
Towards Attacker Type Agnostic Cyber Defense Agents

Erick Galinkin, Emmanouil Pountourakis, Spiros Mancoridis
1Drexel University
eg657@drexel.edu

Abstract

With computing now ubiquitous across government, indus-
try, and education, cybersecurity has become a critical com-
ponent for every organization on the planet. Due do this ubiq-
uity of computing, cyber threats have continued to grow year
over year, leading to labor shortages and a skills gap in cyber-
security. As a result, many cybersecurity product vendors and
security organizations have looked to artificial intelligence to
shore up their defenses. This work considers how to char-
acterize attackers and defenders in one approach to the au-
tomation of cyber defense – the application of reinforcement
learning. Specifically, we characterize the types of attackers
and defenders in the sense of Bayesian games and, using re-
inforcement learning, derive empirical findings about how to
best train agents that defend against multiple types of attack-
ers.

Introduction
The use of machine learning in cybersecurity has grown sub-
stantially as a way to simultaneously increase the speed and
reduce the cost of cyber threat detection and response. One
machine learning technique that has seen considerable inter-
est but seemingly little adoption in deployed systems is rein-
forcement learning. While reinforcement learning is notori-
ously unstable and can be difficult to evaluate, it has also fa-
mously seen tremendous success in cases like AlphaGo (Sil-
ver et al. 2016). The translation of cybersecurity problems
into a Markov decision process is a key step in applying
techniques like reinforcement learning, and frequently over-
lap with game theoretic framings of these same cybersecu-
rity problems.

Today, security orchestration, automation, and response
(SOAR) frameworks are used by cybersecurity practition-
ers to reduce the human labor associated with responding
to cybersecurity incidents. These SOAR systems can or-
chestrate disparate tools within workflows to get additional
data, automate remediation actions, and often have other,
diverse capabilities. While some SOAR systems have inte-
grated AI/ML capabilities (Kinyua and Awuah 2021), they
often lack true automation in the containment and recovery
phases of the Identification, Containment, Eradication, Re-
covery (ICER) cycle. Indeed, most SOAR systems rely on

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

expert written if-then rules to take limited actions when
some event is triggered. Our work aims to use deep rein-
forcement learning to fill this gap.

One difficulty in many reinforcement learning and game
theoretic approaches is the notion of “type” in the sense of
Harsanyi (Harsanyi 1967). That is, the games a priori fix the
parameters of the attacker and defender to specify goals and
capabilites. In reality, cyber defenders observe a wide vari-
ety of attacker types whose tactics, techniques, and proce-
dures (TTPs) may overlap considerably even if their objec-
tives differ. This work considers two attacker types with sub-
stantially divergent objectives: a ransomware attacker who
seeks to gain control of 80% of a target network and an ad-
vanced persistent threat actor who seeks to access data on
a single high-value node. We provide detailed definitions of
attacker and defender types below. In this work, we provide
an extension of the YAWNING-TITAN (Andrew et al. 2022)
reinforcement learning framework to allow specification of
different attacker types for independent learning agents. Ad-
ditionally, we demonstrate that a models trained across ad-
versary types in a self-play setting yields a robust, attacker
type agnostic defensive agent. We further demonstrate that
even when defenders have seen only a single type of at-
tacker, the learned policies are transferable, albeit subopti-
mal, against unseen adversary types.

Background
Reinforcement learning (RL) has been widely explored in
cybersecurity (Nguyen and Reddi 2021; Adawadkar and
Kulkarni 2022) as a way to automate detection and response.
If we take a graph view of systems we need to defend – a nat-
ural representation for computer networks – the data regard-
ing systems is necessarily high-dimensional, capturing the
states of individual machines and their network connections.
Reinforcement learning, and deep reinforcement learning in
particular, serves to effectively reduce this dimensionality
and make learning tractable. Deep RL has seen many appli-
cations in cybersecurity, including defense of cyber-physical
systems (Feng and Xu 2017); phishing detection (Chatterjee
and Namin 2019); and moving target defense (Li and Zeng
2023).

