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Abstract

We examine a type of modified Monte Carlo Tree Search (MCTS) for strategising in combi-
natorial games. The modifications are derived by analysing simplified strategies and simplified
versions of the underlying game and then using the results to construct an ensemble-type strat-
egy. We present some instances where relative algorithm performance can be predicted from the
results in the simplifications, making the approach useful as a heuristic for developing strategies
in highly complex games, especially when simulation-type strategies and comparative analyses
are largely intractable.

1 Introduction

Extremely complex games have many actions available at each turn and many turns before the game
ends, and this often makes a meaningful simulation and comparison of strategies extremely difficult.
One potential approach comes from the field of general game playing AI, which attempts to transfer
strategic knowledge between games with similar underlying style of play [6]. Such methods have
been successful for the game Go [1] in which AI models were trained on a fixed-size board and then
successfully applied to varying-sized boards. However, this type of knowledge transfer is not always
successful; for example, [7] observed instances of combinatorial games where deep reinforcement
learning models trained and tested in slightly different versions resulted in a significant reduction
in performance. Due to the disparity in previous results, it is interesting to examine further the
types of scenarios where successful knowledge transfer can occur. In this paper, we approach this
by examining sets of games that are closely related to each other and also gradually changing in
complexity. By examining strategies in a range of games in the set, we can identify whether strategy
performance is retained for the whole set. Of course, such relationships are dependent on the games
and the types of strategies being used, and in this work we focus on Monte Carlo Tree Search
(MCTS) along with a type of simplified strategy which we denote a micro-strategy.

When a knowledge transfer is identified as being possible, we utilise it to construct a metaheuris-
tic. To do this, we describe a general method for augmenting a strategy in a complex combinatorial
game by using strategies from simplified/related versions of the game. In our case, the result is a
modified MCTS which is an improvement over a standard MCTS whenever the corresponding knowl-
edge transfer was successful. The idea of utilising simplified strategies to augment a more complex
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MCTS comes from the field of combinatorial optimisation where, in some cases, simple properties
that are not specifically related to the objective provide benefits to the optimisation process, for
example, in the Hamiltonian Cycle Problem [3].

In Section 3 we identify several types of combinatorial Maker-Breaker games for which the above
approach is successful and the resulting algorithm provides an improvement over standard MCTS.
The Maker-Breaker type games are a useful test bed for our investigations as there are many pos-
sibilities for altering the game in a minor way beyond, for example, changing the board size. In
general, the types of games that are interesting for this approach are games whose parameters can
be incremented such that each increment produces a new game which is closely related to the last.
Usually it is not possible to prove “closeness” however intuitive reasoning is enough to warrant this
type of experimental investigation.

In the remainder of this Section we introduce Maker Breaker games, Monte Carlo Tree Search
and a type of strategy which is utilised in this approach, denoted Micro-strategies. Then, in Section
3 we apply the approach to three types of game simplification, and some of the tested instances
produce positive results, which we discuss further.

1.1 Maker Breaker Games

The combinatorial games utilised in the present work are versions of Maker-Breaker (MB) games.
The original definition of an MB game [2] is: Given a graph G (the board) and a collection W of
subsets of the vertices (the winning sets), two players named Maker and Breaker take turns marking
a vertex of G. If Maker manages to mark all vertices from a set in W then Maker wins, otherwise,
Breaker wins. The winning sets of an MB game are commonly given implicitly as any set of vertices
from the game board whose induced subgraph is isomorphic to a given fixed graph, for example, a
cycle of a given length. We shall also use this convention and the winning sets will be produced
from all paths of a given length, or else, all vertices which form a dominating set 1.

MB games are versatile in that many alternative versions can be created by adding or modifying
the rules. In particular, we are interested in games that can be altered in minor ways, in the hope
that doing so retains many characteristics of the original game. In these cases, the performance
of strategies may be somewhat retained across the minor changes. Some examples of modifications
which may retain characteristics include altering the board, the winning sets and the turn progression
of the game. In order to represent game changes and simplifications, we will use sets of MB games.
Ideally, a set contains small/simple games which then vary in a minor way, creating new members
of the set, eventually scaling up to very large/complex games. Some sets with these properties are
described in detail later in Section 2, but there are many possible ways to produce such sets. Note
that in an application, there is usually a single complex game of interest, and there may be several
different ways of simplifying this game, each producing a different set of games for investigation.

