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Abstract

We build a time-causal variational autoencoder (TC-VAE) for robust generation of financial time
series data. Our approach imposes a causality constraint on the encoder and decoder networks, ensuring
a causal transport from the real market time series to the fake generated time series. Specifically, we
prove that the TC-VAE loss provides an upper bound on the causal Wasserstein distance between mar-
ket distributions and generated distributions. Consequently, the TC-VAE loss controls the discrepancy
between optimal values of various dynamic stochastic optimization problems under real and generated
distributions. To further enhance the model’s ability to approximate the latent representation of the
real market distribution, we integrate a RealNVP prior into the TC-VAE framework. Finally, extensive
numerical experiments show that TC-VAE achieves promising results on both synthetic and real mar-
ket data. This is done by comparing real and generated distributions according to various statistical
distances, demonstrating the effectiveness of the generated data for downstream financial optimization
tasks, as well as showcasing that the generated data reproduces stylized facts of real financial market
data.
Keywords: adapted Wasserstein distance, empirical measure, convergence rate, kernel smoothing
MSC (2020): 37M10, 68T07

1 Introduction

For financial time series, the shortage of samples makes it statistically hard for empirical processes to
achieve an acceptable confidence level in describing the underlying market distribution. In practice, it is
widely recognized among financial engineers that back-testing exclusively on empirical market data results
in significant over-fitting, which leads to unpredictably high risks in decision making based on these tests
[Bai+16]. Synthetic data are therefore generated to augment scarce market data, and used to improve back-
testing, stress-testing, exploring new scenarios, and in deep learning processes in financial applications; see
the overview given in [Ass+20a]. For those purposes, the generated data should look like plausible samples
from the underlying market distribution, for example reproducing stylized facts observed in the market. In
particular, we want the distribution of the generated data to be close to the underlying market distribution
in their performance on decision making problems, such as pricing and hedging, as well as optimal stopping
and utility maximization. Notably, these problems are not continuous with respect to widely used distances,
such as the Maximum Mean Discrepancy (MMD) and the Wasserstein distances (W-distances). On the other
hand, these problems are Lipschitz-continuous with respect to stronger metrics, called adapted Wasserstein
distances (AW-distances) [Bac+20; PP14]. Therefore, for the augmentation of market data with the purpose
of e.g. testing performance of different strategies within any of the above problems, it is desirable to find a
generated distribution which is close to the underlying market distribution in AW-distance.

In that spirit, one natural choice would be to build a generative adversarial network (GAN) employing
adapted distances as loss functions. Xu et al. [Xu+20] introduce the COT-GAN, using causal Wasserstein
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distances (CW-distances) as a compromise between W-distances and AW-distances. Since CW-distances
are still considerably more expensive to compute than W-distances in a multi-step setting, COT-GAN can
only provide satisfactory results for time series with few time steps. This limits the application of CW-GAN
for financial time series generation. Aside from the time-step constraint, recent research has shown that
distributions generated via Wasserstein GANs often are far from the source distributions in W-distance
[Sta+21]. This also explains why GANs show mode collapse [TT20], which refers to a scenario where the
generator starts producing a limited variety of outputs, often very similar to each other, instead of a diverse
range that represents the real data distribution. Not to mention that the adversarial training to find the
saddle point of the min-max problem is notoriously unstable. Lastly, GANs are also usually “data hungry”
[Kar+20], and scarcity of market data is the initial problem we started with.

For these reasons, we decided to avoid adversarial minimization, and instead adopt the network structure
of variational autoencoders (VAEs) introduced in [KW14]. VAEs are highly expressive models that retain the
computational efficiency of fully factorized models [Cin+21] and have found wide applications in generating
data for speech, images, and text [Bow+15]. Notably, very deep VAEs generalize autoregressive models and
can outperform them on images [Chi20]. Moreover, VAEs frameworks are not only useful in generation,
but also able to learn a disentangled latent representation of the data distribution, see [Che+18; Mat+19].
This is in particular true for β-VAE, which we use in the present paper, see [Bur+18; BSR24]. Recently,
a series of papers have presented different extensions of VAEs to process sequential data, see for example
the summary paper [Gir+20]. In the present paper, we introduce a variation of VAEs, which is able to
learn the conditional distribution of financial time series under CW-distance. Specifically, the encoder maps
the market underlying data distribution µdata into a latent distribution µlatent on the latent space, while
the decoder maps the latent distribution back to a reconstructed distribution µrec on the data space. The
decoder will be used to generate a distribution µgen by pushing a prior distribution µprior defined on the
latent space. As it is common for VAEs, we want to achieve two goals at the same time: 1) minimize the
reconstruction error Lrec between µdata and µrec; 2) minimize the latent error Llatent between µlatent and
the prior distribution µprior. As a result, the generated distribution µgen should also be close to the data
distribution µdata.

Crucially, we incorporate two modifications to VAEs:

(i) Causality constraint: we impose a causality condition on the encoder and decoder, so that the
reconstruction path at time t depends on the input path only up to time t. We name the resulting
network structure Time-Causal -VAE (TC-VAE).

(ii) Flexible prior: we apply a flexible learnable prior distribution µprior, and specifically the RealNVP
introduced in [DSB16a; GST20].

Networks with a time-causal structure are already present in the literature. Those include, for example,
recurrent neural networks and causal self-attention networks, both proven highly successful in time series
generation; see [Chu+15; YJS19; EHR17; Yan+21].

From the causal optimal transport point of view, our encoder and decoder together transport the market
data distribution to the reconstructed distribution in a causal fashion. Consequently, we can prove that the
CW-distance between µdata and µrec is bounded by the reconstruction error Lrec. On the other hand, Real-
NVP has been proven very successful in approximating distributions, and its density computationally very
tractable [DSB16b], which allows an easy computation of the KL-divergence. The flexibility and tractability
of RealNVP empowers TC-VAE such that µprior and µlatent are close enough (in KL-divergence) to control
the CW-distance between µgen and µrec. Consequently, the TC-VAE loss controls the CW-distance between
µgen and µdata, thereby providing one-sided guarantees of such control problems through the CW-distance.

With these improvements, TC-VAE achieves the goals which we laid out above, generating financial
time series data with strong statistical guarantees according to causal Wasserstein distances and showcasing
promising numerical results for financial tasks. On synthetic datasets like the Black-Scholes model, Heston
model and Path-Dependent-Volatility model, TC-VAE learns the data distribution very well in terms of
drift, volatility, marginal distribution, Wasserstein distance [ACB17], Gaussian maximum mean discrepan-
cies [Gre+12], Signature maximum mean discrepancies [Lia+24], adapted Wasserstein distance [Bac+20],
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and optimal values of multistage optimization problems, like mean-variance portfolio optimization [FV22],
log-utility maximization [Mer75], and optimal stopping [BCJ19]. On real market datasets, such as S&P 500
and VIX, conditional TC-VAE enables us to generate paths, as many as possible and as long as possible.
The generated paths reproduce stylized facts of financial time series [Con01] capturing key properties such
as gain/loss asymmetry, skewness and kurtosis of returns, heavy-tail returns, no correlation in returns, short
time correlation in square returns, long time correlation in absolute returns, and volatility clustering.

Organization of the paper. In the rest of Section 1, we give a brief overview of related works and
introduce relevant notation. In Section 2, we introduce the architecture of TC-VAE and its loss function.
In Section 3 we prove robustness of stochastic optimization problems w.r.t. causal distances. Finally, in
Section 4 we show that TC-VAE achieves promising results on both unconditional and conditional financial
time series generation on several different metrics and datasets1.

Related Literature. Numerous methodologies have been explored for generating financial time series.
[KS19] were among the first to use restricted Boltzmann machines to generate synthetic foreign exchange
rates. Recent advances in deep learning have introduced promising techniques, including Variational Autoen-
coders (VAEs) introduced in [KW14] and Generative Adversarial Networks (GANs) pioneered in [Goo+14],
for generating synthetic financial data.