This work grounds our experiments using a partially ob-
servable stochastic Bayesian game, building on the stochas-
tic Bayesian game (Albrecht and Ramamoorthy 2013).

ar
X

iv
:2

41
2.

01
54

2v
1 

 [
cs

.C
R

] 
 2

 D
ec

 2
02

4



In this work, we build upon the YAWNING-TITAN (YT)
reinforcement learning framework (Andrew et al. 2022)
which uses Proximal Policy Optimization (PPO) (Schul-
man et al. 2017) as its default reinforcement learning al-
gorithm. This particular algorithm has been adopted in a
number of applications, including cybersecurity (Nguyen
and Reddi 2021; Adawadkar and Kulkarni 2022; Galinkin,
Pountourakis, and Mancoridis 2024) as a powerful on-policy
deep RL algorithm. In contrast to standard YT, we use
self-play between two independent networks and extend the
framework itself to include “multi-type training”. Our im-
plementation of self-play also differs from standard YT by
incorporating partial observability and noise (Galinkin et al.
2023) to reflect the presence of false positive alerts com-
monly observed in practice and more accurately frame the
difference between the true state of the environment and the
observed space.

In addition to standard PPO, our work also considers a
Hierarchical PPO (HiPPO) algorithm (Li et al. 2020). The
HiPPO algorithm leverages a high-level and low-level pol-
icy network where a higher-level manager algorithm does
not take an action in the space, but rather conditions the low-
level policy networks. At some fixed interval, the manager
receives a new observation and decides which low-level pol-
icy to commit to over the next interval. In our case, these
low-level policies reflect the “skills” of detecting and re-
sponding to our different attacker types.

Methodology
We build upon a partially observable stochastic Bayesian
game with noise ala (Galinkin et al. 2023). In contrast with
traditional stochastic Bayesian games (Albrecht and Ra-
mamoorthy 2013) which uses Harsanyi-Bellman ad hoc co-
ordination, the partial observability of the game means that
there is presently no standard solution concept. We consider
two attacker types in our assessment. These attacker types
have the same actions available to them and thus, differ in
terms of their objectives.
1. Ransomware: an attacker who receives a reward for con-

trolling 80% or more of the target network
2. APT: an attacker who aims to access information on a

single high-value node
We elect to use these attacker types for several reasons. First
and foremost, ransomware and APT-style attackers are often
considered the highest priority threats for many major busi-
nesses. Secondly, these attacker types have distinctly differ-
ent objectives, making it easy to contrast them against each
other. In each game, a number of nodes are created, one of
which is a “high-value target”. The ransomware actor is in-
different to whether or not the node they have compromised
is that target, and treats each node with an equal value. By
contrast, the APT actor considers every node except for the
high-value target to have a value of zero, with all reward
confined to exfiltrating data from that single node.

In line with prior work (Galinkin, Pountourakis, and Man-
coridis 2024), we train our agents in an environment with a
shared state space but two separate observation spaces. This
approach allows the attacking agent to learn through play

and requires two distinct instances of proximal policy opti-
mization (PPO) (Schulman et al. 2017) – one for the attacker
and one for the defender – to train the agents. Since the ob-
servation spaces differ and the hidden information is key to
our methodology, methods like multi-agent DDPG (Lowe
et al. 2017) are not suitable, as these methods will leak hid-
den information to the other agent.

We train our agents in four different settings:
1. Ransomware: The attacking agent has a ransomware ob-

jective throughout training
2. APT: The attacking agent has an APT objective through-

out training
3. Alternating: Two attacking agents – one Ransomware

and one APT – are instantiated. At each training epoch,
one is chosen at random to play against the defender.

4. Hierarchical: Two attacking agents – one Ransomware
and one APT – are instantiated. The defender uses a hi-
erarchical PPO model with one high-level and two low-
level policies. At each training epoch, an attacking agent
is chosen at random to play against the defender.