1.2 Monte Carlo Tree Search in Games

Monte Carlo Tree Search (MCTS) is a popular algorithm to search the state and action space of
a decision process. In games, it can be effective as a standalone strategy, but also many of the
prominent game-playing algorithms use an auxiliary MCTS to benefit some larger AI process.

The game-tree of a game is a rooted, directed tree, whose root vertex corresponds to the initial
game state. A directed edge is created for each possible move and a new vertex is created representing
the corresponding updated game state when that move is taken. If different move sequences lead

1A dominating set of a graph is a subset S of vertices such that every vertex is either in S or adjacent to a member

of S.
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to the same game-state, then there are multiple vertices in the game-tree which correspond to the
same game-state. MCTS is a heuristic search algorithm which can be applied to a game-tree and
provides a simulation based approach to strategising in the game. The algorithm combines the
exploitation of previously found good moves and the exploration of new, not yet considered moves.
MCTS proceeds by iteratively constructing a subtree of the game tree and records information about
the vertices/game states in the current subtree. Initially, a root vertex is added which corresponds
to the current game state. The search then progresses in four phases:

• Selection: Traverse from the root to a leaf in the current subtree. The path taken is determined
by an evaluation function whose purpose is to weight the (so far) best sequence of moves.

• Expansion: Add nodes below the leaf that correspond to the next possible set of moves. Choose
the next move, represented by the vertex v.

• Rollout: Play the game out from this state in a simple fashion (usually randomly) and record
information about the each game result.

• Back propagate: Update the information attached to the nodes on the path from the root to
vertex v.

An evaluation function is needed to value the moves and usually, the true value of a move is
unknown and an approximation is used instead. A common approximation value of a move during
the selection phase is the upper confidence bound applied to trees (UCT). Each iteration of MCTS
completes a selection path from the root to a leaf corresponding to a possible game end-state and it
is a winning path if the player of interest has won. The UCT of a vertex v in the current subtree is
then

UCT(v) ≡
w

n
+ c

√

logN

n
(1)

Where w is the number of winning paths found containing v, n is the number of selection paths
containing v and N is the total number of selection paths. The left fraction is large for vertices which
have commonly led to wins, while the right fraction is large for vertices that have not been explored
often. Thus, the c parameter provides control over the exploitation versus exploration aspect of
MCTS. During the selection and expansion phases, there can be many moves that are assigned an
equivalent best value, and traditional MCTS picks one of these at random. A modified MCTS uses
some auxiliary algorithm to weight the choice, which may come from alternative evaluation functions
or some other heuristic process. In particular, our implementation uses various other strategies,
which are discussed in the next section, to weight both the selection phase and the gameplay during
the rollout phase.

1.3 Micro-Strategies for Weighted MCTS

Modified MCTS uses an auxiliary algorithm during the rollout and/or selection phases, however, to
still benefit from the Monte Carlo aspect, auxiliary algorithms must be relatively computationally
efficient. In an extreme case, it would be difficult to evaluate an NP-hard problem at each visited
node during the selection/rollout phases of every iteration. The proposed auxiliary algorithms
provide a weight for each possible move in a given game state, that is, they are strategy functions in
their own right which we call micro-strategies. Micro-strategies provide a fast, albeit usually naive
way to play, for example, counting the number of game pieces remaining after a move, or calculating
the immediate increase in game score. In this context, a uniform random strategy is also a micro-
strategy which weights each available move equally. Whenever MCTS makes a move randomly, it
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calls a uniform random micro-strategy, which may be replaced with any different micro-strategy,
some of which may provide improvements to the overall performance of the MCTS.

In an MB game a partially played game is represented as the underlying graph (game-board) with
its vertices coloured depending on which player has marked them, including a colour for unmarked.
Many micro-strategies can be created by analysing properties of the graph or coloured graph. In
order to utilise micro-strategies for our approach, they must be applicable to any of the games from
the sets of MB games defined in Section 1.1. To ensure this, we focus on micro-strategies which are
well defined for any MB game, as opposed to specific strategies only usable for one particular game.
Some examples of micro-strategies used in the experiments of Section 3 include:

• Choosing vertices with the large/small degree (either coloured or uncoloured degree)

• Choosing vertices with graph distance which is near/far-away from the previous moves

• Choosing vertices belonging to highly/lowly connected components in the graph

• Choosing vertices belonging to many/few winning sets.

