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ABSTRACT

The mean-variance portfolio model, based on the risk-return trade-off for optimal asset allocation,
remains foundational in portfolio optimization. However, its reliance on restrictive assumptions
about asset return distributions limits its applicability to real-world data. Parametric copula structures
provide a novel way to overcome these limitations by accounting for asymmetry, heavy tails, and
time-varying dependencies. Existing methods have been shown to rely on fixed or static dependence
structures, thus overlooking the dynamic nature of the financial market. In this study, a semiparametric
model is proposed that combines non-parametrically estimated copulas with parametrically estimated
marginals to allow all parameters to dynamically evolve over time. A novel framework was developed
that integrates time-varying dependence modeling with flexible empirical beta copula structures.
Marginal distributions were modeled using the Skewed Generalized T family. This effectively
captures asymmetry and heavy tails and makes the model suitable for predictive inferences in real-
world scenarios. Furthermore, the model was applied to rolling windows of financial returns from the
USA, India and Hong Kong economies to understand the influence of dynamic market conditions.
The approach addresses the limitations of models that rely on parametric assumptions. By accounting
for asymmetry, heavy tails, and cross-correlated asset prices, the proposed method offers a robust
solution for optimizing diverse portfolios in an interconnected financial market. Through adaptive
modeling, it allows for better management of risk and return across varying economic conditions,
leading to more efficient asset allocation and improved portfolio performance.

Keywords Empirical beta copula, Markowitz portfolio optimization, Skewed generalized t- distribution

1 Introduction

Portfolio optimization aims to construct investment strategies by selecting an optimal mix of assets to achieve objectives
such as maximizing returns, minimizing risk, and ensuring stability. Markowitz’s mean-variance portfolio model
(Markowitz (1952)) remains foundational, enabling optimal asset allocation based on the risk-return trade-off. However,
its reliance on restrictive assumptions about asset return distributions limits its applicability to real-world data, which
often exhibit asymmetry, heavy tails, and time varying dependencies.

To address these limitations, advanced strategies have been developed to be used alongside parameteric copula structures.
These include maximum Sharpe Ratio (MSR), Global Minimum Variance (GMV), Conditional Value-at-Risk (CVaR)
and hierarchical risk parity based strategies. For example, Huang et al. (2015) constructed a time-varying copula with
varying window lengths to examine the impact of parametric copula families (e.g., Gaussian, Gumbel, Clayton) on
portfolio performance during economic cycles, utilizing Markowitz’s variance minimization method. Sahamkhadam
and Stephan (2023) extended portfolio optimization through out-of-sample predictive models, employing AR-GARCH-
type processes for marginal asset returns and Vine copulas for joint distributions, focusing on GMV, CVaR, and
MSR strategies. Valeyre (2023) proposed an optimal trend-following portfolio integrating Markowitz, risk parity,
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agnostic risk parity, and trend-following strategies. Similarly, Avella (2024) evaluated the performance of Markowitz
optimization, highlighting the superiority of global minimum variance and mean-variance portfolios over randomly
weighted approaches.

Despite these advances, majority of the methods rely on fixed or static dependence structures, overlooking the dynamic
nature of financial markets. This work introduces a novel framework that combines time-varying dependence modeling
with flexible copula structures using the empirical beta copula, as established by Segers et al. (2017). Marginal
distributions are modeled using the Skewed Generalized T (SGT) family, which effectively captures asymmetry and
heavy tails (Theodossiou (1998), Theodossiou and Savva (2016)). This semiparametric and dynamic methodology
evolves parameters over time, providing an adaptive solution to portfolio optimization that addresses the complexities
inherent in real-world financial data.

2 Methodology

Portfolio theory provides a quantitative framework for building models of volatile assets. It involves three key steps:
identifying the joint distribution and dependence structure of returns, selecting a mathematical model to represent the
risk-return trade-off, and solving the model to achieve optimal portfolio outcomes. Consider a portfolio consisting of
m asset prices, where the return of each asset is observed over n time points. For each asset j, the return vector is
denoted as Rj = (R1j , R2j , . . . , Rnj)

T , representing the returns across n time periods. The mean return of the jth

asset is given by µRj
. The steps to construct the portfolio are outlined below:

1. Definition of Returns: The returns are defined as:

Rtj = log

(
ptj

p(t−1)j

)
,

where ptj denotes the adjusted closing price of the jth asset on the tth day, with t = 1, 2, . . . , n and j =
1, 2, . . . ,m.

2. Marginal Distribution Estimation and Pseudo-Uniform Transformation: Estimate the marginal distribution
of the returns Rtj and transform each marginal to pseudo-uniform variates:

Utj = F̂j(Rtj), t = 1, 2, . . . n; j = 1, 2, . . . ,m,

where F̂j is the estimated marginal cumulative distribution function using SGT model. More details are
provided in Section 2.1.This step generates an n×m matrix of pseudo-uniform marginals.

3. Copula Estimation: Estimate the empirical beta copula denoted by Ĉβ
n(u1, u2, . . . , um) using the pseudo-

uniform variates {(Ut1, . . . , Utm) : t = 1, 2, . . . , n}. Further details are provided in Section 2.2.

4. Generation of Random Variates and Reverse Transformation: Generate random variates from the estimated
genuine copula and transform them back to the marginal returns using the quantile function or by reversing the
method in Step 2:

R̃ij = F̂−1
j (Ũij), i = 1, 2, . . . , N ; j = 1, 2, . . . ,m, where (Ũi1, Ũi2, . . . , Ũim)

iid∼ Ĉ(u1, u2, . . . , um)

where N is the Monte Carlo sample size chosen to achieve a desired precision. This step gives a N ×m matrix
of R̃’s which can be used to estimate covariance matrix ΣR̃ based on the multivariate sample {(R̃i1, . . . , R̃im) :
i = 1, 2, . . . , N}

5. Portfolio Optimization: Optimize the portfolio with Markowitz’s model:

min
w

wTΣR̃w, subject to:

•
∑m

j=1 wj = 1 (Full investment, weights sum to 1)
• wj ≥ 0, j = 1, 2, . . .m (Long-only, non-negativity constraint)
•
∑m

j=1 wjµRj
≥ 1

m

∑m
j=1 µRj

(equal-weight outperformance (EWO), optimal weighted return is greater
or equal the equal-weighted return).