Environment
The environment is based on a partially observable stochas-
tic Bayesian game with noise (Galinkin et al. 2023) that
is intended to reflect realistic conditions. This game set-
ting reflects the fact that neither the attacker nor the de-
fender has full, true knowledge of the full state space, and
that the outcomes of their actions are not fully determined
– there is a probabilistic outcome associated with their ac-
tion succeeding or failing. The game is defined as a tuple
Γ = (S,A, P,R,Θ) where:
• S = ⟨V,E⟩ is the state space
• A = {AA, AD} is the action space with AA, AD rep-

resenting the attacker’s and defender’s action spaces, re-
spectively

• P : S × S → [0, 1] is the state transition function rep-
resenting the probability that a compound action at =
⟨aA, aD⟩ in state s at time t will yield some state s′ at
time t+ 1

• R the expected immediate reward of taking action a in
state s

• Θ = {ΘA,ΘD} the type spaces for attackers and de-
fenders.

The state space represents a computer network that the de-
fender is tasked with defending and which the attacker seeks
to compromise to achieve their own goal. This is modeled as
a network graph where each node is a defender-owned com-
puter and each edge is a network connection between two
nodes in that graph. Each node v is a tuple (v⊑, vα, vδ) that
defines the true state and the hidden information:
1. vp ∈ [0, 1]: The “vulnerability” of a particular node – the

probability that an attack will be successful.
2. vα: The true value of whether the node has been compro-

mised by the attacker, visible only to the attacker.
3. vδ: Defender-visible attribute that indicates whether an

alert has been triggered on the node.



In our game, we fix the action spaces AA, AD for at-
tacker and defenders, subject to the actions available in
YAWNING-TITAN (Andrew et al. 2022), such that all at-
tacker and defender types share a relevant action space. AA
is comprised of five actions:

• Basic Attack: Compromise and make accessible some
adjacent v ∈ V with probability given by vv , the “vul-
nerability” of the particular node.

• 0-day Attack: Compromise and make accessible some
adjacent v ∈ V even if vv = 0.

• Move: Move from some compromised v ∈ V to another
accessible v′ ∈ V

• Do Nothing: Take no action
• Execute: End the game and realize rewards for all com-

promised v ∈ V

AD is comprised of seven actions

• Reduce Vulnerability: For some v ∈ V , slightly decrease
the probability, p that a basic attack will be successful

• Make Node Safe: For some v ∈ V , reduce the probability
that a basic attack will be successful to 0.01

• Restore Node: For some v ∈ V , reset the node to its
initial, uncompromised state

• Scan: With some probability, detect the true compro-
mised status of each v ∈ V

• Isolate: For some v ∈ V , remove all e ∈ E connected to
it

• Reconnect: For some v ∈ V , restore all e ∈ E that have
been disconnected

• Do Nothing: Take no action

The costs and rewards that specify RA, RD are defined by
the player’s type, detailed below. Since our attackers and de-
fenders leverage reinforcement learning, the actual function
computing R is learned by the “critic” value function of the
agent.

Attacker Type Definition
Using the partially observable stochastic Bayesian game as
the basis of our analysis, we must consider the type, in the
sense of Harsanyi (Harsanyi 1967, 1968), of our attacker and
defender. In this setting, the type, θA of an attacker is drawn
from the set of all types ΘA. This type is uniquely defined
by the objective of the attacker, characterized by their reward
function.

In cybersecurity, threat actor attribution is frequently used
and forms a natural analogy with types. However, attack at-
tribution is a notoriously difficult practice (Perry, Shapira,
and Puzis 2019) and is one reason why so much of threat
intelligence relies on private companies selling this infor-
mation to defenders. There are many models for perform-
ing attribution of threat activity to a particular group, the
most prominent of which is the diamond model of intru-
sion analysis (Caltagirone, Pendergast, and Betz 2013) that
contains four core features: adversary, capability, infrastruc-
ture, and victim, pictured in Figure 1, and links those fea-
tures together to discover knowledge of malicious activity.

Figure 1: The Diamond Model of intrusion analysis: Adver-
sary, Victim, Capability, and Infrastructure. Edges represent
the relationships between features that can be used to ana-
lyze and discover malicious activity.

