-
mote) widget selection in distributed user interfaces and found
that proximal methods were faster and preferred for complex,
multi-step tasks, while distal methods yielded lower error
rates for simpler interactions, suggesting that high-precision
tasks like segmentation prompt placement may benefit from
proximal selections and that simpler menu selections may
benefit from being performed at a distance. In our case,
the interactive refinement of AI-predicted segmentations with
SAM2 in VR necessitates identifying optimal interaction
paradigms for completing the task under attention-switching.
However, the ideal interaction paradigm (e.g., controller, head
pointing, or eye-tracking) for attention switching between
proximal and distal displays remains unexplored. Sidenmark
et al. [17] conducted a head-mounted VR study comparing
gaze, head, and controller pointing for dynamically revealed
target selection, showing that both gaze- and controller-based
pointing significantly outperformed head pointing in terms
of speed and precision, though they did not explore static
dual-panel switching scenarios. Luro et al. [18] compared eye
tracking with hand-controller aiming tasks in VR and reported
that controllers achieved the highest placement accuracy, while
gaze-based selection felt more natural, but suffered from
increased selection accuracy variability. Studies of multi-depth
targeting, such as the experiment of Schultheis et al. [19] re-
vealed that eye-based selection can achieve higher throughput
across varying depth planes, but controller input offers more
stable performance when precision is critical. Furthermore,
Xu et al.’s evaluation of text-selection techniques in VR
[20] demonstrated that head-pointing with click confirmation
strikes a balance between speed and accuracy, ranking just
behind controller pointing in speed while maintaining a mini-
mal task load, positioning it as a possibly viable paradigm for
attention switching interactions. With these previous insights,
we will investigate the optimal interaction paradigms for
point placement and menu selection under attention switching
conditions for our application.

III. SYSTEM OVERVIEW

To address the aforementioned issues, we present SAMIRA
(Segmentation Assistant for Multimodal Interaction and Ra-
diological Analysis), a novel conversational agent designed
to support human-in-the-loop 3D medical image segmentation
by generating segmentation masks, enabling efficient mask re-
finement, and providing radiological guidance through speech
and reference images. Figure 1 illustrates the system’s key
components during the segmentation of a liver tumor in a CT
scan.
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All VR development was conducted in Unity 2022.3.f1 on
a desktop equipped with an NVIDIA RTX 3090 and an HTC
Vive Pro Eye VR headset. In the VR system, medical image
slices are displayed on a virtual panel anchored to a VR
controller in the user’s hand, allowing flexible repositioning
for detailed inspection. Users navigate through image slices by
rotating the thumbpad on the HTC Vive controller, clockwise
to advance and counter-clockwise to reverse. Each 60° rotation
corresponds to a single slice, reinforced by a haptic pulse that
provides tactile feedback at each transition.

The menu interface is structured into three panels (see
Figure 1): on the left panel, AI-driven guidance is provided as
text and synthesized speech for the given segmentation task. In
the middle panel, interactive controls with functional buttons
allow users to issue voice commands, refine predicted masks,
propagate segmentations across slices, and render results in
3D. On the right panel, reference images are retrieved in real
time based on the user’s currently viewed slice based on RAG
from an existing knowledge repository. On this panel, the
system presents anatomically similar image examples with
and without the target structure (e.g., tumor), helping users
locate pathology and build a clearer understanding of its visual
characteristics.

Using the AI agent’s guidance and slice-scrolling mecha-
nism, users can find the target pathology, initiate segmentation
via voice commands, refine masks using efficient natural
inputs, then render a final segmentation into a true-to-scale
3D visualization to gain spatial understanding of pathologies.

Fig. 1. A. The AI agent generates an initial segmentation of a liver tumor
in CT and provides guidance using reference images and patient-specific
pathology explanations. B. The final refined 3D visualization is rendered as
a large, spherical, high-contrast liver tumor in red, overlaid on anatomical
structures, to scale. Few refinements are expected due to the simple shape.

All real-time inference (e.g., RAG retrieval), segmenta-
tion generation, point-prompt-based segmentation refinement,
mask propagation, and 3D mesh creation are realized by
SAMIRA and coordinated via two dedicated Python Web-
Socket servers: a local rendering server and a dedicated
inference server. This is to ensure responsive, low-latency AI
assistance and integration between Unity and the supporting
AI models. However, future similar systems can benefit from
cloud-based setups.
Local Rendering Server: The server ran on the same desktop
as the Unity client. It receives binary segmentation masks,
scales the lesions using medical image metadata, and returns
a .obj mesh for VR visualization.
Dedicated Inference Server: A separate Ubuntu 22.04.2 LTS
server was set up with a dedicated NVIDIA RTX 3090 to
host SAMIRA’s RAG and foundational segmentation models

(BiomedParse, SAM2). It handles voice commands, reference
retrieval, textual guidance, text-based segmentation generation,
mask refinement, and mask propagation across frames (with
SAM2).