In this step, alternative optimization strategies such as MSR, CVaR, or VaR can also be employed. The
portfolio weights ŵj , are estimated by solving quadratic programming optimization problem described above.
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6. Portfolio Net Worth Value and Sharpe Ratio Computation: The portfolio’s net worth and Sharpe ratio are
computed using the next day’s expected returns, covariance matrix, and the current optimal portfolio weights.
These weights, ŵ, are obtained by repeating Steps 1 to 5 on the current rolling return matrix, R(t), constructed
based on a specified rebalancing frequency.

Net Worth = ŵ′E(R(t+f)),

Sharpe Ratio =
ŵ′E(R(t+f))√
ŵ′Cov(R(t+f))ŵ

,

where
R(t+f) = [Rt+f,1 Rt+f,2 · · · Rt+f,m]

′

denotes the vector of asset returns for m assets on the (t+ f)th day, corresponding to the next rebalancing
point. Assuming a rolling window of length L and a rebalancing frequency denoted by f , the rolling return
matrix R(t) includes daily returns from the tth day to the (t+L− 1)th day. The return vector R(t+f), used for
evaluating portfolio performance at the next rebalancing step, spans the interval from the (t+ f)th day to the
(t + L + f − 1)th day. We consider f = 1 (daily) and f = 5 (weekly) rebalancing, though the framework
generalizes to any frequency (e.g., fortnightly f = 10, monthly f = 21) as required by the application.

7. Comparison of Portfolio Net Worth and Sharpe Ratio: Compare the portfolio’s next day net worth, Sharpe
ratio with results obtained using equal-weighted portfolios or alternative optimization strategies.

8. Performance Plots: Generate plots for: (a) Empirical rolling average returns in a portfolio, (b) Empirical
rolling standard deviations in a portfolio (c) Rolling optimal weights using a specific optimization criterion,
and (d) Compare next day portfolio performance with other methods.

Next, we describe the details of each of the key steps above in our models.

2.1 Marginal Density Modeling using Skewed Generalized t Distribution

The Skewed Generalized T (SGT) distribution introduced by Theodossiou (1998) is a five-parameter distribution and a
flexible methodology to model financial data with asymmetric distributions and heavy tails. Due to its ability to account
for skewness and excess kurtosis, the SGT is particularly effective at capturing the true distribution of asset returns,
exchange rates, and commodity prices. Theodossiou (1998) provides empirical evidence that this model represents
financial risks with a better fit than symmetrical models. In addition, Theodossiou and Savva (2016) demonstrate that
skewness plays a key role in explaining inconsistencies in the risk-return relationship, demonstrating that models that
assume symmetry underestimate risk exposure.

Many well-known heavy-tailed and skewed distributions are special cases of the SGT distribution, including the Skewed
Generalized Error, Generalized T, Skewed T, Skewed Laplace, Generalized Error, Skewed Normal, Student’s T, Skewed
Cauchy, Laplace, Uniform, Normal, and Cauchy distributions. The probability density function (PDF) of the SGT
distribution is defined as follows.

A random variable X is said to follow the SGT distribution, denoted X ∼ SGT (µ, σ, λ, p, q), if its PDF is given by:

fSGT (x;µ, σ, λ, p, q) =
p

2νσq1/pB
(

1
p , q

) (
|x− µ+m|p

q(νσ)p(λ sign(x− µ+m) + 1)p
+ 1

)− 1
p−q

,

where x ∈ R, and the parameters satisfy µ ∈ R, σ > 0, −1 < λ < 1, and p, q > 0. The parameter µ defines the
central location of the distribution, while σ determines its scale. The skewness of the distribution is controlled by λ,
whereas p and q jointly regulate its kurtosis.

When λ = 0, the distribution is symmetric. For −1 < λ < 0, it is negatively skewed, while 0 < λ < 1 results in
positive skewness. Smaller values of p and q produce a leptokurtic distribution with heavy tails, whereas larger values
yield a platykurtic distribution with lighter tails. The h-th moment of the SGT distribution exists only if pq > h,
indicating that the finiteness of higher-order moments depends on the choice of these parameters.

The terms m and v are defined as:

m =
2νσλq1/pB

(
2
p , q −

1
p

)
B
(

1
p , q

) ,
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v = q−
1
p

(3λ2 + 1
) B (

3
p , q −

2
p

)
B
(

1
p , q

) − 4λ2

B
(

2
p , q −

1
p

)
B
(

1
p , q

)
2


− 1

2

,

where the beta function is defined as B(a, b) = Γ(a)Γ(b)
Γ(a+b) , with Γ(·) denoting the gamma function. This study utilizes

the SGT distribution to model financial return data with asymmetry and fat tails. Its flexibility in capturing skewness
and excess kurtosis makes it ideal for such data. By applying a rolling window approach, we fit the SGT distribution
dynamically, allowing for time-varying analysis and improved modeling of financial market dynamics.

2.2 Nonparametric Copula Model Using Smoothed Beta Copula

Copula models are increasingly used in financial time series analysis to capture the evolving dependence structure in
asset returns and stock price movements. Their ability to model complex dependencies makes them a fundamental tool
for analyzing multivariate data, as they link univariate distribution functions into a multivariate framework. By Sklar’s
theorem (Sklar (1959)), any joint distribution can be uniquely expressed in terms of its marginal distributions and a
copula, which encapsulates the dependence structure among multiple random variables. This decomposition enables
flexible estimation, allowing marginals and the copula to be modeled separately using distinct techniques (Jaworski
et al. (2010), Patton (2012), Joe (2014)). For a portfolio return vector of d assets (X1, . . . , Xd) with a joint cumulative
distribution function (CDF) F and continuous marginal CDFs Fj , j = 1, . . . , d, Sklar’s theorem asserts that:

F (x1, . . . , xm) = C(F1(x1), . . . , Fd(xd)),

where C(·) is the copula function. A copula is the joint CDF of a transformed random vector (U1 = F1(X1), . . . , Ud =
Fd(Xd)), where the marginal distributions are uniform on [0, 1]. While Sklar’s theorem applies to discrete variables,
this study focuses on continuous multivariate random vectors (e.g., stock returns), assuming all marginal CDFs Fj are
absolutely continuous.