As mentioned above, to embed a micro-strategy within MCTS in the proposed way, the micro-
strategy should be computationally efficient. However, in general, many popular graph properties are
expensive to compute and instead, in some cases, they may be efficiently approximated or partially
computed. For example, the number of winning sets may be exponential with respect to the number
of vertices in the graph, however, a suitable micro-strategy may be to efficiently analyse a small
randomly selected subset of winning sets.

2 Types of Game Simplification

Even in seemingly medium-sized graph games, it can be difficult to use simulation to compare the
performance of MCTS and other similar strategies; however, the approach we propose is able to
produce meaningful comparisons in some of these difficult cases. Using the framework of Section 1,
we describe the approach which is essentially based upon analysing simplified versions of the games.
Recall from Section 1.1 that we are interested in sets of MB games which represent simplifications
that change the characteristics of the game in a minor way. For some games and micro-strategies,
relatively good performance in the simplified versions may imply good performance in the complex
game. If this is the case, then the simplified versions can be used to indirectly search for good
strategies to use in the complex game, because comparative simulations are more efficient by design.
To investigate this approach, we consider three types of simplifications which are detailed below
along with the instances of MB games used in the upcoming experiments. The viewpoint used
for the experiments is that Maker is attempting to use simulation in order to improve upon their
traditional MCTS strategy. The instances have been chosen so that simulation and comparisons are
computationally tractable but become difficult and time-consuming for the more complex instances.

The first type of simplification comes from varying the game board. In this, the winning sets are
implicitly given by subraphs which are isomorphic to a given fixed graph, and therefore changing
the board (potentially) also changes the winning sets. Different winning sets are essential for this
framework, otherwise, the game change becomes uninteresting. The simplifications arise from the
small graphs which should contain fewer winning sets and facilitate more efficient simulation. We
will examine the following instances, where the simulations involve Maker using a modified MCTS
and versing breaker using traditional MCTS
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• Board is a square k × k grid graph and the winning sets are the vertices of any path of length
7 (7 vertices). The parameter k is varied from 3 to 9.

• Board is a rectangular 5 × k grid graph and the winning sets are all dominating sets of the
graph. The parameter k is varied from 3 to 11.

• Board is an Erdös-Renyi random graph2 G(12, k) and the winning sets are all dominating sets
of the graph. The parameter k is varied in small increments from 0.2 to 0.5.

The second type of simplification comes from varying the type of winning sets in an MB game,
which has an overall effect that is quite similar to the first type of simplification. Again, the winning
sets are implicitly given by subraphs that are isomorphic to a given fixed graph, for example, all paths
of length k. The winning sets are then varied by altering the parameter k and simplifications arise
from the “small” values of k in which it should be easy for a player to win and it is also computationally
easy to identify the win. We will examine the following instances, where the simulations involve
Maker using a modified MCTS and versing breaker using traditional MCTS

• Board is a square 6× 6 grid graph and the winning sets are the vertices of any path of length
k (k vertices). The parameter k is varied from 3 to 8.

• Board is an Erdös-Renyi random graph G(15, 0.2) and the winning sets are the vertices of any
path of length k. The parameter k is varied from 3 to 6.

The third type of simplification comes from varying the complexity of the strategies being used.
Because strategies can vary greatly in characteristics, it is more difficult to describe how to ap-
propriately change them in a “minor” way. However, with our framework, there are some obvious
approaches. We will simulate the following instances

• Maker uses modified MCTS with k rollouts versus Breaker using traditional MCTS, also with
k rollouts. The parameter k is varied from 3 to 8.

• The simplified strategies will be modelled as Maker solely using a micro-strategy, without
any MCTS, versus Breaker using a uniform random strategy. The complex strategies will be
modelled as Maker using modified MCTS versus Breaker using traditional MCTS.

For this simplifiction type, the board and winning sets are considered fixed. For the first instance
above, the board is a Flower Snark graph on 28 vertices [5] and the winning sets are any path of
length 7 (7 vertices). The Flower Snarks were chosen in order to examine a relatively sparse graph
which also contains a large amount of symmetry in its structure. In the second instance above, the
board is a rectangular 5× 7 grid graph and the winning sets are the vertices of any dominating set.