Variational Autoencoders (VAEs) have recently gained significant popularity in financial data generation.
The first contribution in this field is the logSig-VAE, introduced by [Büh+20], which utilizes a log-signature
transformation and then applies the VAE in the transformed log-signature space. In parallel, [Des+21]
proposed Time-VAE, specifically designed for predicting time series data. In the application of simulating
option markets, [Wie+21] combines the autoencoder structure with normalizing flows, while seamlessly
integrating a no-arbitrage condition to ensure market consistency. Later, [Cai+23] developed a hybrid VAE
to integrate the learning of local patterns and temporal dynamics by variational inference for time series
forecasting. Meanwhile, [Liu+22] introduced an innovative VAE variant that bridges temporal convolutional
networks and transformers through a layer-wise parallel structure, enhancing the model’s ability to handle
temporal sequences. Furthermore, [HCQ24] presents FTS-Diffusion, a novel VAE designed in particular to
model irregular and scale-invariant patterns in time series. In addition, [CS24] introduce the SigMMD-VAE,
which uses the signature MMD to separate distributions. More recently, [Sch24] addresses the critical balance
between model performance and interpretability by connecting ARMA-GARCH with LSTM-based VAE.

Other research mostly follows the GAN approach. This approach is first adapted to financial data
generation in [TCT19], and later its variants are explored in [Efi+20; Mee19]. To better address the time
dependency of financial time series, GANs with temporal structure are also explored in [Wie+20; FHO22;
EHR17; YJS19]. Conditional GANs are also studied in [KFT21; Col+21]. A big family of time series GAN is
based on signature transformation, e.g. in [Ni+21; Lia+24; LLN24; BGW24; Iss+24]. In the signature-based
GANs, neural SDEs introduced in [Kid21] have been proven successful. The generative expressiveness of
neural SDEs is then studied in [Kid21] as infinite-dimensional GANs. Some research particularly focus on
the financial quantities, see e.g. [Con+22; Eri+24; VPC24; Riz+23]. Many other approaches have also been
explored. For example, [HHP23] suggests a novel time series generation approach using the Schrödinger
bridge framework, while [Nag+23] uses autoregressive models to generate limit order book data. In fact, a
great amount of literature is dedicated to the generation of limit order book data, e.g. [Hul+23; Con+23;
Li+20; Özy21; Hul21; Col+23].

For an extensive overview on synthetic data generation, we refer the reader to [Lu+23] (for general
data), [Igl+23] (for time series), [EO21] (GANs for financial time series), and [Ass+20b] (for general data in
finance).

Notation. All random variables are defined on a fixed probability space (Ω,F ,P), and all equalities and
inequalities are intended to hold in P-almost sure sense. For n ∈ N, we denote by P(Rn) the set of probability
measures on Rn and by Pp(Rn) its subset of measures with finite p-th moment, p ∈ [1,∞). For m ∈ Rn and

1The code and data are available at https://github.com/justinhou95/TimeCausalVAE.
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a positive-semidefinite matrix Σ ∈ Rn2

, we write N (m,Σ) ∈ P(Rn) for the normal distribution on Rn with
mean m and covariance matrix Σ, and φm,Σ for its density. For simplicity, if m = 0 and Σ = idn is the
identity matrix, we denote this density by φ. The entropy of a measure µ ∈ P(Rn) with density pµ is given
by

H(µ) = −
∫

log(pµ(x))pµ(x)dx.

For measures µ, ν ∈ P(Rn) with densities pµ, pν , the Kullback–Leibler (KL) divergence between µ and ν (or
relative entropy of µ w.r.t. ν) is given by

DKL(µ|ν) =
∫

log
(pµ(x)
pν(x)

)
pµ(x)dx.

For p ∈ [1,∞) and µ, ν ∈ Pp(Rn), the p-Wasserstein distance between µ and ν is given by

Wp(µ, ν) := inf
π∈Π(µ,ν)

(∫
∥x− y∥pπ(dx, dy)

)1/p

,

where Π(µ, ν) denotes the subset of P(Rn × Rn) of measures with first marginal µ and second marginal
ν. The elements of Π(µ, ν) are called couplings of µ and ν. For π ∈ Π(µ, ν), we denote by πx its kernel
(disintegration) w.r.t. µ, so that π(dx, dy) = µ(dx)πx(dy). For n,N ∈ N and ξ ∈ P(Rn), the push-forward
measure of ξ through a measurable map T : Rn → RN , denoted by T#ξ, is the probability measure on RN

such that T#ξ(A) = ξ(T−1(A)) for all Borel sets A ∈ B(RN ). For d, T ∈ N, we will look at the space RdT

as the collection of d-dimensional paths of length T . For x = (x1, . . . , xT ) ∈ RdT , we adopt the notation
xs:t = (xs, ..., xt), for 1 ≤ s ≤ t ≤ T . Moreover, we denote the up-to-time-t marginal of µ ∈ P(RdT ) by
µ1:t, and the kernel of µ w.r.t. it by µx1:t

, so that µ(dx) = µ(dx1:t)µx1:t
(dxt+1:T ). Similarly, we denote the

up-to-time-t marginal of π ∈ Π(µ, ν) by π1:t, and the kernel of π w.r.t. it by πx1:t,y1:t
.

2 Causal generator

Our goal is to construct a path generator such that the generated paths are close to the observed ones, in
the sense that they can be thought of as originating from the same underlying distribution. For d, T ∈ N,
we are interested in the space P1(RdT ) of distributions on d-dimensional paths of length T . We start
with the observation of a set of such paths, which we consider to be an i.i.d. sample from an underlying
data distribution µdata ∈ P1(RdT ). The aim then is to build a generator that produces paths from a
generated distribution µgen ∈ P1(RdT ) which we want to be as close as possible to µdata. As explained in the
introduction, our main motivation is data augmentation for robust decision making. The robustness results
presented in Section 3 motivate us to use a modified version of the classical Wasserstein distance, called causal
Wasserstein distance, which we recall in the next subsection. Afterwards, we introduce a specific structure
of variational autoencoder, where we impose causality constraints on the encoder and decoder maps, and
build a generator connected to it; see Figure 1. We will show that, thanks to this causal structure, one can
successfully control the causal Wasserstein distance between the data distribution and the generated one.

2.1 Causal Distances

When facing stochastic optimization problems in a dynamic setting (that is, when the optimization depends
on a process that evolves in time), distances from classical optimal transport (OT), such as Wasserstein
distances, have proven unsuitable; see e.g. [PP14]. The key observation is that, in a dynamic context,
the value process depends crucially on the conditional distributions forward in time and hence agents take
decisions accordingly. This suggests to modify OT-distances by putting additional emphasis on conditional
laws. This leads to couplings π ∈ Π(µ, ν) such that the conditional law of π is still a coupling of the conditional
laws of µ and ν, that is πx1:t,y1:t

∈ Π
(
µx1:t

, νy1:t

)
. Such couplings are called bi-causal and we denote their

collection by Πbc(µ, ν); see [Las18; PP12; PP14]. We call the coupling π causal if πx1:t,y1:t ∈ Π
(
µx1:t , ·

)
,
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and write π ∈ Πc(µ, ν), and we call it anti-causal if πx1:t,y1:t
∈ Π

(
·, νy1:t

)
, and write π ∈ Πac(µ, ν). Clearly,

Πbc(µ, ν) = Πc(µ, ν) ∩ Πac(µ, ν). The causality constraint can be expressed in several different ways, see
e.g. [Bac+17; ABZ20] in the context of transport, and [BY78] in the filtration enlargement framework.
Roughly speaking, in a causal transport, for every time t, only information on the x-coordinate up to time
t is used to determine the mass transported to the y-coordinate at time t. And in a bi-causal transport this
holds in both directions, i.e. also when exchanging the role of x and y. By means of these concepts, one
can introduce constrained optimal transport problems, where the allowed couplings satisfy the causality or
bicausality condition. We introduce them directly in the space of interest for us, that is P(RdT ), and for a
specific cost, that is the sum over time steps of the Euclidean norm on Rd.

Definition 2.1 (Causal Wasserstein distance). The (first order) causal Wasserstein distance CW1 on
P1(RdT ) is defined by

CW1(µ, ν) = inf
π∈Πc(µ,ν)

∫ T∑
t=1

∥∥xt − yt
∥∥
Rdπ(dx, dy). (2.1)

We need to stress that calling CW1 a distance is an abuse of terminology, as this is clearly an asymmetric
notion. We still adopt it as this is customary in the literature. One way to recover symmetry, is to use
bi-causal couplings instead of causal ones.