Copulas can be estimated through parametric or nonparametric methods. Parametric models, such as Gaussian, t, or
Archimedean copulas (Nelsen (2007), McNeil and Nešlehová (2009)), are computationally efficient and interpretable but
may fail to capture complex dependencies like asymmetry or tail dependence, especially under model misspecification.
Vine copulas address some of these challenges by constructing dependence structures using bivariate copulas at
each node of a vine tree. However, their estimation often involves high-dimensional integrals, posing computational
challenges. Nonparametric approaches, including empirical, Bernstein, and beta copulas, provide greater flexibility in
capturing arbitrary dependencies (Sancetta and Satchell (2004), Genest et al. (2017), Segers et al. (2017)). However,
many nonparametric estimators are valid copulas only asymptotically, limiting their applicability to finite samples.
Furthermore, dependence measures like Spearman’s rho and Kendall’s tau, based on these estimators, can fall outside
their natural range, making them impractical in some scenarios. To overcome these limitations, Segers et al. (2017)
introduced the empirical beta copula (EBC), a valid, smooth copula constructed as a special case of the empirical
Bernstein copula with polynomial degrees equal to the sample size. It improves bias and mean squared error over
classical estimators, but may have higher variance than Bernstein copulas with lower degrees. Lu and Ghosh (2023)
extended this idea via the empirical checkerboard Bernstein copula (ECBC), allowing for varying polynomial degrees.
In this work, we adopt the EBC due to its greater computational efficiency compared to ECBC. The EBC is defined as:

Cβ
n(u) =

1

n

n∑
i=1

d∏
j=1

F
n,R

(n)
i,j

(uj), u = (u1, . . . , ud) ∈ [0, 1]d,

where R
(n)
i,j denotes the rank of Xij among (X1j , . . . , Xnj). For u ∈ [0, 1] and r ∈ {1, . . . , n},

Fn,r(u) = P(Ur:n ≤ u) =

n∑
s=r

(
n

s

)
us(1− u)n−s

is the cumulative distribution function of beta distribution B(r, n+ 1− r). Here, U1:n < · · · < Un:n denote the order
statistics based on n independent random variables U1, . . . , Un uniformly distributed on [0, 1].

We employ the EBC to estimate time-varying copulas over rolling windows of financial returns. This approach is
particularly useful for capturing dynamic dependence structures, as dependencies between assets often evolve during
periods of market turbulence, such as financial crises. We implement the EBC using the empCopula function from
the copula package in R, with smoothing set to beta (Hofert et al. (2024)). This method is further integrated into a
semiparametric framework, where the marginals are modeled using the Skewed Generalized T distribution, enabling us
to capture asymmetry, heavy tails, and time-varying dependencies in financial markets.
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2.3 Portfolio Optimization using Quadratic Programming

Optimizing portfolios and diversifying investments have been crucial in financial decision making. Markowitz’s mean
variance optimization model (MVO) (Markowitz (1952)) introduced a quantitative framework to balance risk and
return, formulating portfolio selection as an optimization problem. It emphasizes diversification, where risk depends
on asset correlations rather than individual asset risk. Using the model, investors select portfolios with the lowest
variance and reject inefficient portfolios with higher risk. This approach revolutionized classical financial analysis by
shifting the focus from single-asset valuation to portfolio-level risk management. The MVO framework is typically
formulated as a quadratic programming problem, where investors maximize expected returns for a given risk level or
minimize portfolio variance for a required return. For a detailed exposition and practical considerations in portfolio
optimization, refer to Bacon (2008), Kolm et al. (2014), and Palomar (2025). Let d be the number of assets in an
investment universe with uncertain future returns denoted by r = (r1, r2, . . . , rd)

T . A portfolio is represented by the
weight vector ω = (ω1, ω2, . . . , ωd)

T , where ωi is the proportion of total funds allocated to asset i. The portfolio return
is given by:

rp(ω) = ωT r.

The expected portfolio returns and standard deviation (risk) of the portfolio return are represented as:

µ(ω) = µTω, σ(ω) =
√
ωTΣω.

where:

• µ = (µ1, µ2, . . . , µd)
T , µi = E(ri) is the expected return of asset i.

• Σ = diag(σ)P diag(σ) is the covariance matrix, which is positive semi-definite, ensuring ωTΣω ≥ 0.
• σ = (σ1, σ2, . . . , σd)

T is the vector of standard deviations.
• P = [ρij ] is the correlation matrix, where ρij is the correlation between asset i and j.

Let Ω ⊂ Rd denote the set of permissible portfolios, where ω ∈ Ω satisfies the portfolio constraints. Using this
framework, the MVO problem is formulated as:

max
ω∈Ω

µTω − λωTΣω, subject to: 1Tω = 1, ω ≥ 0,

where λ is the investor-specific risk-aversion parameter governing the trade-off between expected portfolio return and
portfolio risk. When λ = 0, the optimization problem focuses solely on maximizing expected return, resulting in the
global maximum return portfolio. Conversely, as λ → ∞, the problem minimizes risk entirely, producing the GMV
portfolio. Alternative formulations of portfolio optimization include the MSR portfolio, as well as approaches based on
alternative risk measures such as downside risk, semivariance, VaR, CVaR, and drawdown (Gunjan and Bhattacharyya
(2023)).