3 Experiments and Discussion

The experiments are designed to provide initial results for the broad approach outlined in Sections
1 and 2 of using game simplifications to aid in strategy development. For the instances described in
Section 2, different strategies will be simulated and their performance compared between the different
values of the game parameters. We make 29 different strategies by modifying the traditional MCTS
using 29 different micro-strategies of types similar to those listed in Section 1.3. In the upcoming

2An Erdös-Renyi random graph G(n, p) has n vertices and each pair of vertices are connected by an edge indepen-

dently with probability p.
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results, there are many algorithmic choices and parameter settings involved and we omit discussing
these for this initial conceptual exploration. Where possible, each different game was simulated
10,000 times and the results were recorded. For more difficult instances, a timeout was needed on
both the individual games and the overall runtime, reducing the total number of simulations for
that game. The upper bounds of the parameters that define the game instances were chosen by
identifying when the number of timeouts became significant. Although some of these games have
known (sometimes obvious) winning strategies, we are interested in their characteristics as the games
are varied, and so they are still interesting for an algorithm that does not inherently know a winning
strategy.

For the first type of simplification described in Section 2, the game board is changed, but the
type of winning sets is fixed. Maker simulates themselves using modified MCTS and versus Breaker,
who uses traditional MCTS. The resulting win percentages for Maker for the different modified
MCTS strategies are displayed in Figure 1 for the three different sets of MB games. For games on
grid graphs, simplified versions retain most of their relative strategy performance as the grid size
changes. In these cases, finding a micro-strategy that performs well in the smaller instances has a
good chance of providing the desired improvement to Makers traditional MCTS for any larger sized
instance of these games. These instances are examples of games and simplifications in which our
approach is successful and an improved strategy can be identified. In the games with 7-paths as
the winning sets, there is less stability in the relative performance of the strategies. Indeed, some
strategies are significantly worse than traditional MCTS for small instances and then significantly
better for larger instances. In this case, it is difficult to concretely identify micro-strategies that
provide improvements for the larger instances. However, it is still the case that once a range of
smaller instances have been compared, some micro-strategies can be identified as potentials for
improvement, which can then be individually analysed. In the random graphs, the win percentages
vary greatly over the range of the parameter k, making a similar visualisation difficult. Instead, in
the bottom right figure, for each parameter value, the win percentage relative to the best strategy
is visualised. This means that for each parameter value, the ranking of each strategy is retained
between the bottom left and right figures. Again, a few strategies can be identified which consistently
perform well and can form the basis of further investigation. However, in general, this is an example
where the approach would not be effective without further analysis. The large amount of noise is
reasonable in a random graph setting, where there is an enormous number of different games that
can possibly be generated.
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Figure 1: Simulations for three sets of MB games, with Maker win percentage across different parameter values. Different
lines correspond to different modified MCTS strategies for Maker and Breaker always uses traditional MCTS. Thick lines are
traditional MCTS for Maker. Because the bottom left figure is hard to visualise, the bottom right is an alternative way to
make the desired observations.
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For the second type of simplification described in Section 2, the type of winning sets is changed,
but the game board is fixed. Again, Maker uses modified MCTS and versus Breaker, who uses tra-
ditional MCTS. The resulting win percentages for Maker are shown in Figure 2 for the two different
sets of MB games. In these simplifications, there is again less stability in the relative performance of
the strategies. However, there is still an evident general trend that is visible after simulating across a
range of simplifications. In the grid graphs, unfortunately this general trend mostly indicates that a
lot of the tested strategies are worse than traditional MCTS for the larger instances. However, there
are a few strategies that are identified to be consistently better in the moderate-sized instances.
For the largest tested instances, the win rates are small and the performance differences are due to
simulation noise. One conclusion is that these good performing strategies may be improvements, not
only on these games, but also for games on much larger square-grids with correspondingly sized (i.e.
not too large) paths as the winning sets. In the random graphs, similarly to the first simplification
type, the win percentages vary greatly making visualisation difficult. Instead, the bottom right fig-
ure visualises the win percentage relative to the best strategy for each parameter value. Again, the
random graphs provide a significant amount of noise, demonstrating an example where the approach
has failed. However, consistently good strategies can still be identified for further analysis.
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Figure 2: Simulations for two sets of MB games, with Maker win percentage across different parameter values. Different
lines correspond to different modified MCTS strategies for Maker and Breaker always uses traditional MCTS. Thick lines are
traditional MCTS for Maker. Because the bottom left figure is hard to visualise, the bottom right is an alternative way to
make the desired observations.
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For the third type of simplification described in Section 2, the game board and type of winning
sets are fixed, and the two different strategy simplifications are considered. The first strategy
simplification is for Maker to use modified MCTS and breaker to use traditional MCTS, but the
number of rollouts within the MCTS process is varied, providing a simplification when there are a
small amount of rollouts and complex versions from many rollouts. The resulting win percentages
for Maker are shown in the top of Figure 3. In these games, the relative performance of the different
strategies is mostly retained as the number of rollouts is changed. The best performing strategies can
be easily identified after simulating only a few of the smaller (efficient) parameter settings. These
instances are another example of games and simplifications in which our approach is successful. The
second strategy simplification comes from both players using only a micro-strategy, with no MCTS.
Maker considers all of the 29 micro-strategies and versus Breaker who uses only a uniform random
micro-strategy. The corresponding complex version of the game is for Maker to use a modified MCTS
and versus Breaker who uses traditional MCTS. The resulting win percentages for Maker are shown
in the bottom of Figure 3. Although there are only two “parameters” in this example, for simplicity,
we keep the display style consistent with the others. This instance displays very little correlation
between relative strategy performance of the micro-strategies and the corresponding modified MCTS.
Unfortunately, this also seemed to be the case for several other tested game boards and winning
sets (and various other parameter settings). We predict that modelling Breaker using a uniform
random strategy is too large of a simplification and obscures the desired information. Instead, an
intermediate complexity strategic simplification should be more effective, such as varying the rollouts
in the previous example.
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4 Conclusion