The diamond model also includes meta-features like times-
tamp, phase, result, direction, methodology, and resources.
In essence, threat intelligence asks and aims to answer the
question: “who is conducting the attack, how is it being con-
ducted, and what do they want?” A full discourse on the
diamond model is beyond the scope of this paper but the
outcome of this type of analysis is typically an identification
of an intrusion set or threat actor group that has a natural
analogy to an attacker’s type.

This attacker type mapping may be extremely granular
e.g., identifying activity associated with a particular military
unit ala Mandiant’s pioneering report on APT 1 (Intelligence
2013). In many cases, identification is far more coarse – sim-
ply identifying that the threat actor group is some kind of ad-
vanced persistent threat or cybercrime group. In this work,
we take a coarse view of attacker types.

Defender Type Definition
While attacker types have a clear parallel to threat actor
groups, defender types have largely remained ill-defined.
Our defender type should capture attributes of how a de-
fensive environment is set up – the detection of malicious
activity and potential false positives. It should also capture
the “maturity” of the organization as it represents their abil-
ity to respond to threats. In our setting, we consider a num-
ber of parameters that contribute to the optimal strategy of a
defensive agent – specifically:

• The probability of detecting an attack p

• The false positive rate of detection q

• The cost c associated with defender actions – a proxy for
the organization’s maturity

• The payoff function u associated with preventing or fail-
ing to prevent an attack

Since defenders have the same objective – maintaining the
confidentiality, integrity, and availability of a system – and
will learn a strategy parameterized by the above, we say that
a defender’s type θD consists of the above, plus their learned
strategy πD.



In contrast with attackers, defenders lack a taxonomiza-
tion and classification. To this end, we suggest characteriz-
ing both p and q – which are typically positively correlated
– both individually and in relation to each other. In lieu of a
proper taxonomy, we offer some example archetypes below.

• Cautious: 1.0 > p > 0.7, 0.3 > q > 0.2 – An organi-
zation generally accepting of false positives. Typifies an
organization with a large security budget or some man-
aged security service providers. Note that in general, a
false positive rate exceeding 30% is impractical to man-
age for nearly any organization.

• Balanced: 0.7 > p > 0.5, 0.2 > q > 0.1 – Organization
with a somewhat constrained security budget who can-
not afford to respond to large numbers of false positives.
Typifies organizations like a medium-sized business.

• Constrained: 0.5 > p > 0.3, 0.1 > q > 0.0 – Orga-
nizations with a limited security budget who can afford
only to respond to a limited number of threats. Typifies
organizations like K-12 education or small businesses.

Throughout this work, we fix our defender type and as-
sume that we are operating with a balanced defender who
has values of p = 0.6 and q = 0.1, consistent with prior
work (Galinkin et al. 2023). That is, we assume the defender
has configured their tooling such that they correctly detect
60% of attacker activity but mischaracterize benign activ-
ity as malicious 10% of the time. Additionally, we define
the defender’s utility u = r −

∑T
t ct where r is 0 if the

defender fails to prevent the attack and 5000 for success-
fully eliminating the attacker; T is the total length of the
episode; and ct is the cost of the action taken at timestep
t. We note that the reward value for winning is derived by
choosing the value of the highest cost action available to the
defender (10) and multiplying it by the maximum number of
possible timesteps per round (500). Modifying these settings
impacts the learned policy and should assume realistic val-
ues that may be derived empirically from an organization’s
tooling and incident investigations.

Agent Training
Training reinforcement learning agents via self-play is
challenging in terms of convergence to a globally optimal
policy due to the inherently adversarial nature of such
training. To control for potential differences in outcomes
related to hyperparameters, we opt to use the same set
of hyperparameters across all agents during training. To
this end, we experimented with a number of learning
rates and training step sizes. Our agents were ultimately
trained for 3500 steps using an Adam optimizer with
a learning rate of 0.0003 for the actor and 0.0005 for
the critic, with an update batch size of 64. For the ac-
tor, values of {0.00005, 0.0001, 0.0003, 0.0005, 0.001}
were tried, and for the critic, values of
{0.0001, 0.0003, 0.0005, 0.001, 0.0015} were tried, where
the critic learning rate was always higher than the actor
value for stability. We also experimented with training step
sizes of [1000, 2000, 3500, 5000, 10000] and found that
rewards were generally stable within 3000 epochs, even

with very low learning rates. No other hyperparameters
were modified.