In this study, we implement the GMV portfolio strategy using a covariance matrix estimated from copula-based
simulated returns. To ensure a reasonable level of predictive performance, the optimization is subject to long-only, full
investment, and an additional EWO return constraint requiring the portfolio’s expected return to exceed the average
return of the individual assets. The optimization problem is stated as:

min
ω∈Ω

ω⊤Σω, subject to: 1⊤ω = 1, ω ≥ 0, µ⊤ω ≥ r̄,

where r̄ = 1
d

∑d
i=1 µi denotes the average expected return of the d assets, µ is the vector of expected asset returns,

and Σ is the covariance matrix estimated from the copula-implied joint return distribution. We solve this optimization
problem dynamically over rolling windows using the solve.QP function from quadprog package in R (Turlach and
Weingessel (2019)). By obtaining optimal weights for each window, we capture changes in market dynamics and
improve portfolio performance over time.

The proposed portfolio optimization framework introduces a flexible structure by combining three components: (1)
nonparametric copula-based modeling of dependence, (2) the inclusion of EWO return constraint to ensure practical
applicability, and (3) a rolling window of approximately one year of daily returns to dynamically adjust portfolio
weights. The first component addresses the limitations of commonly used parametric copulas, such as Gaussian and
T copulas, which can capture certain nonlinear and tail dependencies but are limited by their fixed functional forms.
These limitations become more pronounced in high-dimensional settings or when the true dependence structure is
complex or asymmetric. In contrast, nonparametric copulas provide greater flexibility by allowing the joint dependence
structure to be estimated directly from the data without imposing a specific parametric form (Nelsen (2007), Patton
(2012)). This is particularly advantageous when asset returns exhibit non-Gaussian features, as is commonly observed
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in financial markets. The second component, an EWO return constraint, ensures that the optimized portfolio achieves
an expected return at least as high as that of a naive equal-weighted portfolio. This not only aligns the model with
realistic investor expectations, but also safeguards against low-return allocations that may arise in purely risk-driven
optimization settings. The third component incorporates a rolling window framework (typically 250 trading days,
adjusted for the specific market’s calendar) with daily or weekly rebalancing to account for changing market dynamics,
producing real-time optimal allocations that respond to structural shifts in the joint return distribution.

A key theoretical motivation for this framework lies in the inadequacy of assuming multivariate normality. When
asset marginals are normally distributed, the joint distribution is also multivariate normal, and the covariance matrix
fully characterizes the dependence structure. However, empirical evidence consistently shows that financial returns
exhibit skewness, leptokurtosis, and heavy tails, often due to volatility clustering, price jumps, and higher-moment
dependencies (Bali and Theodossiou (2007)). When marginals follow skewed distributions such as SGT or skew-normal,
there is no natural or unique multivariate extension that preserves the given marginals while maintaining analytical
tractability (Theodossiou (1998), Azzalini and Capitanio (2003)). Moreover, the covariance structure cannot be inferred
directly from these marginals, making mean-variance optimization unsuitable. In contrast, the copula-based approach
allows one to model such joint behaviors by specifying each marginal independently and linking them through a
copula, enabling simulation of artificial datasets that reflect the empirical joint behavior. Although this approach has a
small computational overhead, it offers significantly improved realism and predictive accuracy. While our approach
is anchored in the classical mean-variance paradigm, it can be extended to accommodate higher-order moments or
incorporate quantile-based risk measures, such as VaR and CVaR, to better reflect tail-risk behavior in non-Gaussian
return distributions.

2.4 Visualization of Portfolio Performance Measures

This section analyzes the time-varying performance of two U.S. assets, Netflix (NFLX), a volatile stock, and Costco
(COST), a stable stock, using daily log returns from April 2018 to March 2025 with weekly rebalancing. We examine
rolling mean returns, standard deviations, Sharpe ratios, correlations, and return densities to capture their dynamic
risk-return profiles and regime shifts over time.

Figure 1 provides a comprehensive view of the evolving return dynamics between NFLX and COST. Panel (a) displays
the rolling mean returns, highlighting pronounced fluctuations for NFLX (ranging from approximately -0.004 to 0.004),
while COST exhibits a narrower band (approximately -0.001 to 0.002), consistent with its lower market sensitivity.
Panel (b) shows the rolling standard deviations, where NFLX consistently exhibits higher volatility (0.02 to 0.05),
depicting its riskier profile. Panel (c) presents the rolling Sharpe ratios, which remain generally below 0.2 for both stocks,
indicating modest risk-adjusted performance over time. Panel (d) illustrates the time-dependent relationship between
NFLX and COST through rolling correlations. The correlation strength fluctuates between 0.2 and 0.5, reflecting
varying co-movement influenced by market conditions. Pearson correlation indicates a strong yet time-varying linear
dependence, while Spearman and Kendall correlations exhibit relative stability, suggesting consistent rank ordering
despite fluctuations in absolute returns. Kendall’s τ correlation is lower than Spearman’s ρ due to its stricter pairwise
ranking comparison, making it more sensitive to minor fluctuations, whereas Spearman captures broader monotonic
relationships.

Figure 2 further reinforces the dynamic nature of stock returns through rolling density plots. For COST, high peaks
suggest that returns are concentrated around the mean, indicating lower variability, while lower peaks signal periods
of increased volatility. NFLX, on the contrary, exhibits wider and flatter distributions, reflecting greater variance and
market sensitivity. These evolving density patterns suggest that the return dynamics is influenced by market conditions
and investor sentiment, although the changes are not drastic. The adaptability of the SGT distribution effectively
captures high kurtosis and skewness, making it a reliable model for financial returns.

In summary, these findings demonstrate that stock returns, volatility, and correlations evolve dynamically over time,
underscoring the interconnected nature of financial markets. Market shocks, investor behavior, and historical return
patterns play a crucial role in shaping future movements, highlighting the importance of rolling-window analyses over
static measures to better assess financial dependencies.