IV. METHODS AND MATERIALS

A. Interaction Paradigm Evaluation

Before evaluating the full VR system with our AI agent,
SAMIRA, we aimed to first reveal the optimal interaction
paradigm for point prompt placement and menu selection un-
der attention switching between the proximal handheld image
display and the distal menu interface. To accomplish this, we
designed an experiment to perform SAM2-based segmentation
mask refinement using three distinct paradigms: Controller,
Head Pointing, and Eye Tracking. The detailed setup is shown
in Fig. 2. As a potential middle ground between Controller and
Eye tracking, we hypothesize that Head Pointing is the optimal
interaction paradigm for our intended application, with the
consideration of task load, accuracy, and efficiency.

Controller pointing is a staple method for object and menu
selection in many VR applications. We employed standard
controller-based ray-casting, where a visible ray extends from
the tip of the controller to intercept with the image under
analysis and the menu for point prompt annotation and but-
ton clicking, respectively. Here, confirmation of selection is
achieved by pressing the trigger button of the controller.

Head Pointing adopts an invisible ray forward from the center
of the user’s headset, aligning with the head’s orientation. The
interception of the ray and the image/menu is represented by
a visible dot, and the controller trigger button is used for
placement/selection confirmation.

Eye Tracking utilizes the integrated eye-tracking hardware of
the HTC Vive Pro Eye headset to cast an invisible ray based on
the user’s gaze direction. Similar to head pointing, a visible
dot is used to indicate the gaze point on the image under
analysis and the menu. Based on previous studies [21], [22],
we continue to use the trigger button to confirm selection.
To mitigate the adverse impacts of natural eye jitter on
selection precision and user experience, we apply exponential
smoothing to the normalized 3D gaze vectors during every
frame using a smoothing factor of α = 0.2. The gaze ray is
computed as follows:

rsmooth = (1− α) · rprevious + α · rcurrent (1)

where α = 0.2 is the smoothing factor, rprevious is the smoothed
direction from the previous frame, and rcurrent is the normalized
average of the left and right eye gaze direction vectors,
originating at the midpoint of the two eyes.

The overall interaction paradigm evaluation workflow is
summarized in Figure 2F, where the user begins at the middle
slice of a segmented 3D scan and scrolls through the volume
to identify and correct segmentation errors. Three fixed large
panels (Figure 2C) are positioned three meters in front of the
user, different from the panel displays for the full interactive
segmentation workflow (Figure 1): the left panel displays the
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Fig. 2. System setup for user interaction paradigm evaluation under attention switching. A. Three interaction paradigms: controller ray, head pointing, and
eye tracking. B. Users correct erroneous masks using positive (green) and negative (red) point prompts, refined by SAM2. C. In-VR interface for prompt
selection and real-time ground truth reference. D. Medical image display with current slice and segmentation overlay. E. Controller-based slice scrolling. F.
Interaction paradigm evaluation segmentation workflow.

current interaction mode (controller, head pointing, or eye
tracking), the central panel provides interactive controls (i.e.,
functional buttons), and the right panel shows the ground
truth segmentation (red, 40% opacity overlaid on the image)
for the current slice under study. Here, the ground truth
segmentation is used to define a consistent reference for
refinement and objective evaluation of segmentation accuracy
across participants in the user study. Users were instructed
to correct the provided masks until they visually matched
the ground truths. The central panel includes six buttons.
“Positive Point” and “Negative Point” buttons allow users
to place point prompts that add missing regions or remove
excess segmentation, respectively. The “Hide Mask” button
toggles the visibility of both the segmentation under work
and ground truth to better assess tissue boundaries. The
“Clear Points” button erases all placed point prompts without
modifying the current mask. The “Refine Mask” button sends
the current slice and point prompts to the inference server to
update the segmentation. Finally, “Complete Plan” finalizes
segmentation refinement and advances to the next interaction
paradigm (Controller, Head Pointing, or Eye Tracking), se-
lected randomly, allowing within-participant comparisons of
performance across paradigms.

To evaluate interaction paradigms under attention-switching
for AI-facilitated segmentation refinement, we used a T1c
MRI scan from the publicly available BRATS brain tumor
dataset [23], which was intensity-normalized and converted
into a sequence of 155 axial JPEG image slices. All slices
along with 44 slice-wise ground truth masks and 16 intention-
ally corrupted slice-wise masks were included. The corrupted
masks represented common failure cases, such as incomplete
tumor coverage, over-segmentation, missing regions, or false
positives. The quality of the initial segmentation, measured
using the 3D Dice score, was assessed at 0.91. 3D Dice is
a standard metric for volumetric medical segmentation that
quantifies the spatial overlap between the predicted mask A
and the ground truth B as:

Dice(A,B) =
2|A ∩B|
|A|+ |B|

(2)

A Dice score of 1 indicates perfect agreement; 0 indicates no
overlap.

B. SAMIRA - User Interface and Workflow

The full workflow of our interactive medical image segmen-
tation leverages SAMIRA, our assistive AI agent via the VR
user interface described in Section III. The interface enables
SAMIRA to operate on unseen cases without ground truth seg-
mentations, and supplies reference images and case-relevant
descriptive guidance in real time. This supports the potential
for future clinical and educational applications beyond the
controlled evaluation settings showcased in our study.