Definition 2.2 (Adapted Wasserstein distance / Nested distance). The (first order) adapted Wasserstein
distance AW1 on P1(RdT ) is defined by

AW1(µ, ν) = inf
π∈Πbc(µ,ν)

∫ T∑
t=1

∥∥xt − yt
∥∥
Rdπ(dx, dy). (2.2)

Bi-causal couplings and the corresponding optimal transport problem were considered by Rüschendorf [Rüs85]
in so-called ‘Markov-constructions’. This concept was independently introduced by Pflug-Pichler [PP12] in
the context of stochastic multistage optimization problems (see also [PP14; PP15; PP16; GPP19; Pic13]),
and considered by Bion-Nadal and Talay in [BT19] and by Gigli in [Gig08].

As already mentioned above, adaptedness (or bi-causality) turns out to be the correct constraint to
impose on couplings in order to modify the Wasserstein distance so to ensure robustness of a large class of
stochastic optimization problems. That is to say, if two measures µ, ν are close w.r.t. this distance, then
solving w.r.t. µ optimization problems such as optimal stopping, optimal hedging, utility maximization etc,
provides an “almost optimizer” for ν; see [Bac+20; PP14]. This is not true for the Wasserstein distance,
which is in fact unable to capture fundamental differences in the evolution of time series, see [PP14]. We
refer to Section 3 below for robustness results w.r.t. the causal Wasserstein distance.

We conclude this subsection by showing some simple ordering between distances, that will turn out to be
useful for our estimates later. For this we recall the concepts of total variation and adapted total variation,
for µ, ν ∈ P(RdT ):

TV0(µ, ν) = inf
π∈Π(µ,ν)

∫
1x̸=yπ(dx, dy) and AV0(µ, ν) = inf

π∈Πbc(µ,ν)

∫
1x ̸=yπ(dx, dy),

respectively, with |µ− ν| = µ+ ν − 2(µ ∧ ν).

Lemma 2.3. Let B1 = {x ∈ RdT : ∥x∥ ≤ 1}. Then, for all µ, ν ∈ P1(B1),

CW1(µ, ν) ≤ AW1(µ, ν) ≤ 2AV0(µ, ν) ≤ CTV0(µ, ν) ≤ C

√
1

2
DKL(µ|ν), (2.3)

where C = 2(2T − 1).

Proof. The first inequality is obvious, and the second one is due to the fact that µ, ν ∈ P1(B1). The third
inequality is Lemma 3.5 in [EP22] and the last inequality follows by Pinsker’s inequality [Tak05].
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2.2 TC-VAE: time-causal variational autoencoder

Variational Autoencoders (VAEs), introduced in [KW14], are deep latent-variable models (DLVMs) employed
to generate new data. Our data space is RdT , while as latent space we consider RdZT for some fixed dZ ∈ N.
A VAE consists of an encoding map (encoder) and a decoding map (decoder) where the former allows to go
from the data space to the latent one, and the latter goes in the opposite direction. The encoder involves
two networks µϕ : RdT → RdZT and σϕ : RdT → RdZT , parameterized by ϕ. Here, µϕ encodes data x ∈ RdT

to a latent point µϕ(x) ∈ RdZT , and σϕ(x) defines the scaling of Gaussian noise that is later added to the
latent point. On the other hand, the decoder map consists of a network Deθ : RdZT → RdT , parameterized
by θ, simply mapping points from the latent space back to the data space. The input distribution is our
data distribution µdata, and we let X ∼ µdata. We consider Gaussian noise ε ∼ N (0, IdZT ) independent of
X, and define {

Z = µϕ(X) + σϕ(X)ε,

Y = Deθ(Z).
(2.4)

We denote by µlatent = Z#P the distribution on the latent space RdZT resulting from the encoding step, and
by µrec = Y#P the reconstructed distribution on the data space RdT resulting from the combination of the
encoding and decoding steps.

As a DLVM, VAE generates data in the following two steps: (1) sampling ẑ(i) ∈ RdZT from a prior distri-
bution µprior ∈ P1(RdZT ); (2) generating a sample x̂(i) ∈ RdT , conditioned on ẑ(i), through the pushforward
of the decoder network, i.e. getting x̂(i) as sample from the generated distribution

µgen = Deθ#µprior ∈ P1(RdT ).

Our goal is to control the causal Wasserstein distance CW1(µdata, µgen), so we aim at training our VAE such
that this is minimized. As we discussed already, estimating CW1 is difficult and computationally intractable
due to the lack of explicit causal couplings. To overcome this difficulty, we use the fact that CW1 satisfies
the triangle inequality (see [Pam24]), so that we can control CW1(µdata, µgen) as follows:

CW1(µdata, µgen) ≤ CW1(µdata, µrec) + CW1(µrec, µgen). (2.5)

Crucially, if we restrict µϕ, σϕ and Deθ to the class of causal maps introduced below, (X,Y )#P is a
causal coupling from µdata to µrec, i.e. (X,Y )#P ∈ Πc(µdata, µrec). We will show that CW1(µdata, µrec)
can be bounded by the transport cost associated to the coupling (X,Y )#P, while CW1(µrec, µgen) can be
bounded by a computationally tractable quantity.

Causal maps. A map T : Rd1T → Rd2T , d1, d2 ∈ N, is causal if and only if there exist Borel-measurable
maps T t : Rd1t → Rd2 , t = 1, . . . , T , such that

T (x) = (T 1(x1:1), T 2(x1:2), . . . , T T (x)), x ∈ Rd1T .

Intuitively, the t-coordinate of T (x) = T (x1:T ) only depends on x1:t, i.e. on the values of x up to time t.
Let X ∼ µ ∈ P1(Rd1T ), Y = T (X), and denote the law of Y by ν = T#µ ∈ P1(Rd2T ), so that

π = (id, T )#µ ∈ Π(µ, ν). Note that, for T causal, for all t = 1, . . . , T − 1,

Law(Xt+1|Y1:t, X1:t) = Law(Xt+1|T t(X1:t), X1:t) = Law(Xt+1|X1:t),

which implies that πx1:t,y1:t(dxt+1) = µx1:t(dxt+1). Therefore, in this case π is a causal coupling from µ to
ν, i.e. π ∈ Πc(µ, ν). Moreover, if we have a sequence of causal maps, then their composition is still a causal
map by definition. This enables us to build complex maps by using simple causal maps as building blocks.

Time-causal VAE (TC-VAE). We let µϕ : RdT → RdZT , σϕ : RdT → RdZT and Deθ : RdZT → RdT in
VAE be causal maps parameterized by ϕ and θ. Let ε ∼ N (0, IdZT ) be independent of X ∼ µdata and
consider the autoencoder structure in (2.4); see Figure 1 for visualization.
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Figure 1: Time-causal variational autoencoder and generation

Since X and ε are independent, we have that, for all t = 1, . . . , T − 1,

Law(Xt+1|Y1:t, X1:t) = Law(Xt+1|Deθ(µϕ(X1:t) + σϕ(X1:t)ε1:t), X1:t) = Law(Xt+1|X1:t, ε1:t)

= Law(Xt+1|X1:t),

so that (X,Z)#P is a causal coupling.
Now we define the reconstruction loss by

Lrec := EP

[∥∥X − Y
∥∥] = EP

[∥∥X −Deθ(µϕ(X) + σϕ(X)ε)
∥∥].

Hereby, we emphasize that both Y and Lrec implicitly depend on both θ and ϕ. Intuitively, minimizing Lrec

over the set of parameters ϕ, θ corresponds to minimizing a relaxed version of CW1(µdata, µrec) where causal
couplings are restricted to a subset of couplings defined by our network’s (causal) structure.

Lemma 2.4. We can estimate the first term in (2.5) via

CW1(µdata, µrec) ≤ Lrec. (2.6)

Proof. Similarly as above, we can see that π = (X,Y )#P ∈ Πc(µdata, µrec). Then, by the definition of causal
Wasserstein distance, we have the estimate

CW1(µdata, µrec) ≤ EP[∥X − Y ∥] = EP

[∥∥X −Deθ(µϕ(X) + σϕ(X)ε)
∥∥].

Next we focus on the second term in (2.5), that is CW1(µrec, µgen).

Theorem 2.5. Assume µgen, µrec ∈ P1(B1), where B1 = {x ∈ RdT : ∥x∥ ≤ 1}. Then

CW1(µrec, µgen) ≤ C

√
1

2
DKL(µlatent|µprior). (2.7)

7



Proof. Lemma 2.3 implies

CW1(µrec, µgen) ≤ C

√
1

2
DKL(µrec|µgen). (2.8)

Now, note that µrec and µgen originate from the same pushforward map Deθ, applied to the latent distribution
µlatent and to the prior distribution µprior, respectively, i.e.