3 Financial Data

We evaluate the proposed portfolio optimization framework using stock price data from three major markets: the United
States (developed), India (developing), and Hong Kong (representing the Far East Asian financial hub). The empirical
analysis spans April 1 2018 to March 31st 2025, capturing both stable periods and episodes of extreme market stress,
including the COVID-19 crisis. Daily equity prices are retrieved from Yahoo Finance via the quantmod package in
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Figure 1: Rolling performance metrics for NFLX and COST based on log Returns (250-Day window, weekly rebalancing): Plot (a)
represents the rolling expected portfolio return, (b) shows the rolling standard deviation, and (c) illustrates the rolling Sharpe ratio,
defined as the ratio of mean return to standard deviation. Plot (d) depicts the rolling correlation using Spearman’s rank, Kendall’s tau,
and Pearson correlation, capturing the time-varying relationships between NFLX and COST assets.
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Figure 2: Overlaid SGT-fitted density plots for the log-differenced adjusted returns of NFLX and COST over a 250-day rolling
window with weekly rebalancing. The x-axis represents log returns, while the y-axis depicts the corresponding estimated SGT
densities. The comparison highlights differences in tail behavior and asymmetry between a high-volatility (NFLX) and low-volatility
(COST) asset.
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R Ryan and Ulrich (2023). For each asset, we extract adjusted closing prices using the Ad() function and compute
log returns as diff(log(Ad(get(ticker)))), ensuring consistency by accounting for corporate actions such as
dividends and stock splits. To capture evolving market dynamics and time-varying dependencies, we implement a
rolling window approach based on one trading year, with window lengths aligned to local exchange calendars.

Each portfolio comprises 20 large-cap companies selected from the S&P 500 (United States), NIFTY 50 (India), and the
top-traded stocks by turnover listed in HKEX (Hong Kong), chosen for their substantial market capitalization and their
significant influence on their respective economies, providing a representative and diversified portfolio for analysis. A
summary of the rolling window setup and average volatility is provided in Table 1, with asset-level details in Appendix
Tables 3, 4, and 5. While the proposed framework is readily extendable to higher-dimensional portfolios, we focus on
20 assets per market to maintain clarity in visualization and facilitate interpretable inference. The seven-year sample
period offers a comprehensive setting to evaluate the procedure’s adaptability across a range of economic environments,
including episodes of structural shifts and increased market volatility.

Table 1: Summary of Rolling Window (RW) Setup and Market Characteristics

Economy Daily Returns RW Size No. of RW (Daily) No. of RW (Weekly) Avg Volatility (SD, %)

United States 1,758 250 1,508 301 2.01
India 1,728 245 1,483 296 1.80
Hong Kong 1,719 244 1,475 295 1.72

4 Empirical Analysis

We apply the proposed stepwise procedure to the selected markets to evaluate its empirical performance. Using seven
years of daily equity data, we compute optimal portfolio weights within rolling windows of 250 trading days for the
U.S., 245 for India, and 244 for Hong Kong. The analysis is conducted under both daily and weekly rebalancing
schemes, where portfolio weights are updated accordingly, every trading day in the daily scheme, and every five trading
days in the weekly scheme. This setup enables us to assess the adaptability of the procedure across varying market
conditions and rebalancing frequencies.

Multivariate normality of asset returns was assessed using the fPortfolio package (Wuertz et al. (2023)), with results
uniformly rejecting the null hypothesis across all economies (p values < 2.2 × 10−16). The marginal distributions
of the asset returns are modeled using the SGT distribution, with parameters estimated via the sgt.mle function.
Goodness-of-fit is assessed using the Anderson-Darling (AD) test, with all p-values exceeding 0.2, indicating adequate
fit. Dependence structures across assets were modeled using the empirical beta copula (empCopula), which flexibly
captures non-Gaussian dependencies and tail behavior. To simulate joint return scenarios from the fitted copula, we
employed Monte Carlo sampling with 105 replications per market. Monte Carlo sample sizes were chosen to ensure
target numerical accuracies of ε = 8× 10−4, 7× 10−4, and 5× 10−4 for the U.S., India, and Hong Kong, respectively.
These targets control the simulation error in the empirical copula approximation. The required number of replications
was determined using Proposition 1 in Lu and Ghosh (2023), which provides an upper bound on the approximation
error based on the largest eigenvalue of the covariance matrix. Portfolio optimization was subsequently performed via
quadratic programming using the solve.QP function.

The proposed framework, referred to as copula_cov_3constraint in the performance charts, is compared against
three alternatives: (i) the mean-variance model under a multivariate normality assumption using the sample co-
variance matrix (data_cov_3constraint), (ii) a version constrained to full investment and long-only positions
(copula_cov_2constraint), and (iii) an equally weighted naïve portfolio (eq_weights). All methods are evaluated
under both daily and weekly rebalancing schemes, and performance is assessed using the average return and average
Sharpe ratio over time.

Figure 3 presents rolling weekly estimates of next-day mean returns and Sharpe ratios for the U.S. market from April
2019 to March 2025, with a focused view on the COVID-19 crisis period (March 2020–February 2022). Portfolios
optimized using copula-based dependence structures with three constraints achieve relatively large Sharpe ratios,
particularly during crisis period (e.g., mid-2020). Interestingly, in this sample, the sample covariance-based strategy
performs comparably to the copula-based approach over extended periods. However, this alignment may be sample
specific, as sample covariance matrices are known to be unstable under non-Gaussian return distributions or in high-
dimensional settings (Ledoit and Wolf (2004)). By contrast, copula-based models explicitly account for tail risk and
nonlinear dependence, offering greater flexibility in environments where normality assumptions do not hold.
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The evolution of portfolio weights under the copula-based optimization framework (copula_cov_3constraint)
exhibits distinct and interpretable shifts across three major market regimes: pre-pandemic, pandemic, and post-
pandemic (Figure 4). The terms pre-pandemic, pandemic, and post-pandemic refer to the periods April 2019–February
2020, March 2020–February 2022, and March 2022–March 2025, respectively. During the pre-pandemic phase, the
portfolio concentrated in large-cap defensive stocks such as PepsiCo, Procter & Gamble, and Johnson & Johnson,
consistent with a stable, low-volatility environment. In the pandemic period, the model responded dynamically to
elevated uncertainty and shifting return distributions by reallocating toward resilient consumer and healthcare firms,
including Amazon, Netflix, Costco, and JnJ. This period is marked by high volatility, structural breaks, and regime
instability, which the copula-based framework accommodates through flexible modeling of tail dependence. In the
post-pandemic phase, the portfolio progressively rotated into growth and high-beta stocks, such as Tesla, NVIDIA, and
Meta, particularly during the 2023 tech-led rally.
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Figure 3: Rolling performance metrics for the U.S. market under weekly rebalancing (April 2019–March 2025) and during the
COVID-19 period (March 2020–February 2022). The top two panels display rolling next-day mean returns and Sharpe ratios for the
U.S. market based on portfolios constructed using equal weighting, sample covariance, and copula-based covariance matrices with
two and three constraints. The bottom two panels focus on the COVID-19 crisis, highlighting sharper contrasts among strategies.