For demonstration and evaluation purposes, the segmenta-
tion workflow was applied to a brain tumor MRI scan from
another dataset, Pretreat-MetsToBrain-Masks [24], and a liver
tumor CT scan from the LiTS dataset [25]. These two datasets
were deliberately chosen to assess generalization beyond the
training distribution of the underlying models, since the model
we are introducing, BiomedParse was trained on the BRATS
dataset used in the interaction paradigm test. While the exam-
ples focused on tumors, the workflow is compatible with any
of the 82 clinical targets supported by BiomedParse. The brain
tumor example was selected as the more difficult case, with
branching regions (see Figure 3E), whereas the liver tumor
case was expected to be easier to segment, with a smoother,
spherical structure in which less refinement is expected (see
Figure 1).

The full workflow is illustrated in Figure 3 and consists of
the following sequential steps:
Step 1. Initial Contextualization: A handheld image display
begins at the middle slice of the brain or the liver scan. The AI
agent introduces general guidance for segmenting the clinical
target on the left panel (Figure 3A) using a RAG pipeline. To
ground users’ visual understanding, the system retrieves and
displays a positive example (with pathology) and a negative
example (without pathology) on the right panel, allowing for
contrastive comparison. Both examples bear anatomical simi-
larity to the image slice under study. Then, general pathology
explanations are delivered via Google’s Text-To-Speech API in
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Fig. 3. Demonstration of workflow for the proposed AI-assisted interactive medical image segmentation in VR. Users begin by reviewing AI-generated textual
guidance and visually similar reference slices (A), then navigate the volume to find the tumor. Once found, they issue a voice command to segment the tumor
(B). Next, the agent predicts a mask and a patient-specific description of the tumor (C). If necessary, users can edit this mask, then propagate it across frames.
Finally, users review all predicted masks and place point prompts to refine the masks (D). Upon completion, the final segmented structure is rendered in true
3D scale over the patient’s anatomy (E).

a female voice, and are displayed as text on the left panel. At
this stage, the middle panel has one button that says “Record
Voice”.
Step 2. Visual Search: Users scroll through the image slices in
search of the target region and the agent continuously updates
the right panel reference panel with visually similar tumor and
non-tumor cases retrieved from other patients. The contextual
guidance in Step 1 helps less experienced users with deciding
whether the current slice contains the pathology of interest
(see Figure 3B).
Step 3. Voice Interaction: Users initiate segmentation by
clicking the “Record Voice” button and issuing natural lan-
guage requests to the AI agent. Spoken input is transcribed
in real time using the Microsoft Azure Speech SDK, with
recognized commands displayed on the middle panel (Figure
3B). After voice recognition, users can press the “Record
Voice” button again to re-record, or press “Confirm Voice
Command” to pass their command to the inference server.
Step 4. Initial Segmentation and Patient-Specific Guidance:
The AI agent returns an initial segmentation mask at the
selected 2D slice and uses its RAG pipeline to provide
additional spoken, case-specific diagnostic context (Figure
3C). The middle panel updates with the same refinement
options as the Interaction Paradigm Evaluation interface and
an additional button “Propagate Frames”.
Step 5. Refinement and Propagation: Image slice scrolling
is disabled at this stage, forcing the users to focus on the

selected 2D slice of interest to achieve the best segmentation
accuracy via point-prompt-based refinement if necessary. This
is because it will be used to seed the automatic SAM2-
based label propagation to obtain the full 3D segmentation.
Once satisfied with the current slice, the users initiate mask
propagation across slices by pressing the “Propagate Frames”
button. As the inference server returns produced segmentation
masks in sequence, the image display automatically updates
the slices in the order that the masks are produced in real-time,
enabling users to visually assess the segmentation results and
quickly judge whether additional refinements will be needed.

Step 6. Final Refinement of Predicted Masks: Users re-
view the propagated masks across slices, applying additional
point-prompt-based refinements wherever segmentation errors
remain (Figure 3D). During this stage, the “Propagate Frames”
button is replaced by a “Complete Plan” button. When pressed,
a confirmation screen appears to prevent accidental submis-
sion, ensuring that users have fully completed their corrections
before finalizing the segmentation plan. Upon completion, the
final segmentation masks are saved.

Step 7. 3D Visualization: Upon task completion, a request
is sent to the local Python-based websocket server with the
path to the saved segmentation result. The server uses the
Marching Cubes algorithm to extract a polygonal mesh from
the 3D segmentation and generates a corresponding .obj
file representing the tumor pathology. To ensure anatomically
accurate scaling, the voxel resolutions are extracted from the
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medical image’s metadata and applied during mesh generation.
The resulting mesh is then loaded back into Unity at runtime
and rendered at true-to-life scale (Figure 3E). For brain tumor
visualization, a threshold of 500 is applied to extract the brain
surface from the scan, while liver tumor visualization uses a
threshold of 150 to capture relevant anatomical structures such
as the spine and ribcage. Additionally, liver tissue from the
same patient was rendered using data from the LiTS dataset.
In the future, it can easily be generated with liver segmentation
models, or even interactively with our workflow.

C. SAMIRA - Segmentation Algorithm and Retrieval-
Augmented Generation

SAMIRA leverages AI foundation models and Retrieval-
Augmented Generation to assist the designated interactive
medical image segmentation task.