µrec = Deθ#µlatent, µgen = Deθ#µprior.

Then, the data processing inequality (see e.g. [Nut21, Lemma 1.6]) yields

DKL(µrec, µgen) ≤ DKL(µlatent, µprior), (2.9)

which concludes the proof.

Combining (2.5), Lemma 2.4 and Theorem 2.5, gives the following estimate for the causal Wasserstein
distance between market data and generated data.

Corollary 2.6. Assume µgen, µrec ∈ P1(B1), where B1 = {x ∈ RdT : ∥x∥ ≤ 1}. Then

CW1(µdata, µgen) ≤ Lrec + C

√
1

2
DKL(µlatent|µprior). (2.10)

Remark 2.7. The compactness assumption in Theorem 2.5 and Corollary 2.6 is not a constraint on our data
since, in practice, we typically normalize our training data to reside within a bounded region, typically a
ball.

The estimate in (2.10) allows us to obtain one sided estimates for a class of stochastic optimization
problems, when employing generated rather than observed data, see Remark 3.2 below.

2.3 TC-VAE Loss

Motivated by Corollary 2.6, we aim at training our TC-VAE by minimizing the two terms on the RHS of
(2.10): Lrec and DKL(µlatent|µprior). The first term Lrec, defined in (2.6), is the well-known reconstruction
loss and can be efficiently estimated by taking batch-wise sample expectations. However, the second term
DKL(µlatent|µprior) involves an intractable term µlatent, also called the aggregated posterior distribution. Recall
that µlatent = Z#P = (µϕ(X)+σϕ(X)ε)#P whereX ∼ µdata and ε ∼ N (0, IdZT ) are independent. We denote
the density of µlatent and µprior by platent and pprior, respectively. Then we have platent(·) =

∫
qϕ(·|x)µdata(dx),

where qϕ(·|x) is the density of N (µϕ(x),Σϕ(x)) and Σϕ(x) is the diagonal matrix with diagonal vector
σϕ(x) for x ∈ RdT . Note that the integral form of platent makes it computationally intractable, and so is
DKL(µlatent|µprior). Luckily, DKL(µlatent|µprior) can be bounded by

∫
DKL(qϕ(·|x)|pprior)µdata(dx), following

the same arguments used in [KW14] to bound log-likelihood by evidence lower bound:

DKL(µlatent|µprior) = −
∫

log(pprior(z))platent(z)dz −H(platent)

= −
∫

log(pprior(z))

∫
qϕ(z|x)µdata(dx)dz −H(platent)

=

∫
DKL(qϕ(·|x)|pprior)µdata(dx) +

∫
H(qϕ(·|x))µdata(dx)−H

(∫
qϕ(·|x)µdata(dx)

)
≤

∫
DKL(qϕ(·|x)|pprior)µdata(dx) = EP[DKL(qϕ(·|X)|pprior)] =: Llatent,

(2.11)

where last inequality follows by Jensen’s inequality, and Llatent stands for “latent loss”. Here again, for
simplicity, we omit ϕ in the notation of Llatent. Now, instead of minimizing DKL(µlatent|µprior), we minimize
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Llatent, which is tractable. More precisely, we follow the loss design in β-VAE in [Hig+16] by setting
Lθ,ϕ := Lrec + βLlatent and solving

min
θ,ϕ

Lθ,ϕ,

where β is an hyper-parameter. We now focus on computing Lθ,ϕ. Notice that qϕ(·|x) is the density of
Law(Z|X = x), so we can rewrite

Llatent = EP

[
EZ∼qϕ(·|X)

[
log qϕ(Z|X)− log pprior(Z)

]]
= EP

[
log qϕ(Z|X)− log pprior(Z)

]
.

This yields

Lθ,ϕ = E(X,ϵ)∼µdata⊗N (0,IdZT ),Z=µϕ(X)+σϕ(X)ε

[∥∥X −Deθ(Z)
∥∥+ β

(
log qϕ(Z|X)− log pprior(Z)

)]
.

Sample-based loss. In practice, we have no access to µdata, but only to finitely many samples from
observation. We let x(i) ∈ RdT , i = 1, . . . , n, be i.i.d. samples from µdata ∈ P1(RdT ), and µ̂data = 1

n

∑n
i=1 δx(i)

be the corresponding empirical distribution. So we take expectation under µ̂data instead of µdata and minimize
a sample-based version of the loss:

Ln
θ,ϕ =

1

n

n∑
i=1

∥∥x(i) −Deθ(z
(i))

∥∥+ β
1

n

n∑
i=1

(
log qϕ(z

(i)|x(i))− log pprior(z
(i))

)
,

where {(x(i), ϵ(i))}i=1,...,n are i.i.d. samples from µdata ⊗ N (0, IdZT ), and z(i) = µϕ(x
(i)) + σϕ(x

(i))ϵ(i) for
i = 1, . . . , n.

2.4 Flow-based prior distribution

In the standard VAE, the prior distribution µprior is a fix standard Gaussian prior, hence non-learnable,
and the regularization term pushes the aggregated posterior to match it. In practice, the matching is not
satisfied because Lrec forces the encoder to be irregular and, in the end, it is almost impossible to precisely
match a fixed-shaped prior. As a result, one obtains ‘holes’, namely regions in the latent space where the
aggregated posterior assigns low probability while the prior assigns relatively high probability. This is an
issue in generation because sampling from the prior, from the hole, may result in a sample that is of extremely
low quality [RV18]. It is even more problematic in our application, because we are not only interested in
generating samples on the manifold where empirical data lies, but also generating a distribution close to
the empirical measure under some strong probabilistic metric. Therefore, in the latent space, we not only
require that the aggregated posterior has no holes, but actually need that the aggregated posterior is close
to the prior.

Sampling directly from the posterior distribution at first glance seems to solve this issue, but it potentially
leads to overfitting of the empirical data. Therefore, we consider a learnable prior to match the posterior
distribution. There are many options such as mixture of Gaussians [Dil+16], VampPrior [TW18], generative
topographic mapping [BSW98], flow-based prior [Che+16], etc. In our case, we use the flow-based prior
because of its high flexibility with time series data. Let Z0 be a random variable on RdZT with density
p0(z0). Let f1 : RdZT → RdZT be invertible, set Z1 = f1(Z0) and denote its density by p1(z1). Then, for all
z1 = f1(z0), z0 ∈ RdZT ,

p1(z1) = p0(z0)
∣∣∣detdz0

dz1

∣∣∣ = p0(z0)
∣∣∣det∇f−1

1 (z1)
∣∣∣,

where ∇f−1
1 (z1) is the Jacobian of f−1

1 at z1. Now, let f1, . . . , fN be a sequence of invertible functions, and
set f = f1 ◦ · · · ◦ fN . Let Zj = fj(Zj−1) and denote its density by pj(zj), for j = 1, . . . , N . Then, for all
j = 1, . . . , N , zj = fj(zj−1), z0 ∈ RdZT , we have

pj(zj) = pj−1(zj−1)
∣∣∣det∇f−1

j (zj)
∣∣∣.
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Given such a chain of probability density functions, we have

log(pN (zN )) = log

(
p0(z0)

N∏
j=1

∣∣∣det∇f−1
j (zj)

∣∣∣) = log(p0(z0)) +

N∑
j=1

log

(∣∣∣det∇f−1
j (zj)

∣∣∣).
Next, we parameterize fλ

1 , . . . , f
λ
N by a parameter λ and let fλ = fλ

1 ◦ · · · ◦ fλ
N . Then ZN = fλ(Z0) has a

learnable density pλ(z).