We have experimentally examined some methods for simplifying games in which relative strategy
performance can be retained between simplified and complex versions of the games. Some instances
clearly displayed this property, such as the dominating sets in the rectangular grid graphs and also
the varying number of rollouts in MCTS. Other instances exhibited much more noise in strategy
performance across different parameter values, such as in the random graphs. However, even in
some of the noisy cases, consistently good strategies could still be identified, which at least facilitates
further examination. When good strategies can be identified from the simplifications, it immediately
leads to our method for finding improvements to a strategy in the original, complex version of the
game. For general games, the approach can be summarised as follows

• Identify ways to simplify the game in which some characteristics of the original game are
retained.

• Analyse micro-strategies and modified MCTS in the simplified versions.

• Develop an ensemble strategy for the original game, from the analysis in the simplified games.

For this approach, it makes sense to have a large set of micro-strategies on-hand that can be
applied to a wide variety of games in order to do a sweeping exploratory analysis. Then, high-
performing micro-strategies can be identified and analysed in the current game setting, possibly
leading to further improvements. The observed performance relationships are dependent on both
the strategies and the games involved, and in other experiments we have observed games where there
is essentially no such relationship [4]. Simply speaking, this occurred when incrementing a game
parameter tended to drastically alter the game.

The modified MCTS could be replaced by other advanced strategies, specifically, any which can
integrate with a micro-strategy. It is of interest to better understand the instances in which such
an approach is successful. In the simplest case, there are examples of games where copies of small
games can be pasted together, and winning strategies can be naturally extended to the combined
game. Our results show that other ways of combining games can also yield strong strategies, at least
heuristically.

References

[1] Ben-Assayang, S., El-Yaniv, R. Train On Small, Play the Large: Scaling Up Board Games With
AlphaZero and GNN, arXiv preprint arXiv:2107.08387, 2021.

[2] Erdös, P., Selfridge, J.L. On a combinatorial game (1973). J. Comb. Theory Ser. A, 14(3):298–
302.

[3] Ejov, V., Filar, J.A., Haythorpe, M., Roddick, J.F., Rossomakhine, S. A note on using the
resistance-distance matrix to solve Hamiltonian cycle problem (2018). Ann. Oper. Res., 261:393–
399.

[4] Haythorpe, H., Newcombe, A., Unpublished report (2022). Defence Innovation Partnerships,
Australia.

[5] Isaacs, R. Infinite Families of Nontrivial Trivalent Graphs Which Are Not Tait Colorable (1975).
Amer. Math. Monthly, 82:221–239.

10

http://arxiv.org/abs/2107.08387


[6] Piette, E., Soemers, D.J.N.J., Stephenson, M., Sironi, C., Winands M.H.M., Browne, C. Ludii –
The Ludemic General Game System (2020). In: European Conference on Artificial Intelligence
(ECAI 2020), Santiago de Compestela, pp. 411–428.

[7] Raghu, M., Irpan, A., Andreas, J., Kleinberg, B., Le, Q., Kleinberg, J. Can deep reinforcement
learning solve Erdos-Selfridge-Spencer games? (2018). In: International Conference on Machine
Learning, pp. 4238–4246.

11


	Introduction
	Maker Breaker Games
	Monte Carlo Tree Search in Games
	Micro-Strategies for Weighted MCTS

	Types of Game Simplification
	Experiments and Discussion
	Conclusion