1) Interactive segmentation with foundation models:
We proposed a novel deep learning-based, speech-initiated
interactive segmentation method for 3D medical images as
illustrated in Figure 4. This method forms a key function
of SAMIRA and relies on two complementary foundation
models. The first model, BiomedParse, generates the initial
segmentation mask in response to user-issued voice com-
mands. Spoken prompts are first transcribed using the Azure
Speech AI service, producing a text prompt that is passed to
BiomedParse along with the image slice. Upon receiving the
textual prompt and corresponding image slice, BiomedParse
produces a binary mask of the target structure described in the
user’s voice command. The second model, SAM2, is used for
interactive refinement and multi-slice propagation. Users can
iteratively correct the mask using positive and/or negative point
prompts, which are passed to SAM2 for real-time refinement.
Once satisfied, the refined mask is propagated bi-directionally
through the volume using a modified version of SAM2’s
memory mechanism with a novel propagation termination cri-
terion: if the inter-slice Intersection-over-Union (IoU) between
the current mask (Maskt) and previous mask (Maskt−1) fell
below 0.3, propagation is halted in that direction, under the
assumption that mask changes should be relatively smooth
between neighboring image slices. Inter-slice IoU measures
how much two sequentially predicted binary masks overlap,
defined as the ratio between the area of their intersection and
the area of their union:

IoU =
|Maskt ∩ Maskt−1|
|Maskt ∪ Maskt−1|

While point-prompt-based revision with SAM2 helps ensure
the accuracy of the segmentation, it is desirable to keep the
needs at minimum for the efficiency of the workflow. Thus, to
gauge the baseline performance of our proposed segmentation
method in the absence of prompt-based revision, we conducted
a standalone ablation study using the Pretreat-MetsToBrain-
Masks [24] and LiTS [25] datasets, by comparing the accuracy
of a “BiomedParse seeding + SAM2 propagation with IoU-
based early stopping” pipeline versus a “BiomedParse seeding
+ original SAM2 propagation” one. To accomplish this, we
randomly selected 40 volumes (20 brain tumor MRI scans and
20 liver tumor CT scans) from the datasets, excluding cases

Fig. 4. SAMIRA’s segmentation module for mask prediction, refinement,
and propagation across frames. After a voice command initiates initial tumor
segmentation via BiomedParse, the user may optionally refine the mask
through point prompts. The mask is then propagated slice-wise using SAM2,
first superiorly (a) and then inferiorly (b), with propagation automatically
terminating when inter-slice Intersection-over-Union (IoU) falls below 0.3 to
prevent segmentation drift.

used in the full workflow study. For each volume, a slice with
visible tumor was manually selected and submitted to the in-
ference server along with a natural language prompt —“show
me the brain tumor” for brain cases and “show me the liver
tumor” for liver cases. Here, BiomedParse generates an initial
tumor mask for the selected slice, which was then propagated
bi-directionally (in the superior and inferior directions) using
SAM2. Using the paired sample Wilcoxon signed-rank test,
results indicate that the break condition significantly improved
accuracy for liver tumor CT scans (p = 0.0024 < 0.05), while
having a smaller but still significant effect for brain tumor
MRIs (p = 0.0039 < 0.05), as summarized in Table I. The
stronger effect observed in CT scans may be attributed to the
higher levels of noise and lower soft-tissue contrast, which can
cause SAM2, originally trained on natural images, to mistake
noise for anatomical structures. The break condition prevents
propagation of spurious segmentations across slices, which
is particularly helpful in noisier CTs. Compared to recent
SAM2-based methods for 3D medical segmentation [11], our
approach introduces both a language-based initialization and
a propagation stopping rule, enhancing accuracy and reducing
user burden. These findings support the inclusion of the IoU
threshold as an essential mechanism for robust slice-wise mask
propagation in clinical datasets.
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Fig. 5. Retrieval-Augmented Generation (RAG) pipelines for multimodal guidance. (Left) To support initial understanding, the system retrieves two anatomically
similar reference slices—one with and one without the target pathology—and uses them to generate a general description of the abnormality. (Right) After
the user selects a slice and issues a voice command, the system compares visual features of the patient’s scan to healthy and pathological reference images.
Guided by shared and differing features, the agent describes what the abnormality likely looks like in the selected slice.

TABLE I
MEAN 3D DICE SCORES FOR AUTOMATIC SAM2 PROPAGATION WITH

AND WITHOUT THE IOU BREAK CONDITION.

Modality Target IoU Break 3D Dice (%, Mean ± Std)

MRI Brain Tumor
True 87.41 ± 10.77†

False 87.28 ± 10.73

CT Liver Tumor
True 73.31 ± 13.04†

False 68.94 ± 16.30
†Statistically significant improvement compared to no IoU break condition

2) RAG-based guidance system: In addition to interactive
segmentation, to provide multi-modal, context-aware guidance
during segmentation, SAMIRA employs a RAG framework
that integrates image similarity search with generative lan-
guage modeling. At its core is FAISS [26], a library developed
by Meta for fast approximate nearest-neighbor search on
high-dimensional vectors. FAISS enables real-time retrieval of
anatomically similar tumor and non-tumor slices from large
medical image datasets, based on high-dimensional vectors
from the high-level feature maps output by the Res5 layer
of BiomedParse’s image encoder. These retrieved examples
are used in two ways: first, to provide general contextual
grounding using representative healthy and pathological slices
(RAG Request 1) and second, to generate query-specific
guidance based on the user’s spoken prompt and the current
image slice (RAG Request 2).