Multi-Type Training
Two of our defender agents, Alternating and Hierarchical,
are trained in multi-type scenarios. In these scenarios, two
attacker agents are instantiated from scratch and learn ac-
cording to their objective – either the ransomware or APT
objective. During training, one of the two attackers is cho-
sen at random to be the “active” attacker, and the defend-
ing agent plays against the active attacker using their current
policy. The results are recorded and the agent policy net-
works are trained over the course of the training run.

In the Alternating case, the defender is a single
PPO (Schulman et al. 2017) agent that acts against attack-
ers in the game. This agent follows the same architecture as
the standard PPO agent, with a single actor-critic network
learning an action and value policy for deciding what action
to take given a particular state. By contrast, in the hierarchi-
cal case, we leverage HiPPO (Li et al. 2020) and establish a
manager network who chooses a subpolicy at some interval
k. We consider a “coarse” attacker type: a family of attackers
ΦA ⊆ ΘA which may consist of a “granular” set of individ-
ual θA. In our case, since ΘA consists of only two attacker
types, we instantiate only two networks. For each attacker
family, we instantiate a subpolicy network πsub. Thus, at ev-
ery k timesteps of the game, the manager network assesses
the subpolicy which is best performing and chooses actions
from that policy for the next k steps, before re-evaluating.

Results
Our evaluation results demonstrate a number of findings:

1. Defenders who see multiple attacker types during train-
ing achieve better rewards on average

2. A simple change in the attacker’s condition for victory
yields a distinctly different action policy

3. Learned defender policies have transferability to unseen
attacker types

Training
From our training curves in Figure 2, we can observe that
in all settings, defensive agents initially start out with high
levels of reward and converge over time to near-zero re-
ward. Although our game is not zero-sum, there is an in-
verse relationship between attacker and defender rewards. In
the alternating (Figure 2a) and hierarchical (Figure 2b) set-
tings, we note that APT rewards are fairly consistent across
all training runs, suggesting that more defender adaptation
is occurring against the ransomware opponent. This is rea-
sonable, considering that the highest scores achieved during
training for the defender – and thus, the learned best policy
– is likely weighted toward ransomware defense. We also
highlight that the combination of training curve smoothing
and random attacker assignment overestimates the early re-
turns of the APT model in Figures 2a and 2b. In the case of
single-type training, pictured in Figures 2c and 2d, we note
that the reward for learned policies are fairly stable from



training step 1500 onward. During the course of training,
the alternating model played against the APT attacker 1701
times and the ransomware player 1799 times. The hierarchi-
cal model played against APT 1767 times and ransomware
1733 times.

(a) Training time rewards
for defender, ransomware,
and APT in alternating set-
ting.

(b) Training time rewards
for defender, ransomware,
and APT in hierarchical set-
ting

(c) Training time re-
wards for defender and
ransomware attacker

(d) Training time rewards
for defender and APT at-
tacker

Figure 2: Training curves for all four training settings. Note
that curves are smoothed using a best fit line with order 5.

Evaluation
Evaluating reinforcement learning findings is a challenge,
even more so in our case due to the stochasticity inher-
ent in the environment. In line with Agarwal et al. (Agar-
wal et al. 2021), we consider score distributions and the in-
terquartile mean for our evaluation runs in addition to the
mean scores achieved. Our evaluation environment is a 50
node network with edges randomly instantiated at each run,
ensuring at least 60% connectivity between nodes and no
unconnected nodes. The difference in scores between Fig-
ure 3 and Figure 4 demonstrate the value of examining the
interquartile mean. While Figure 3 shows that the APT-
optimized defender does, in fact, perform best on the APT
attacker, the hierarchical defender has the best overall aver-
age score (383.28) across both attacker types. On the other
hand, Figure 4 demonstrates the truly poor performance of
the APT-optimized defender against ransomware attackers
and has the defender trained in the alternating setting achiev-
ing the best reward (-326.01) across attacker types, with the
hierarchical defender performing only marginally worse (-
369.52). In both cases, however, it suggests that the agents

who observed both attacker types in training have a mean-
ingful advantage, despite having seen fewer individual in-
stances of each attacker type than either of the specialized
models.