Sample-based loss with flow-based prior distribution. Setting pprior = pλ in our TC-VAE, we end
up with a learnable prior, and log pprior(z) in the regularization term Llatent becomes

log pprior(z) = log(p0(z0)) +

N∑
j=1

log

(∣∣∣det∇fλ
j

−1
(zj)

∣∣∣),
where z = zN , zj = fλ

j (zj−1) for all j = 1, . . . , N , z0 ∈ RdZT . We end up minimizing the following loss:

Ln
θ,ϕ,λ =

1

n

n∑
i=1

∥∥x(i)−Deθ(z
(i))

∥∥+β
1

n

n∑
i=1

log qϕ(z
(i)|x(i))−β

1

n

n∑
i=1

(
log(p0(z

(i)
0 ))+

N∑
j=1

log
(∣∣∣det∇fλ

j

−1
(z

(i)
j )

∣∣∣)),
where z

(i)
N = z(i), z

(i)
j = fλ

j (z
(i)
j−1) for all i = 1, . . . , N . In practice, we choose the sequence of invert-

ible transformations from the class of real-valued non-volume-preserving (real NVP) transformations; see
[DSB16a].

Remark 2.8. In the flow-based prior, we generalize the neural SDE [Kid+21] with noise process driven by a
richer class of distribution beyond the Gaussian noise.

3 Causal Robustness

In this section, we show why causal (resp. adapted) Wasserstein distance is a suitable way to measure
closeness when considering a broad class of stochastic optimization problems. This is done by establishing
one-sided (resp. two-sided) robustness of controlled problems under this distance. Let Q : RdT × RdT → R
be a measurable function. For µ ∈ P1(RdT ), we consider the following stochastic optimization problem:

V(µ) := inf
H∈H

V (H,µ), V (H,µ) =

∫
Q(x,H(x))µ(dx) = EX∼µ[Q(X,H(X))], (3.1)

where H is a closed convex subset of the set K of adapted strategies (controls):

K := {H = (Ht)
T
t=1 : Ht(x) = Ht(x1:t), Ht : RdT → Rd measurable}.

Here, with an abuse of notation, we write Ht(x1:t), meaning that the function Ht defined on RdT only
depends on the first t coordinates of the argument, i.e. H is adapted.

Theorem 3.1. Let L ≥ 0 and Q be s.t. (x, h) 7→ Q(x, h) is uniformly L-Lipschitz in x and convex in h.
Then, for all µ, ν ∈ P1(RdT ),

V(µ)− V(ν) ≤ L CW1(µ, ν),

|V(µ)− V(ν)| ≤ LAW1(µ, ν).

Proof. Let π ∈ Πc(µ, ν) be an optimal coupling for CW1(µ, ν). Notice that, for all G ∈ H, we have

−V (G, ν) = −
∫

Q(y,G(y))ν(dy) = −
∫

Q(y,G(y))π(dx, dy)

=

∫
[Q(x,G(y))−Q(y,G(y))]π(dx, dy)−

∫
Q(x,G(y))π(dx, dy).

(3.2)
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We first estimate the first term on the RHS of (3.2). By the Lipschitz property of Q, we have∫
[Q(x,G(y))−Q(y,G(y))]π(dx, dy) ≤ L

∫
∥x− y∥π(dx, dy) = L · CW1(µ, ν). (3.3)

Next, we estimate the second term on the RHS of (3.2). By convexity of Q and Jensen’s inequality, we have

−
∫

Q(x,G(y))dπ = −
∫ ∫

Q(x,G(y))πx(dy)µ(dx)

≤ −
∫

Q
(
x,

∫
G(y)πx(dy)

)
µ(dx) = −

∫
Q
(
x, G̃(x)

)
µ(dx),

where G̃ = (G̃t)
T
t=1 : RdT → RdT is defined as G̃(x) :=

∫
G(y)πx(dy). Then, since π ∈ Πc(µ, ν), for all

x = x1:T ∈ RdT and t = 1, . . . , T , we have

G̃t(x) =

∫
Gt(y)πx(dy) =

∫
Gt(y1:t)πx(dy1:t) =

∫
Gt(y1:t)πx1:t(dy1:t) = G̃t(x1:t),

where the second equality follows by adaptedness of G, and the third one by causality of π. This implies
that G̃ is also an adapted strategy, and thus G̃ ∈ H. Therefore, for the second term on the RHS of (3.2),
we have

−
∫

Q(x,G(y))π(dx, dy) ≤ −V (G̃, µ) ≤ −V(µ). (3.4)

Combining (3.2), (3.3) and (3.4), for all H,G ∈ H we have that

−V (G, ν) ≤ L · CW1(µ, ν)− V(µ),

so that
V(µ)− V (G, ν) ≤ L · CW1(µ, ν).

Then, by the arbitrarity of G ∈ H, we conclude that

V(µ)− V(ν) ≤ L · CW1(µ, ν).

By symmetry, the claimed inequality for AW1 holds as well. This completes the proof.

Remark 3.2. Thanks to the estimate obtained in Corollary 2.6, Theorem 3.1 provides one-sided estimates
for stochastic optimization problems as in (3.1), when employing generated rather than observed data.
Specifically, for µgen, µrec ∈ P1(B1), B1 = {x ∈ RdT : ∥x∥ ≤ 1}, and Q as in Theorem 3.1, we have

V(µdata) ≤ V(µgen) + L

(
Lrec + C

√
1

2
DKL(µlatent|µprior)

)
.

This means that, if we solve the minimization problem on the samples we generate, the optimal value,
together with the reconstruction loss and the latent loss, gives a conservative upper bound of the optimal
value V(µdata) under the data distribution.

In order to provide an example of application of the above theorem, let us recall the definitions of Value
at Risk and Average Value at Risk.

Definition 3.3 (VaR and AVaR). Let α ∈ (0, 1) and U be a real random variable on (Ω,F ,P). The
Value-at-Risk (VaR) of U at confidence level α is defined as the negative α-quantile of U under P:

VaRα(U) = − inf{x ∈ R : P(U ≤ x) ≥ α}.

The Average Value at Risk (or Expected Shortfall) of U at confidence level α is defined as the average of
the VaR below α:

AVaRα(U) = ESα(U) =
1

α

∫ α

0

VaRu(U)du = min
z∈R

{
1

α
E[(z − U)+]− z

}
.
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Corollary 3.4. Let L ≥ 0 and Q be s.t. (x, h) 7→ Q(x, h) is uniformly L-Lipschitz in x and concave in h.
For α ∈ (0, 1) and µ ∈ P1(RdT ), define

Rα(µ) = inf
H∈K

ESα(Q(X,H(X))), where X = (X1, . . . , XT ) ∼ µ.

Then, for all µ, ν ∈ P1(RdT ),

Rα(µ)−Rα(ν) ≤
L

α
CW1(µ, ν),

|Rα(µ)−Rα(ν)| ≤
L

α
AW1(µ, ν).

(3.5)

Proof. By the dual representation of the expected shortfall, we can rewriteRα(µ) as a stochastic optimization
problem on an enlarged space:

Rα(µ) = inf
H∈K

inf
z∈R

E
[ 1
α
(z −Q(X,H(X)))+ − z

]
= inf

H̃∈H̃
E[Q̃α(X̃, H̃(X̃))],

with

Q̃α(x̃, h̃) =
1

α
(h̃

(1)
1 −Q(x̃(2:d+1), h̃(2:d+1)))+ − h̃

(1)
1 ,

X̃ = ([1, Xt]
⊤)Tt=1 ∈ R(d+1)T ,

H̃ = {H̃ : H̃t(x̃) = [z,Ht(x̃
(2:d+1))]⊤, H ∈ K, z ∈ R},

where, for v = [v1, . . . , vm]T , we use the notation v(i) = vi and v(i:j) = (vi, . . . , vj). On the one hand, Q̃α is
uniformly L

α -Lipschitz in the first argument, because u 7→ 1
αu+ is 1

α -Lipschitz and Q is uniformly L-Lipschitz

in the first argument. On the other hand, Q̃α is convex in the second argument, because u 7→ 1
αu+ is convex

and −Q is convex in the second argument. Therefore, we can apply Theorem 3.1 and complete the proof.

A concrete and practical example of a function Q satisfying the assumptions in Theorem 3.1 is the profit
and loss function for bounded strategies.

Example 3.5 (P&L). Consider Q(x, h) =
∑T−1

t=1 ht(xt+1 − xt). Then Q is linear in h. Also notice that

∥∥∥ T−1∑
t=1

ht(xt+1 − xt)−
T−1∑
t=1

ht(x
′
t+1 − x′

t)
∥∥∥ ≤

T−1∑
t=1

∥h∥∞(∥x′
t+1 − xt+1∥+ ∥x′

t − xt∥) ≤ 2∥h∥∞∥x− x′∥.