Knowledge Database Construction: We constructed two
FAISS databases, one for brain MRIs and one for liver
CTs, which contain a total of 30,845 brain slices (6,766
tumor, 24,079 without tumor) and 57,193 liver slices (6,982
tumor, 50,210 without tumor), drawn from 199 and 127 pa-
tients, respectively. Embedding vectors were computed using
BiomedParse, normalized, and stored for efficient similarity
search. These databases can easily be expanded in the future
with a larger variety of targets and cases.

RAG Request 1. Initial Contextualization: When a new
scan of interest is loaded in the system, SAMIRA uses the
encoding vector of the middle slice to retrieve two visually
similar reference images from the knowledge database: one
with and one without the target pathology (i.e., tumor). These
contrastive examples help ground the task as the non-tumor
slice illustrates normal anatomy, while the tumor case high-
lights typical features of the target pathology. Then, both are
passed to GPT-4o-mini, chosen for its fast inference time,
which generates a general explanation of what to look for
during visual exploration of the target. Figure 5 illustrates
this process, showing how supplying reference images with a
carefully engineered prompt can support contextual grounding
to guide the user.

RAG Request 2. Query-Specific Interpretation: While
general contextualization offers users an overview of what
the pathology typically looks like, it does not account for
anatomical variation in individual cases being investigated.
Therefore, query-specific interpretation is used to provide
more personalized, patient-specific guidance. When the user
issues a voice command to segment a structure (e.g., “highlight
the brain tumor”), the selected image slice is used to query the
knowledge database, retrieving two visually similar reference
slices: one with the target pathology (positive example) and
one without (negative example). These references, along with
the user’s query slice, are passed to GPT-4o-mini in another
structured multi-modal prompt, illustrated in Figure 5. By
explicitly contrasting the query with both healthy and patho-
logical references, the agent can generate targeted explanations
grounded in the anatomy of the target image under study.

D. User Study and Evaluation Metrics

We conducted two separate user studies for the developed
system. While the first study aimed to identify the optimal
user interaction paradigm for SAM2-based segmentation re-
finement, the second study assessed the full workflow of
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the proposed system. All user studies were conducted under
institutional ethics approval and after all participants provided
informed consent.

1) User-Interaction Paradigm Evaluation: We recruited
15 participants (age = 26.5 ± 2.68 years; 6 female & 9
male) to evaluate the three interaction paradigms (Controller,
Head Pointing, and Eye Tracking). Participants rated their
familiarity with VR, human anatomy, medical imaging modal-
ities, and medical image segmentation on a 1–5 scale (1 =
unfamiliar, 5 = familiar). On average, they reported familiarity
with VR (4.2 ± 0.94), and between neutral and somewhat
familiarity with anatomy (3.47 ± 1.24), imaging modalities
(3.53± 1.30), and medical image segmentation (3.73± 1.27).
Prior to the study, participants completed a guided hands-on
tutorial in the VR environment, which included practice with
segmentation mask refinement on a lung CT scan from the
LCTSC dataset [27] and menu interaction using each of the
three interaction paradigms. The tutorial session also served
to calibrate the eye-tracking system. Following this, users
began the interaction test, correcting the erroneous BRATS
brain tumor MRI slices with each interaction paradigm as
described in Section IV.A. For each interaction paradigm trial,
task completion time, segmentation accuracy (with 3D Dice
score), perceived task load, point prompts placed, and point
prompts erased were recorded.

To assess perceived task load, we used the NASA Task Load
Index (NASA-TLX) [28], a validated six-item instrument mea-
suring mental demand, physical demand, temporal demand,
effort, frustration, and perceived performance. Each item was
rated in the range of 1-21, which was scaled to 0–100 for
analysis, and finally all items were averaged to produce a
total task load score. To compare overall performance across
interaction paradigms, we computed a composite interaction
score for each of the 45 user-paradigm trials (15 participants
× 3 interaction paradigms). This score quantifies trade-offs be-
tween segmentation accuracy, task load, and completion time.
Z-scores for accuracy, NASA-TLX, and completion time were
calculated across all trials to ensure standardized comparison.
For each trial i, the composite score was calculated as:

Compositei = zaccuracy − zNASA − ztime

This score treats accuracy as beneficial and both task load
and time as costs, giving equal weight to each. Mean and
standard deviation of composite scores were then computed
per interaction paradigm to summarize performance. Finally,
for additional self-reported confirmation, we asked users to
rank their preferred interaction paradigm.