We replicate this analysis for the Indian and Hong Kong markets (Figures 5–8). In both India and Hong Kong, the
(copula_cov_3constraint) consistently outperforms equal-weighted and sample covariance benchmarks in terms of
Sharpe ratio, particularly during the COVID-19 recovery period, where it delivers higher and more stable risk-adjusted
returns. During the pre-pandemic phase, the Indian portfolio emphasized a mix of private financials and defensives,
with top allocations to HDFC Bank, HUL, NTPC, and TCS, reflecting a stable, moderately growth-oriented stance. In
the pandemic period, allocations shifted more conservatively toward utilities and non-cyclicals, led by NTPC, Asian
Paints, HUL, and Sun Pharma, indicating a defensive realignment in response to heightened volatility and uncertainty.
In the post-pandemic phase, the portfolio continued favoring defensive allocations: Sun Pharma, HUL, and ITC ranked
highest—while partially rotating into telecom and IT names like Bharti Airtel and TCS. In the Hong Kong market,
pre-pandemic phase, the portfolio was concentrated in defensives such as HKCG, HSBC, CK Infrastructure, and CLP.
During the pandemic, exposure shifted further toward utilities and low-risk financials, led by CLP, HKCG, Ping An, and
ICBC, reflecting heightened risk aversion. Post-pandemic, the portfolio partially rotated into telecom and diversified
financials, with China Mobile, CLP, and HSBC receiving the largest weights. These dynamics reflect a cautious recovery
posture and support the presence of a barbell strategy balancing stability with selective growth exposure. These findings
persist under daily rebalancing schemes (Appendix Figures 9,10, 13,14, 17 and 18), confirming the consistency of the
framework in modeling time-varying risk-return trade-offs.
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Figure 4: Rolling asset-level statistics and optimal weights for the U.S. market under weekly rebalancing (April 2019–March 2025).
The top panels present rolling mean returns and volatilities by asset, revealing heterogeneous risk-return profiles and temporal shifts,
particularly during high-volatility episodes (e.g., early 2020 and 2022). The bottom panel shows the evolution of optimal portfolio
weights obtained via copula_cov_3constraint.

The time-averaged distributions of the rolling optimal weights and the corresponding risk contributions (Figures 11, 15
and 19) reveal clear market-specific patterns. The normalized risk contribution of asset i is given by: RCi =

wi·(Σw)i
w⊤Σw

,

where wi is the portfolio weight of asset i, Σ is the covariance matrix of asset returns, and w⊤Σw is the total portfolio
variance. This formulation ensures that

∑N
i=1 RCi = 1, allowing interpretation of RCi as the percentage contribution

of asset i to total portfolio risk. In the U.S., weights are broadly distributed, with defensives such as PepsiCo, Procter &
Gamble, and Costco contributing consistently to total portfolio risk. In the Indian market, optimal portfolio allocations
derived from copula-based covariance structures exhibit broader sectoral diversification, with noticeable weights in
large-cap financials and defensives, such as TCS, HUL, ITC, Asian Paints, Sun Pharma, and NTPC. In Hong Kong, the
portfolio is dominated by CLP, China Mobile, and HKCG, with these few assets accounting for a substantial share of
total risk. These cross-market contrasts highlight how the copula framework dynamically adjusts exposure and risk
budgeting in response to varying market structures and dependency patterns.

Table 2: Portfolio Performance: Copula vs. Sample Covariance (Weekly Rebalancing with Daily in Parentheses)
Metric US India Hong Kong

Copula Sample Gain (%) Copula Sample Gain (%) Copula Sample Gain (%)
Average Return (%) 0.1204 (0.1206) 0.1205 (0.1212) 0.0 (-0.5) 0.0911 (0.0914) 0.0894 (0.0893) 1.9 (2.4) 0.0063 (0.0071) 0.0049 (0.0059) 28.9 (20.1)
Average Sharpe Ratio (%) 11.1307 (11.1923) 11.2479 (11.3327) -1.0 (-1.2) 9.4066 (9.4184) 9.3228 (9.3094) 0.9 (1.2) 1.8521 (1.9273) 1.7627 (1.8525) 5.1 (4.0)
No. of Windows 101 (505) 99 (497) 99 (494)
% Higher Return Windows 54.5 (49.3) 69.7 (64.6) 30.3 (70.1)
% Higher Sharpe Ratio Windows 29.7 (15.8) 59.6 (50.9) 26.3 (23.1)

Note: Weekly rebalancing results are shown first, with daily rebalancing values in parentheses. ‘Gain’ columns report the relative
improvement of copula-based portfolios over sample covariance portfolios during the COVID-19 period (March 2020–February
2022).