For B ≥ 0, then, over all h ∈ RdT s.t. ∥h∥∞ ≤ B, Q is uniformly 2B-Lipschitz in x. Therefore, for all
α ∈ (0, 1), if we consider the risk minimization problem with B-bounded strategies:

RB
α (µ) = inf

H∈HB

ESα(Q(X,H(X))) = inf
H∈HB

ESα
( T−1∑

t=1

Ht(X1:t)(Xt+1 −Xt)
)
,

where HB = {H ∈ K : ∥H∥∞ ≤ B}, then, by Corollary 3.4, the following holds true:

RB
α (µ)−RB

α (ν) ≤
2B

α
CW1(µ, ν),

|RB
α (µ)−RB

α (ν)| ≤
2B

α
AW1(µ, ν).

(3.6)

To conclude, while the Wasserstein distance is not strong enough to guarantee closeness in the perfor-
mance of stochastic optimization problems (see [PP14]), we show that the causal Wasserstein distance can
control the closeness in a Lipschitz fashion. The above results can be regarded as asymmetric versions of
robustness results known for the adapted Wasserstein distance; see [Bac+20].
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4 Experiments

In this section, we test the generative capabilities of TC-VAE in three major aspects. First, we compare the
generated data and market data under weak metrics [Rac+13]. These include financial statistics [Con01],
Wasserstein distance [ACB17], and different maximum mean discrepancies [Gre+12]. Second, we compare
the generated data and market data under adapted metrics [Bac+20]. These include adapted Wasserstein
distance [Bac+20] and the optimal value of multistage optimization problems, like portfolio optimization
[FV22], utility maximization [Mer75], and optimal stopping [BCJ19]. Finally, we evaluate the diversity in
generated data compared to market data. This tests how much we enlarge the market dataset with new
samples. Throughout this section, we also refer to market data as real paths and to generated data as fake
paths.

4.1 Synthetic data

4.1.1 Black-Scholes model

The Black-Scholes model [BS73] is the most renowned model in mathematical finance. Various stochastic
optimization problems have analytic optimal solutions under this model [LN00; Mer75]. This provides
benchmarks for the comparison between market and generated data. Let (SBS

t )t≥0 be defined by SBS
0 = 1

and dSBS
t = SBS

t (µdt+ σdWt) for all t ≥ 0, with drift µ = 0.1, volatility σ = 0.2, and where (Wt)t≥0 is the
Wiener process. Since we work in discrete time, we let ∆t = 1/12, T = 5, NT = T/∆t to model monthly
prices over an investment horizon of 5 years. We choose N = 1000 to be the number of samples in market
data, reflecting the scarcity of data in practice [Büh+20].

Evaluation under weak metrics

First, we visually compare real paths and fake paths to provide a proof-of-concept for TC-VAE. Figure 2
illustrates that fake paths are visually indistinguishable from real paths.

Figure 2: Illustration of real paths from a discretized Black-Scholes model (left) compared to fake paths
generated from the TC-VAE model (right).

Then we compare the marginal histograms between real and fake paths. Figure 3 shows that real and
fake paths are close in one-dimensional marginal distributions.
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Figure 3: Visualization of marginal distributions at different time slices for real paths from a discretized
Black-Scholes model (blue) compared to fake paths generated from the TC-VAE model (orange).

Furthermore, we compare drift and volatility between real and fake paths. For sample paths (S
(n)
j∆t)j=0,...,NT

n=1,...,N
,

we compute the log-paths and the volatility:

(
logS

(n)
j∆t

)
j=0,...,NT
n=1,...,N

,

√√√√ 1

NT∆t

NT∑
j=1

(
logS

(n)
j∆t − logS

(n)
(j−1)∆t

)2


n=1,...,N

.

We compare the log-path distribution and the volatility distribution for both real and fake paths; see Figure 4.
Overall real and fake paths are close in drift and volatility.

Figure 4: The left-hand side visualizes the log-paths for real prices (blue) compared to fake prices (orange).
The solid lines represent the mean and the widths of shadow areas represent the standard deviation. The
right-hand side visualizes the histogram of the volatility of real paths (blue) compared to fake paths (orange).

Next, we compute the sliced Wasserstein distance, which is a principled method to simultaneously com-
pare all one-dimensional projected distributions between two measures (see [Kol+19]). We compute the
sliced Wasserstein distance between real and fake paths with 10 realization. To benchmark, we compute the
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sliced Wasserstein distance between real and control paths, where control paths are discretized Black-Scholes
paths different from real paths only in volatility. Moreover, we conduct the same evaluation under Gaussian
kernels MMD [Gre+12] and signature MMD [CO18], which are widely used to evaluate the discrepancy be-
tween probability measures [Li+17; Ni+21]. In Figure 5, we show that real and fake paths are relatively close
in sliced Wasserstein distance, Gaussian MMD, and signature MMD. As a comparison, we train the uncon-
ditional Sig-VAE introduced in [CS24] using the same Black-Scholes distribution. We utilize the code from
the authors’ repository available at https://github.com/luchungi/Generative-Model-Signature-MMD.

Figure 5: From left to right, we visualize the sliced Wasserstein distance, Gaussian MMD, and signature
MMD. The green (resp. red) lines illustrate distances between real paths of the Black-Scholes model and
fake paths generated from TC-VAE (resp. Sig-VAE); each line froms a different random seed. The blue dots
show the distances between real paths and control paths under different volatility levels.

Next, we compare real and fake paths using adapted metrics. In particular, we study the mean-variance
portfolio optimization problem, the log-utility maximization problem, the optimal stopping problem and the
adapted Wasserstein distance.

Mean-variance portfolio optimization problem

The mean-variance portfolio optimization problem is one of the most classical and frequently used portfolio
selection rules [Rub02]. The investor aims at maximizing the expected return from terminal wealth while
minimizing the variance of the portfolio:

V(µ) = sup
θ

Eµ[V
θ
T ]− κVarµ[V

θ
T ].

The supremum is taken over the set of self-financing trading strategies (see [FS11, Definition 5.4]) and κ is
the hyper-parameter. V θ

T is the corresponding terminal value of the value process (see [FS11, Definition 5.6]),
where the market consists of one risky asset (either real, fake or control paths in our case) and a risk-free asset
Sbond
t = ert, t ≥ 0, with risk-free rate r = 0.01. In Section 3, we showed that this problem is a multistage

optimal control problem, for which the optimal values are Lipschitz w.r.t. the adapted Wasserstein distance.
As a first comparison, we consider constant proportional trading strategies. For each constant strategy,

we calculate mean and variance of the corresponding terminal wealth. By varying proportions, we obtain
the efficient frontier of constant proportional trading strategies. We compare such efficient frontiers for real,
fake and control paths. Control paths, as before, are discretized Black-Scholes paths different from real paths
only in volatility. The efficient frontier by fake paths matches extremely well to the one by real paths, see
the left-hand side of Figure 6.
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Next we compare the efficient frontiers under optimal strategies. For Black-Scholes paths (real and
control paths), we know the analytical optimal strategies [LN00; FV22], so that we can directly calculate
the corresponding efficient frontiers. For fake paths, we restrict the optimization to optimal strategies of the
Black-Scholes model. So we compute efficient frontiers with the optimal strategies of Black-Scholes under
different volatility σ, denoted by θσ. Then we take the supremum of all efficient frontiers as the efficient
frontier of fake paths. The efficient frontier of fake paths matches again extremely well to the one by real
paths, see the right-hand side of Figure 6. This implies that the performance of mean-variance portfolio
optimization problem are close between real and fake paths.

Figure 6: Visualization of efficient mean-variance portfolio frontiers for real (red bold solid line), fake (black
dotted lines) and control (dashed lines) paths. On the left-hand side, we show efficient frontiers under
constant proportional trading strategies. On the right-hand side, we show efficient frontiers under optimal
strategies.