2) Full Workflow Study of SAMIRA: To evaluate the
complete AI-assisted segmentation system, including conver-
sational interaction, mask refinement, and 3D visualization,
we recruited 19 participants (age = 26.8 ± 3.63 years; 8
female & 11 male). On average, they again reported familiarity
with VR (4.21 ± 1.18) and between neutral to somewhat
familiarity with anatomy (3.42 ± 1.22), imaging modalities
(3.79± 1.18), and medical image segmentation (3.74± 1.37).
After a brief tutorial, where participants practiced the full
workflow by segmenting a lung CT scan from the LCTSC

dataset [27], participants completed the two segmentation
tasks: brain tumor in MRI and liver tumor in CT. The order
of these was randomized across participants to minimize order
effects. Outcome measures included segmentation accuracy
(3D Dice scores before and after segmentation refinement),
task completion time, and user experience metrics. Task load
was assessed using NASA-TLX, similarly to the interaction
paradigm evaluation. To assess the overall usability, we also
administered the System Usability Scale (SUS) [29], a widely
used 10-item questionnaire that yields a total score from 0
to 100. Scores above 68 are considered to indicate good
usability [30]. Additionally, we developed a custom 9-item
questionnaire to evaluate users’ perceptions of AI agent guid-
ance, reference images, 3D visualization, and user confidence
in the workflow. The full list of questions are provided in
Figure 7. Items used a 5-point Likert scale from 1 (strongly
disagree) to 5 (strongly agree). Finally, we included an open-
ended section, where users could freely mention what they
liked and/or disliked about the system, and further elaborate
their semi-quantitative evaluations.

3) Statistical Analysis: For the interaction paradigm study,
differences in NASA-TLX scores, completion times, and Dice
scores across three user-interaction paradigms were evaluated
using Kruskal–Wallis tests. For the full workflow study, we
compared the 3D Dice scores before and after user refinement
using Wilcoxon rank-sum tests. SUS scores were tested against
the usability benchmark of 68 using a one-sample t-test.
Custom user questionnaire responses were tested against the
neutral value of 3 using Wilcoxon signed rank tests. For all
thee statistical tests, a statistical significance was confirmed
with p < 0.05.

V. RESULTS

A. Interaction Paradigm Evaluation

TABLE II
COMPARISON OF INTERACTION PARADIGMS FOR SEGMENTATION

REFINEMENT. VALUES ARE SHOWN AS MEAN ± STANDARD DEVIATION.
THE BEST SCORE IS IN BOLD FONTS. NASA-TLX IS OUT OF 100.

Interaction Mode 3D Dice (%) Time (s) NASA-TLX Composite Score
Controller 99.25 ± 00.25 220.3 ± 79.3 18.8± 14.5 0.51 ± 1.91
Head Pointing 99.21± 0.30 248.8± 78.5 16.8 ± 13.9 0.20± 1.56

Eye Tracking 99.13± 0.46 251.1± 78.7 26.6± 15.4 −0.71± 1.77

1) Accuracy, Completion Time, and NASA-TLX: The
metrics for evaluating the three interaction paradigms are
shown in Table II, with non-significant differences in overall
scores between groups (p > 0.05). For 3D Dice (segmenta-
tion accuracy), all paradigms yielded highly accurate refined
masks, significantly above the starting 3D Dice score of
0.91 (p < 0.05). The Controller paradigm had the highest
accuracy score with the least variability (99.25 ± 0.25%),
followed by Head Pointing (99.21±0.30%), then Eye Tracking
(99.13± 0.46%). For completion time, the ranking remained
the same: Controller was the fastest (220.3 ± 79.3s) fol-
lowed by Head Pointing (248.8 ± 78.5s) and Eye Tracking
(251.1± 78.7s). The overall NASA-TLX scores (out of 100)
slightly favored Head Pointing, which had the lowest overall
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task load (16.8± 13.9), followed by Controller (18.8± 14.5)
and Eye Tracking (26.6 ± 15.4). While overall task load did
not demonstrate significant differences, one sub-item showed
a significant effect: mental demand was significantly lower
for Head Pointing (16.7 ± 22.5) compared to Controller
(30.0 ± 23.9, p = 0.0123) and Eye Tracking (38.7 ± 25.5,
p = 0.0329), as illustrated in Figure 6. No other NASA-TLX
sub-items’ differences reached statistical significance.

Fig. 6. Boxplots of NASA Task Load Index (TLX) for different interaction
paradigms, including Controller, Head Pointing, and Eye tracking. Significant
pair-wise differences are marked with “*”.

2) Composite Scores: The resulting mean composite scores
that promote a balance between performance, speed, and user
effort were 0.51± 1.91 for Controller, 0.20± 1.56 for Head
Pointing, and −0.71 ± 1.77 for Eye Tracking. Among the
paradigms, Controller achieved the highest mean composite
score, driven by a favorable combination of high segmentation
accuracy (99.25%), low task load (NASA-TLX = 18.8), and
the fastest completion time (220.3 s). Head Pointing followed
closely, while Eye Tracking lagged behind due to relatively
higher task load and slower performance.

3) Point Prompt Efficiency: To complement the accuracy,
task completion time, and NASA-TLX, we also compared the
three interaction paradigms in terms of the ratio between the
number of confirmed point prompts for segmentation refine-
ment and the cleared points (i.e., points-per-clear efficiency,
the higher the better). This ratio reveals the robustness of these
paradigms with the joint consideration of their inherent preci-
sion, efficiency, and task load. Overall, Controller yielded the
highest points-per-clear efficiency (24.33±24.91), followed by
Head Pointing (16.08±6.17) and Eye tracking (14.67±8.72),
suggesting that the Controller condition was more robust for
point prompt placement (less corrections required) and eye
tracking was more prone to errors.