During the COVID-19 crisis period, we evaluate the relative performance of the (copula_cov_3constraint) strategy
against the sample covariance-based approach. Table 2 presents a comparative analysis of portfolio performance under
copula-based and sample covariance-based optimization frameworks across the US, India, and Hong Kong markets.
The copula-based method demonstrates superior performance in most scenarios, particularly under weekly rebalancing.
Notably, the Hong Kong market exhibits the largest relative gains, with improvements of 28.9% in mean return and 5.1%
in Sharpe ratio, highlighting the method’s advantage in capturing asymmetric and tail-dependent relationships. Across
all three markets, the copula approach achieved higher average Sharpe ratios and returns in a substantial proportion of
rolling windows, for instance, outperforming in 54.5% (US), 69.7% (India), and 30.3% (Hong Kong) of windows in
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terms of return, and in 29.7%, 59.6%, and 26.3% of windows in terms of Sharpe ratio, respectively. In the Hong Kong
market, although the number of outperforming windows is lower, the relative gains in those periods are substantially
larger, indicating that when the copula-based strategy does outperform, it does so by a significant margin. These results
shows that copula-based allocations, especially during volatile periods such as the COVID-19 crisis, by effectively
modeling non-linear dependencies and extreme co-movements often missed by sample covariance-based models.

4.1 Skewed Generalized t Distribution for Asset Returns

We employed the Skewed Generalized t (SGT) distribution to model individual asset returns, which were then input
into a copula function to characterize their dependence structure. The SGT distribution is well-suited to financial
returns because it can flexibly capture skewness, heavy tails, and excess kurtosis, thus providing a suitable alternative to
conventional symmetric distributions. It features distinct parameters for location (mean), scale (standard deviation), and
shape (skewness and tail thickness).

Using the sgt package in R (Davis (2015)), the parameters of the SGT distribution can be estimated by maximum like-
lihood using the function sgt.mle(x, mu, sigma, lambda, p, q, mean.cent = TRUE, var.adj = TRUE).
For our analysis, we initialized the parameter estimates with the sample mean (µ) and sample standard deviation (σ)
of the data, along with small values for the shape parameters (p = q = 2) to capture the heavy tails that are typically
observed in financial returns. The mean.cent = TRUE option ensures that µ corresponds to the actual mean of the
SGT distribution, while var.adj = TRUE adjusts σ to represent the standard deviation. Details on the functional form
and derivations are in the sgt package vignette, which provides a detailed implementation guide. After estimating the
parameters, we first plot the fitted density for rolling windows to visualize the evolution of the marginal distributions
over time, capturing the dynamic nature of financial returns.

Figure 2 presents the SGT-fitted overlaid rolling density plots for the Netflix and Costco US market stocks. The
variations in these plots show the dynamic nature of financial returns over time, potentially reflecting shifts in market
conditions, investor sentiment, or external factors. Although densities exhibit changes over time, these changes are not
overly drastic. The SGT family appears to effectively account for different distributional shapes characterized by high
kurtosis and skewness. Similar behavior is observed in the Indian and Hong Kong markets.

To assess the goodness of fit of the SGT distribution, we use the p-value from the AD test, which evaluates how closely
the estimated SGT distribution represents the observed stock returns. Since the true distribution of the data is unknown,
we consider the fitted SGT distribution as a proxy for the true distribution. A high p-value suggests that the observed
stock returns align well with the theoretical SGT distribution, validating its suitability for modeling financial return data.
The P values were calculated in R using the ADGofTest package (Bellosta (2011)), which applies the AD test and an
approximate p-value method from Marsaglia and Marsaglia (2004). All p-values exceed 0.2, providing strong evidence
that the SGT distribution effectively models the marginal densities of financial returns. Summary measures, including
time-averaged p-values and estimated asymmetry parameters from the SGT fit, are presented as box plots in Appendix
Figures 12, 16, and 20.

5 Discussion

The proposed semiparametric model which combines nonparametrically estimated copula with parametrically estimated
marginals allows all parameters to dynamically evolve over time making it suitable for predictive inference. Applied
to rolling windows of financial returns from the USA, India and Hong Kong economies, this approach addresses the
limitations of traditional models that rely on parametric assumptions. The skewed generalized t distribution captures
skewness and kurtosis often observed in financial returns, while the empirical beta copula, as a nonparametric estimator,
accommodates arbitrary and multivariate dependence structures. The copula-implied dependence structure enables
adaptive, data-driven portfolio decisions across heterogeneous market environments. The model effectively tracks
evolving inter-asset dependencies and regime shifts, translating structural changes into rebalanced allocations over time.

By allowing parameters to evolve over time, the proposed framework (copula_cov_3constraint) captures dynamic
dependencies linked to economic episodes, offering substantial improvements in modeling time-varying, nonlinear, and
asymmetric relationships relative to other approaches. It demonstrates consistent outperformance during periods of
financial stress, where classical models often fail to reflect joint tail risk and dynamic correlation shifts. Each rolling
window, comprising marginal SGT estimation, empirical beta copula construction, and simulation-based optimization
with m = 105 samples, completes in approximately 20–25 seconds on a standard Intel Core i7 (2.90 GHz, 16 GB
RAM) machine. The method entails a modest computational burden but provides greater flexibility and reliability in
crisis regimes. Its modular design is readily parallelizable, supporting scalable implementation in high-frequency or
large-universe settings. From the market analyses, the model performed reasonably well across all three markets by
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Figure 5: Rolling performance metrics for the Indian market under weekly rebalancing (April 2019–March 2025) and during the
COVID-19 period (March 2020–February 2022). The top two panels report rolling next-day mean returns and Sharpe ratios based
on portfolios constructed using equal weighting, sample covariance, and copula-based covariance matrices with two and three
constraints. The bottom two panels focus on the COVID-19 period, revealing that copula-based strategies outperform others in terms
of risk-adjusted performance, particularly during recovery phases following market stress.
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Figure 6: Rolling asset-level statistics and optimal weights for the Indian market under weekly rebalancing (April 2019–March 2025).
The top panels show rolling mean returns and volatilities by asset, capturing heterogeneous dynamics across time and securities. The
bottom panel depicts the evolution of optimal portfolio weights based on copula_cov_3constraint. The time-varying allocations
highlight the model’s responsiveness to shifts in risk and dependence.
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Figure 7: Rolling performance metrics for the Hong Kong market under weekly rebalancing (April 2019–March 2025) and during
the COVID-19 period (March 2020–February 2022). The top panels show rolling next-day mean returns and Sharpe ratios across
portfolio strategies: equal weight, sample covariance, and copula-based covariance with two and three constraints. Copula-based
portfolios with three constraints outperform consistently during volatile phases
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Figure 8: Rolling asset-level statistics and optimal weights for the Hong Kong market under weekly rebalancing (April 2019–March
2025). The top panels display rolling mean returns and volatilities by asset, with sharp volatility spikes during early 2020 and late
2021. The bottom panel illustrates time-varying optimal weights based on copula_cov_3constraint.
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identifying dynamically evolving weights that optimize portfolio returns. The results indicate that optimally weighted
portfolios from copula_cov_3constraint consistently outperform equal-weighted portfolios, with higher weights
allocated to high-return assets, reflecting their importance in the portfolio. Future work will involve exploring other risk
measures (e.g., VaR and CVaR) using the proposed semiparametric dynamic models. The R code supporting the results
of this study will be made publicly available on the first author’s GitHub repository upon acceptance of the paper.
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Appendix