Log-utility maximization

Next we consider the log-utility maximization problem (Merton’s problem [Mer75]):

V(µ) = sup
θ

Eµ[log(V
θ
T )],

under the same setting as the mean-variance problem above. For both real and fake paths, we solve the
log-utility maximization problem numerically among constant proportional trading strategies. We denote
v∗ the theoretical optimal utility, µreal the empirical measure of real paths with 50000 samples, µfake the
empirical measure of fake paths with 50000 samples, G∗ the optimal strategy, Greal the optimal constant
proportional trading strategy under µreal, Gfake the optimal constant proportional trading strategy under
µfake, and V (µ,G) the expected log-utility which arises from using the trading strategyG in the market µ. We
compute V (µreal, Greal), V (µreal, Gfake), V (µfake, Greal) and V (µfake, Gfake), and compare them on the left-
hand side of Figure 7. To benchmark, we compute the numerically optimal expected log-utility of real paths
with 1000 samples (same size as training data). Then we calculate the utilities with 200 random realizations
and plot the histogram also on the left-hand side of Figure 7. First we notice that V (µreal, Greal) is close
to v∗. This justifies reliability of the numerical solver. Since V (µreal, Greal), V (µreal, Gfake), V (µfake, Greal)
and V (µfake, Gfake) are all within the support of the histogram, they are considered relatively close to v∗. In
particular, applying Gfake to µreal yields a very close estimate of the optimal utility.

On the right-hand side of Figure 7, we plot the curve of theoretical optimal log-utility vs volatility.
We can interoperate V (µfake, Gfake) as the optimal log-utility of Black-Scholes distribution with a different
volatility level, which is very close to the real volatility level σ = 0.2.
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Figure 7: On the left-hand side, we compare the expected log-utility of V (µreal, Greal), V (µreal, Gfake),
V (µfake, Greal) and V (µfake, Gfake). To benchmark, the blue histogram showcases numerical optimal utilities
values calculated with 1000 samples, using 200 different random seeds for the histogram. On the right-hand
side, the blue curve illustrates theoretical optimal log-utility vs volatility.

Optimal Stopping problem

Now we consider the optimal stopping problem for an American put option written on an underlying asset
S (given by either real, fake, or control paths). The stochastic optimization problem is given by

sup
τ∈T

E[g(τ, Sτ )], (4.1)

where T is the set of stopping times and g(t, S) = e−rt max(S −K)+, r = 0.1, S0 = 100, K = 100. Control
paths, as before, are discretized Black-Scholes paths different from real paths only in volatility. For real, fake
and control paths, we compute the optimal stopping values with the deep optimal stopping solver introduced
in [BCJ19]. We compute the optimal stopping values for real and fake paths, where each computation is
repeated with 10 different random seeds, and compare them in Figure 8. The optimal stopping values are
almost indistinguishable.
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Figure 8: Optimal stopping values under real (Black-Scholes model), fake (TC-VAE) and control distributions
(varying volatility for the Black-Scholes model).

Sliced adapted Wasserstein distance

Ideally, we would like to compute the adapted Wasserstein distance between real and fake paths. However,
the adapted Wasserstein distance is computationally heavy, and hence we instead evaluate a sliced version of
it. Hereby, we draw inspiration from the growing literature on sliced Wasserstein distances (see e.g. [Des+19;
Kol+19; Nie+22]). In general, slicing is a technique to reduce computational burden by considering low-
dimensional projections of the distributions of interest. For comparing time series distributions, we interpret
slicing in the sense that we only compute the adapted Wasserstein distance over subsets of time, and then
average over those subsets. To this end, for a set I ⊂ {1, . . . , T}, denote by µI the marginal distribution of
µ on the subset of times indexed by I, and by |I| the number of elements in I. Given a distribution γ over
such subsets I, we define

SAW1(µ, ν) :=

∫
AW1(µI , νI) γ(dI).

In practice, we use as γ the uniform distribution over subsets of a certain size, called nlen. The AW
distances are evaluated using adapted empirical measure transformations (see [AH24; Bac+22; Hou24]) and
then computed using backward induction (cf. [Bac+17; PW22]). To be precise, computation of adapted
empirical measures requires clustering of the support points of the considered distributions. While [Bac+22]
introduced the adapted empirical measure using clusters based on a predefined grid, we instead use K-
means clustering as in [BCJ24], thus effectively adjusting the grids to the particular distributional shapes at
hand. For the numerical implementation of the backward induction, we use the POT package [Fla+21] for
solving the inner optimal transport problems, i.e., for calculating each value in the dynamic programming
formulation (see [Bac+17, equation (5.1)]). We believe that evaluating SAW1 gives a good indicator of
temporal similarity between two measures while significantly reducing computational burden compared to
AW1. However, one must be clear that certain information is lost through slicing, like complex long-range
temporal dependencies.

We configure the size of time slice nlen = 5, the number of subsets nslice = 100, the number of samples
nsample = 500, and the number of random seeds nseed = 100. Under this configuration, we compute SAW1

between real vs real paths (with different random seed), real vs fake paths, and real vs control paths.
Control paths, as before, are discretized Black-Scholes paths different from real paths only in volatility, with
σ = 0.3 instead of σ = 0.2 for real paths. We compare the average distance across nseed = 100 realizations
and the standard deviation in Table 1. We find that SAW1(µreal, µ

′
real) and SAW1(µreal, µfake) are almost

indistinguishable, indicating that real and fake paths are relatively close under SAW1. Hereby, it is worth
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noting that the relatively high mean difference SAW1(µreal, µ
′
real) can be explained by the fact that our

models lie in a very high-dimensional space, and fine-grained high-dimensional similarity is difficult to obtain
with only 500 samples. The fact that SAW1(µreal, µ

′
real) is however relatively stable (low standard deviation)

and much lower than SAW1(µreal, µcontrol) indicates that there are certain low-dimensional features which
most sample paths share. In fact, these features may be learned by the generator model as well, which could
explain the similarly low values of SAW1(µreal, µfake).

Description Distance Mean difference Standard deviation

real-real (different samples) SAW1(µreal, µ
′
real) 0.367 0.032

real-fake SAW1(µreal, µfake) 0.382 0.028
real-control SAW1(µreal, µcontrol) 0.670 0.066

Table 1: Sliced adapted Wasserstein distances between different measures.

4.1.2 Heston model

Next, we consider a more complicated temporal dynamic given by the Heston model: (SH
t , V

H
t )t≥0 s.t.

dSH
t

SH
t

= µdt+
√
V H
t dWS

t , SH
0 = 1,

dV H
t = κ(θ − V H

t )dt+ ξ
√
V H
t dWV

t , V H
0 = θ,

where (WS
t ,WV

t )t≥0 are Wiener processes with correlation ρ = −0.9, µ = 0.02, κ = 1, θ = 0.2, ξ = 0.5.
We aim at learning the distribution of (SH

t )t≥0. Under the same time discretization and sample size as
in the Black-Scholes case of Section 4.1.1, we conduct the same tests (omitting the visualization of paths
and marginal distribution for the sake of space) and observe a similar performance. For this, see sliced
Wasserstein distance, Gaussian kernel MMD, and signature MMD compared in Figure 9; optimal stopping
values compared in Figure 10; sliced adapted Wasserstein distance compared in Table 2.

Figure 9: From left to right, we visualize the sliced Wasserstein distance, Gaussian MMD, and signature
MMD. The red lines illustrate distances between real paths of the Heston model and fake paths generated
from the TC-VAE model (each line is a different random seed). The blue dots show the distances between
real paths and control paths. Control paths are discretized Heston paths different from real paths only in θ.
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Figure 10: Optimal stopping values under real, fake and control distributions in case of synthetic data using
the Heston model. Control paths are discretized Heston paths different from real paths only in θ.

Description Formula Mean difference Standard deviation

real-real (different samples) SAW1(µreal, µ
′
real) 0.505 0.027

real-fake SAW1(µreal, µfake) 0.549 0.039
real-control SAW1(µreal, µcontrol) 0.700 0.052

Table 2: Sliced adapted Wasserstein distances between different measures arising from the Heston model.
Control paths are discretized Heston paths different from real paths only in θ (0.15 vs 0.2).