Figure 3: Mean evaluation reward for each defender against
ransomware and APT-type attackers

Figure 4: Interquartile mean evaluation reward for each de-
fender against ransomware and APT-type attackers. Note
that all rewards in this graph are negative; less negative val-
ues are better.

Figure 5 shows the win rates of each defender against both
types of attacker. As the negative values in Figures 3 and 4
suggest, the attacker achieves their objective in most scenar-
ios, likely due to the “balanced” type of the defender be-
ing fixed, as mentioned in the section describing defender
types. In fact, the highest win rate of all, the alternating
defender against ransomware-type attackers, is only 31%.
Across all defenders, no single defender manages to achieve
better than a 4.6% win rate versus APT-type attackers. On
average, the hierarchical defender achieves the best win rate
(17.6%), closely tailed by the alternating defender (17.25%).
We note that these generally disappointing win rates for de-
fenders are, at least in part, due to our assumptions around
the detection rate p and false positive rate q, and a higher p
or lower q would likely yield more impressive outcomes for
the defender.

The score distributions in Figure 6 suggest a number of
findings. First, across all defenders, the training curves fol-



Figure 5: Evaluation win rate for each defender against ran-
somware and APT-type attackers

Figure 6: Evaluation score distribution for each defender
against ransomware and APT-type attackers. Note the prob-
ability density on the y-axes and score values on the x-axes
differ between the two charts.

low a very similar shape against both attacker types and have
probability density concentrations at or around the same
score value. This suggests that the learned policies are fairly
similar, though the individual actions and corresponding win
rates differ. Another observation is that although there is
transferability of a defender’s learned skills – as evidenced
by the APT-optimized defender’s performance against ran-
somware – the attacker’s learned policies are distinct. As de-
scribed in our methods section, costs are incurred for actions
taken, but there is no penalty other than the cost incurred
by actions for losing. By comparing the two score distribu-
tion charts in Figure 6, we observe that there is substantially
more variance in ransomware outcomes than in APT out-
comes, and that APT outcomes tend to have a high density
of low-negative losses. From this, we can infer that APT type
attackers, having a much more directed goal of compromis-
ing and exfiltrating data from a particular target, are learning
a policy that quickly uncovers the target and compromises it,
resulting in shorter games with relatively smaller losses.

Conclusion
In this work, we have demonstrated that defensive agents
trained via reinforcement learning self-play are capable of
learning strategies to mitigate multiple types of attackers. In
particular, we have shown that agents trained in multi-type

settings – our “alternating” and “hierarchical” agents – per-
form meaningfully better on average than agents trained to
specialize against one particular attacker type. We highlight
that as additional attacker types are introduced, the hierar-
chical agent has an advantage for scaling in needing only to
learn the high-level policy. Although we leverage HiPPO (Li
et al. 2020) in this work, online algorithms for mixtures of
experts like exponential weighting (Littlestone and Warmuth
1994) potentially offer a major advantage in quickly adapt-
ing to novel threats. We wish to explore the pros and cons of
this sort of online learning methodology in future work.

One limitation of this work is that YAWNING-TITAN’s
network node states restrict the available attacker and de-
fender action spaces. Although the policies learned by our
two attacker types do differ in a meaningful way, this limita-
tion makes it difficult to introduce additional attacker types
who may differ in the actual techniques used. In future work,
we seek to apply our findings to more fully-featured simu-
lated environments with richer states and actions such that
we can emulate a larger number of adversaries and apply
our findings in real-world environments.