4) User preferences: Finally, when asking the participants
to rank their preferred interaction paradigms, 7 of 15 partici-
pants selected Controller, 6 selected Head Pointing, and only
2 selected Eye tracking as their top choices. These results,
in addition to the close composite scores, suggest that both
Controller and Head Pointing are viable and well-received
paradigms, while Eye tracking is comparatively less favored.
The close ranking between Controller and Head Pointing
indicates that either approach could be suitable for deploy-
ment in the full workflow. However, to reduce variability in

downstream evaluation, we selected Controller as the primary
interaction paradigm for the subsequent full workflow study
due to its marginally superior results.

B. Full Segmentation Workflow with SAMIRA

1) Segmentation accuracy: In terms of segmentation ac-
curacy (3D Dice), the workflow yielded high scores. For the
brain MRI data, refined masks (94.92 ± 0.52%) showed
significantly higher accuracy than the user’s propagated unre-
fined masks (90.53 ± 10.51%, p < 0.0001). For the liver
CT data, Dice scores were comparable between unrefined
(95.47 ± 0.39) and refined (95.46 ± 0.40) masks, with no
significant difference, ultimately indicating high starting accu-
racies are preserved (Table III). This high starting accuracy is
likely attributed to the liver tumor case being larger and more
spherical shaped than the brain tumor case that appears as a
mass centrally, but splits into multiple lobes in the superior
and inferior regions. The lower difficulty of the liver tumor
case is further reflected in the shorter completion time (liver:
279.6 ± 109.4s vs. brain: 361.7 ± 144.3 s) and fewer point
prompts placed (liver: 8.8 ± 6.5 vs. brain: 27.7 ± 19.9 ). The
brain tumor case likely demanded more user input due to its
aforementioned irregular shape.

2) Semi-quantitative questionnaire results: Participants
rated the overall workflow with SAMIRA as highly usable.
The System Usability Scale (SUS) score was 90.00 ± 8.98,
which is significantly higher than the benchmark of 68
(p < 0.001) and corresponds to an ‘A’ usability score [30].
Meanwhile, the NASA-TLX scores (out of 100) indicate low
to moderate task loads across sub-items. Descriptive statistics
are as follows: Mental Demand (31.84 ± 28.10), Physical
Demand (12.11 ± 14.27), Temporal Demand (13.68 ± 18.25),
Performance (20.00 ± 24.72), Effort (25.26 ± 15.50), Frus-
tration (7.11 ± 8.22), and Overall task load (18.33 ± 11.93).

TABLE III
3D DICE SCORES BEFORE AND AFTER REFINEMENT. ASTERISKS DENOTE

STATISTICALLY SIGNIFICANT CHANGES.

Tumor Unrefined Refined p-value
Brain 90.53± 10.51 94.92± 0.52 1.19× 10−5*
Liver 95.47± 0.39 95.46± 0.40 0.3968

Finally, all responses on the custom questionnaire were
significantly above the neutral midpoint of 3 (p < 0.05),
indicating favorable perceptions of the system’s AI agent
integration, its ability to support pathology learning, the
helpfulness of reference images, and the usefulness of 3D
visualization (see Figure 7).

3) Qualitative feedback results: Participants’ written feed-
back, where they were asked to describe what they liked or dis-
liked about the system, further supports the system’s perceived
usability and educational value. 16 out of 19 participants
described the system as “easy to use,” “intuitive,” or “clear,”
highlighting its low learning curve and smooth integration with
the VR environment. One participant noted, “After you learn
it, it is easy to use, fast, and interactive,” while another stated,
“The system is very user friendly and well integrated with the
HTC Vive controls.” These perceptions align with the high
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Fig. 7. Boxplots of custom user experience questionnaire results (mean ± std
on left, values significantly above 3 with red asterisk) for the full workflow
with SAMIRA.

overall scores on SUS Question 3 (“I thought the system was
easy to use,” 4.58 ± 0.51) and Question 5 (“I found the various
functions in this system were well-integrated,” 4.68 ± 0.48). AI
voice interaction was also frequently praised. 10 participants
explicitly mentioned that the voice command feature improved
usability, with one stating, “The voice commands are well
integrated and the propagation is very helpful for identifying
the whole tumor.” Another remarked, “The AI was well inte-
grated and didn’t feel intrusive—more like a helpful assistant.”
The system was also perceived as supportive of learning and
decision-making. 7 participants reported increased confidence
during segmentation tasks, attributing this to guidance from the
AI agent and the real-time visualization tools. For example,
one wrote, “It was so useful and made me confident to do
the task”, echoing high SUS Question 9 results (“I felt very
confident using this system,” 4.74 ± 0.45).

While overall impressions were positive, some participants
suggested providing additional medical context, and a few
expressed awkwardness with voice inputs. Nonetheless, the
qualitative feedback reinforces the questionnaire findings and
confirms that SAMIRA’s design successfully balances guid-
ance, autonomy, and interpretability in a VR environment.