4.1.3 Path dependent volatility model

In a financial market, we only observe a single realization of a path, such as stock prices, rather than i.i.d.
paths. Although one can use rolling windows to sample many sub-paths and assume them to be i.i.d. samples,
this clearly leads to several risks. First of all, the sub-paths are in fact not independent and this causes severe
over-fitting. Even worse, when the observed path is short, in order to extract more sub-paths for training, the
rolling windows greatly overlap and causes even higher correlation. Although non-overlapping windows can
alleviate correlation, this requires much longer observed paths, which is sometimes not possible. Even when
this is possible, this exposes the model to distributional shift over time, which is related to another issue:
non-stationarity. The sub-paths are also not identically distributed if the observed path is not stationary.
This is common in financial data where the distribution shifts swiftly over time. Thus, the sub-paths might
only be correlated samples coming from a different distribution. In the end, we are learning an average
distribution over time, which is meaningless for forecasts about possible future evolution. To tackle this
issue, we deploy the temporal nature of financial time series by generating future paths from real historical
paths. To do so, we further develop a conditional version of TC-VAE. The only difference compared to
TC-VAE is that we concatenate the latent variable with an additional conditional variable, see Figure 11.
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Figure 11: Conditional time-causal variational autoencoder and generation

With the conditional TC-VAE, we can generate the distribution of future paths conditional on historical
paths. In financial modelling, path dependent models have shown to be able to successfully capture the price
dynamics. For example, consider the path dependent volatility model where the prices (St)t≥0 satisfy

dSt = Stσ(S≤t)dWt,

where σ is measurable and (Wt)t≥0 is a Wiener process. Given the time-homogeneous dynamic, for every
τ > 0, the law of S[t,t+τ ] conditional on σ(S≤t) is the same for all t ≥ 0. As an example, we consider
the 4-factor Markovian path dependent volatility model (PDV4) introduced in [GL23], where the volatility
function is constructed by exponential kernels to produce the Markovian model (SPDV

t )t≥0 s.t.
dSPDV

t

SPDV
t

= µdt+ σtdWt, σt = σ(R1,t, R2,t), σ(R1, R2) = β0 + β1R1 + β2

√
R2,

R1,t = (1− θ1)R1,1,t + θ1R1,2,t, R2,t = (1− θ2)R2,1,t + θ2R2,2,t,

dR1,j,t = λ1,j

(
σtdWt −R1,j,tdt

)
, dR2,j,t = λ2,j

(
σ2
t dWt −R1,j,t

)
, j = 1, 2

where µ = 0.1, β0 = 0.04, β1 = −0.13, β2 = 0.65, λ1,1 = 55, λ1,2 = 10, θ1 = 0.25, λ2,1 = 20, λ2,2 = 3, θ2 = 0.5.
PDV4 captures important stylized facts of volatility, produces very realistic price and volatility paths (see
Figure 12), and jointly fits SPX and VIX smiles remarkably well [GL23].
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Figure 12: On the left, we plot daily S&P500 (blue) and VIX (red) from 2014-08-01 to 2024-08-01. On the
right, we plot prices (blue) and volatility (red) of the 4-factor Markovian path dependent volatility model.

Since we work in discrete time, we let dt = 1/365, NT = 60 to model daily prices. We choose Nsample =
2560 to be the number of samples in market data. Let SN

t=1 be a discretized price path sampled from the
PDV4 model. We extract the latest sub-paths S(i) = Si:i+NT

, i ∈ I = {N − NT − Nsample, . . . , N − NT },
and normalize them by dividing each sub-path by its starting price. This gives the return paths X(i) =
Si:i+NT

/Si, i ∈ I, which are our real paths. We denote the weighted historical volatility by

Σ(i) =

√∑
j≤i

K2(i− j)(
Sj − Sj−1

Sj−1
)2, i ∈ I,

where K2(k) = Z−1
α,δ(k + δ)−α, α > 1, δ > 0 and Z−1

α,δ is chosen s.t.
∑∞

k=0 K2(k) = 1. Given the observed

sample (X(i),Σ(i)), i ∈ I, we apply the conditional TC-VAE to learn the distribution of future returns given
the weighted historical volatility.

First, we visualize the fake paths under different conditions, see Figure 13. The generator indeed generates
different distributions conditional on different conditions. Moreover, the generated paths show gain/loss
asymmetry and volatility clustering, which are stylized facts of financial time series [Con01].

Figure 13: Visualization of generated returns conditional on weighted historical volatility

Then we compare fake paths and true paths distributions conditional on the same history path. To
benchmark, we also sample a Black-Scholes distribution with drift and volatility estimated from the past
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100 time steps. We quantitatively evaluate the conditional distributions under sliced Wasserstein distance,
Gaussian MMD, signature MMD, and sliced adapted Wasserstein distance. For each historical path, we
generate real, fake and control paths and compute distances between real vs real paths (with different
random seed), real vs fake paths, and real vs control paths. For control paths, we use Black-Scholes paths
with drift and volatility estimated from the historical paths, which serves as a benchmark. In Figure 14,
we compare sliced Wasserstein distance, Gaussian MMD, signature MMD, and sliced adapted Wasserstein
distance.

Figure 14: From left to right, we visualize the sliced Wasserstein distance, Gaussian MMD, signature MMD,
sliced adapted Wasserstein distance. The dots are the distances between paths and the dash lines are
quadratic polynomials fitted to the distances.

Notably, the path generation is not constrained by the length of training paths, which means that we can
extend a path as long as desired. We iterate the following two steps: 1) extending the path by conditional
generation; 2) calculating conditions of the extended path. See Figure 15 for path extension of 600 = 10∗NT

time steps after 10 iterative path extensions. The generation shows long time stability without blowing up
or vanishing.

Figure 15: Extending a real path under the PDV4 model by generated conditional paths using TC-VAE.
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4.2 Market data

4.2.1 S&P500 and VIX

Encouraged by the promising conditional generation from the path-dependent model considered above, we
now apply our generator to data from S&P500 and VIX. We take daily S&P500 and VIX from 2014-08-01
to 2024-08-01, for a total of N = 2516 trading days; see Figure 12. We denote by (St)

N
t=1 the S&P500 path

and by (Vt)
N
t=1 the VIX path. As before, we consider subpaths of length NT = 60 and extract the sub-paths

S(i) = Si:i+NT
, i ∈ I = {1, . . . , N −NT } and normalize them by dividing each sub-path by its starting price.

This gives the return paths X(i) = Si:i+NT
/Si, i ∈ I, which are our real paths. As before, conditional on the

VIX, we apply the conditional TC-VAE to learn S&P500 prices in the future. With the data and condition
pair (X(i),Σ(i)), we apply the conditional TC-VAE to learn the distribution of (X(i))i∈I given (Σ(i))i∈I .

First, we visualize the fake paths under different conditions, see Figure 16. The conditional generation
shows skewness. Moreover, the volatility of generated paths is increasing with the VIX, which is in line with
the financial interpretation of the condition.

Figure 16: Visualization of generated returns conditional on VIX.

VIX can be well estimated by the weighted historical volatility, see [GL23] for a through analysis. Thus,
similar to the PDV4 case, we can extend the path as long as desired. See Figure 17 for path extension of
600 = 10 ∗NT time steps after 10 iterative path extensions.
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Figure 17: Path extension of normalized S&P500 prices using TC-VAE.

Finally, we generate a long fake path by path extension, and compare it with S&P 500 prices in terms
of stylized facts of financial time series; see [Con01]. This includes: 1) heavy tail of returns, 2) volatility
clustering, 3) zero auto-correlation of returns, 4) short-time auto-correlation of square returns, 5) long-time
auto-correlation of absolute returns, and 6) negative skewness of returns. Returns of both S&P500 prices
and fake prices display power-law or Pareto-like distribution; see Figure 18. The high-volatility returns of
both S&P500 prices and fake prices tend to cluster, which is known as volatility clustering.

Figure 18: On the left, we visualize returns histogram of S&P 500 (blue), fake prices (orange), Black Scholes
prices (green), and the Gaussian density (red). On the right we plot returns of S&P 500 (blue) and fake
prices (orange) along the time horizon.

Furthermore, we inspect the auto-correlation of returns. Returns of S&P500 prices and fake prices both
show no correlation in returns, short time correlation in square returns, and long time correlation in absolute
returns; see Figure 19.
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Figure 19: From left to right, we visualize the auto-correlation of returns, square returns, and absolute
returns for both S&P 500 prices (blue) and fake prices (orange).

Lastly, we compare the skewness and kurtosis of returns for both S&P500 from 2014-08-01 to 2024-08-01
and 1000 fake paths; see Figure 20. Overall, S&P 500 prices and fake prices are close in skewness and kurtosis
of returns.

Figure 20: On the left, we plot the histogram of skewness of returns for 1000 fake paths, their mean (blue),
and the skewness of returns for S&P 500. On the right, we plot the histogram of kurtosis of returns for 1000
fake paths, their mean (blue), and the kurtosis of returns for S&P 500.
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