References
Adawadkar, A. M. K.; and Kulkarni, N. 2022. Cyber-
security and reinforcement learning—A brief survey. Engi-
neering Applications of Artificial Intelligence, 114: 105116.
Agarwal, R.; Schwarzer, M.; Castro, P. S.; Courville, A. C.;
and Bellemare, M. 2021. Deep reinforcement learning at the
edge of the statistical precipice. Advances in neural infor-
mation processing systems, 34: 29304–29320.
Albrecht, S. V.; and Ramamoorthy, S. 2013. A game-
theoretic model and best-response learning method for ad
hoc coordination in multiagent systems. In Proceedings of
the 2013 international conference on Autonomous agents
and multi-agent systems, 1155–1156.
Andrew, A.; Spillard, S.; Collyer, J.; and Dhir, N. 2022. De-
veloping Optimal Causal Cyber-Defence Agents via Cyber
Security Simulation. In Workshop on Machine Learning for
Cybersecurity (ML4Cyber).
Caltagirone, S.; Pendergast, A.; and Betz, C. 2013. The dia-
mond model of intrusion analysis. Technical report, Cen-
ter For Cyber Intelligence Analysis and Threat Research
Hanover Md.
Chatterjee, M.; and Namin, A.-S. 2019. Detecting phish-
ing websites through deep reinforcement learning. In 2019
IEEE 43rd annual computer software and applications con-
ference (COMPSAC), volume 2, 227–232. IEEE.
Feng, M.; and Xu, H. 2017. Deep reinforecement learning
based optimal defense for cyber-physical system in presence
of unknown cyber-attack. In 2017 IEEE Symposium Series
on Computational Intelligence (SSCI), 1–8. IEEE.
Galinkin, E.; Pountourakis, E.; Carter, J.; and Mancoridis,
S. 2023. Simulation of Attacker Defender Interaction in a
Noisy Security Game. In AAAI-23 Workshop on Artificial
Intelligence for Cyber Security.
Galinkin, E.; Pountourakis, E.; and Mancoridis, S. 2024.
The Price of Pessimism for Automated Defense. In Inter-



national Conference on Decision and Game Theory for Se-
curity, 45–64. Springer.
Harsanyi, J. C. 1967. Games with incomplete information
played by “Bayesian” players, I–III Part I. The basic model.
Management science, 14(3): 159–182.
Harsanyi, J. C. 1968. Games with incomplete information
played by “Bayesian” players part II. Bayesian equilibrium
points. Management Science, 14(5): 320–334.
Intelligence, M. 2013. APT1 Exposing One of China’s Cy-
ber Espionage Units. Technical report, Mandiant Intelli-
gence.
Kinyua, J.; and Awuah, L. 2021. AI/ML in Security Orches-
tration, Automation and Response: Future Research Direc-
tions. Intelligent Automation & Soft Computing, 28(2).
Li, A.; Florensa, C.; Clavera, I.; and Abbeel, P. 2020. Sub-
policy Adaptation for Hierarchical Reinforcement Learning.
In International Conference on Learning Representations.
Li, H.; and Zeng, Z. 2023. Robust Moving Target Defense
Against Unknown Attacks: A Meta-reinforcement Learning
Approach. In Decision and Game Theory for Security: 13th
International Conference, GameSec 2022, Pittsburgh, PA,
USA, October 26–28, 2022, Proceedings, volume 13727,
107. Springer Nature.
Littlestone, N.; and Warmuth, M. K. 1994. The weighted
majority algorithm. Information and computation, 108(2):
212–261.
Lowe, R.; Wu, Y. I.; Tamar, A.; Harb, J.; Pieter Abbeel, O.;
and Mordatch, I. 2017. Multi-agent actor-critic for mixed
cooperative-competitive environments. Advances in neural
information processing systems, 30.
Nguyen, T. T.; and Reddi, V. J. 2021. Deep reinforcement
learning for cyber security. IEEE Transactions on Neural
Networks and Learning Systems, 34(8): 3779–3795.
Perry, L.; Shapira, B.; and Puzis, R. 2019. No-doubt: At-
tack attribution based on threat intelligence reports. In 2019
IEEE International Conference on Intelligence and Security
Informatics (ISI), 80–85. IEEE.
Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347.
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.;
Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.;
Panneershelvam, V.; Lanctot, M.; et al. 2016. Mastering the
game of Go with deep neural networks and tree search. na-
ture, 529(7587): 484–489.