VI. DISCUSSION

The findings of our experiment provided partial support
for our hypothesis that Head Pointing would provide the
optimal trade-off between segmentation accuracy, efficiency,
and task load. While Head Pointing did show the lowest
mental demand, Controller-based input achieved slightly better

overall performance, as reflected in its higher mean accu-
racy and efficiency metrics and its highest average com-
posite score. Furthermore, all paradigms yielded excellent
Dice scores following segmentation correction, but Controller
and Head Pointing outperformed Eye Tracking in terms of
accuracy, task load, and completion time, echoing the findings
of Xu et al.’s evaluation of text-selection techniques [20],
where head-pointing and controller performance were close.
Despite composite scores favoring controller-based pointing
overall, Head Pointing emerged as a lower mental effort
alternative—especially for applications where users may need
to work with just one hand or seek a cognitively lighter
interaction. Eye Tracking, while promising in theory, remains
less favored for segmentation refinement tasks, where pre-
cision and visual stability are critical, despite the damping
function (Equation 1) we employed to improve precision and
user-experience. In future deployments, the system can allow
users to select their preferred interaction paradigm, offering
flexibility. This flexibility would be warranted, since all three
paradigms were chosen as favorites across the different users.

Overall, our findings suggest that AI-assisted segmentation
in VR is not only technically viable, but also educationally and
ergonomically impactful. Across studies, users were able to
generate high-quality segmentations without domain expertise
and the system demonstrated that it promotes understanding,
confidence, and informed interaction. In the full workflow,
participants rated the system highly on both usability and
interpretability of the task. As seen in Figure 7, users strongly
agreed that the AI agent helped them complete tasks (Q3:
4.58±0.61), supported understanding of the pathology (Q4:
4.42±0.61), and improved their confidence in performing
segmentation tasks (Q9: 4.58±0.51). The RAG mechanism
played a key role here. By comparing the queried radi-
ological slice to both healthy and pathological references,
users received contextualized, anatomy-specific guidance that
was grounded in real cases. This was especially reflected in
high agreement with Q8, where workflow design was rated
highest (4.84±0.37). Interestingly, the AI-generated textual
explanations (Q6) and reference images (Q5) received slightly
lower scores (3.89±0.74 and 3.63±0.96, respectively), possibly
reflecting uncertainty and confusion in some participants, who
in general did not have strong familiarity with human anatomy
(3.42±1.22, 1 = unfamiliar, 5 = familiar). To improve comfort
and presence during voice interaction, future versions of the
system could feature a visual avatar for the assistant, helping to
reduce the slight awkwardness some users felt when speaking
to a disembodied voice.

Furthermore, it was evident in the segmentation results that
users demonstrated a clear understanding of when to intervene
and when to trust the AI system. For example, with the
simpler liver tumor CT case, users made minimal edits, and the
refined masks were similar to unrefined ones. Yet importantly,
performance did not degrade after user interaction, indicating
that users did not over-correct or introduce noise. This suggests
a healthy level of trust and restraint, and a true understanding
of segmentation quality based on visual features and reference
images. In contrast, the more challenging brain tumor MRI
case, which included branching outer boundaries, showed a
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significant accuracy improvement after refinement. The 3D
Dice score rose from 90.53± 10.51% to 94.92± 0.52% post-
interaction (p < 0.001), demonstrating that users could iden-
tify areas needing correction and effectively apply point-based
refinements. This reinforces that users not only understand
segmentation correctness, but can also meaningfully enhance
AI outputs in cases where human expertise is still necessary.

Together, these results position our system not only as
a segmentation tool, but as a supportive assistant capable
of accelerating workflows, teaching radiological features of
pathology, and fostering trust with clinical AI. The positive
responses to confidence and task understanding, combined
with high segmentation accuracy, suggest that such a tool has
potential in both clinical workflows and medical education.
Future work may explore expanding the agent to work with
more radiological concepts, or adaptive RAG responses based
on user skill level (i.e. beginners versus experienced radiolo-
gists).

VII. CONCLUSION

We introduced a novel VR system for interactive medical
image segmentation that integrates foundation models with
attention-switching interaction and a supportive conversational
AI agent, SAMIRA. At the core of our method is a novel seg-
mentation algorithm that combines BiomedParse’s language-
driven detection with a medical-image-adapted SAM2 model.
To adapt SAM2 for clinical imaging, we introduced a novel
IoU-based stopping criterion in its memory mechanism to
prevent drift across noisy or low-contrast slices. Our findings
show that this criterion can significantly improve segmenta-
tion quality, and that by using it with SAMIRA, users can
efficiently achieve high segmentation accuracy with minimal
effort across all interaction paradigms. Of these interaction
paradigms, Controller pointing offers the best overall balance
of accuracy, speed, and task load, closely followed by head-
pointing. More importantly, users demonstrated a clear ability
to interpret and refine AI outputs based on its generated
guidance, engaging critically with reference images, contextual
explanations, and 3D visualization.

Importantly, this system is generalizable to any 3D medical
image aligned with BiomedParse’s training scope and can
be expanded by enriching its RAG knowledge database. Its
modular design, high usability, and adaptability to various
interaction styles position it as a powerful tool for clinical
workflows, but also offers insights for future HCI research in
intelligent, immersive medical systems with clinical AI agents.
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Nature et technologies (B1X-348625), and the Fonds de
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