Table 3: Summary Statistics of Selected US Stocks (April 2018 – March 2025)
Ticker Company Name Sector Mean Return (%) Mean SD (%) Skewness

MSFT Microsoft Corporation Information Technology 0.09 1.81 -0.29
GOOGL Alphabet Inc. (Class A) Communication Services 0.06 1.95 -0.24
NVDA NVIDIA Corporation Information Technology 0.17 3.29 -0.24
AMZN Amazon.com, Inc. Consumer Discretionary 0.06 2.16 -0.14
META Meta Platforms, Inc. Communication Services 0.07 2.67 -1.34
TSLA Tesla, Inc. Consumer Discretionary 0.16 4.06 -0.07
AAPL Apple Inc. Information Technology 0.10 1.93 -0.23
HD The Home Depot, Inc. Consumer Discretionary 0.05 1.70 -1.43
ADBE Adobe Inc. Information Technology 0.03 2.33 -0.83
NFLX Netflix, Inc. Communication Services 0.07 2.83 -2.18
BRK-B Berkshire Hathaway Inc. Financials 0.06 1.30 -0.21
V Visa Inc. Financials 0.06 1.64 -0.07
MA Mastercard Incorporated Financials 0.07 1.84 0.03
JNJ Johnson & Johnson Health Care 0.03 1.22 -0.33
UNH UnitedHealth Group Health Care 0.06 1.80 -0.53
JPM JPMorgan Chase & Co. Financials 0.06 1.86 -0.02
PG Procter & Gamble Company Consumer Staples 0.05 1.27 -0.03
PEP PepsiCo, Inc. Consumer Staples 0.03 1.31 -0.57
XOM Exxon Mobil Corporation Energy 0.05 1.95 -0.16
COST Costco Wholesale Corporation Consumer Staples 0.10 1.45 -0.53

Table 4: Summary Statistics of Selected Indian Stocks (April 2018 – March 2025)
Ticker Company Name Sector Mean Return (%) Mean SD (%) Skewness

RELIANCE.NS Reliance Industries Limited Oil, Gas & Consumable Fuels 0.07 1.82 0.05
TCS.NS Tata Consultancy Services Limited Information Technology 0.06 1.53 -0.02
INFY.NS Infosys Limited Information Technology 0.07 1.74 -0.64
HDFCBANK.NS HDFC Bank Limited Financial Services 0.04 1.58 -0.35
ICICIBANK.NS ICICI Bank Limited Financial Services 0.10 1.95 -0.49
HINDUNILVR.NS Hindustan Unilever Limited Fast Moving Consumer Goods 0.04 1.44 0.73
ITC.NS ITC Limited Fast Moving Consumer Goods 0.04 1.56 -0.65
KOTAKBANK.NS Kotak Mahindra Bank Limited Financial Services 0.04 1.77 -0.28
LT.NS Larsen & Toubro Limited Construction 0.06 1.74 -0.62
SBIN.NS State Bank of India Financial Services 0.07 2.07 -0.39
BHARTIARTL.NS Bharti Airtel Limited Telecommunication 0.09 1.89 0.31
ASIANPAINT.NS Asian Paints Limited Consumer Durables 0.04 1.60 -0.41
BAJFINANCE.NS Bajaj Finance Limited Financial Services 0.09 2.35 -0.95
MARUTI.NS Maruti Suzuki India Limited Automobile and Auto Components 0.02 1.86 -0.21
HCLTECH.NS HCL Technologies Limited Information Technology 0.08 1.72 -0.10
AXISBANK.NS Axis Bank Limited Financial Services 0.05 2.19 -1.65
SUNPHARMA.NS Sun Pharmaceutical Industries Ltd Healthcare 0.07 1.76 -0.02
ULTRACEMCO.NS UltraTech Cement Limited Construction Materials 0.06 1.75 -0.16
TITAN.NS Titan Company Limited Consumer Durables 0.07 1.82 -0.31
NTPC.NS NTPC Limited Power 0.07 1.77 -0.43

Table 5: Summary Statistics of Selected Hong Kong Stocks (April 2018 – March 2025)
Ticker Company Name Sector Mean Return (%) Mean SD (%) Skewness

0005.HK HSBC Holdings plc Financial Services 0.03 1.50 -0.22
0700.HK Tencent Holdings Limited Communication Services 0.02 2.40 0.41
0001.HK CK Hutchison Holdings Limited Diversified Holdings -0.02 1.54 1.32
2318.HK Ping An Insurance Co. of China Financial Services -0.01 2.20 0.33
1299.HK AIA Group Limited Financial Services -0.0002 1.96 0.001
0388.HK HK Exchanges and Clearing Ltd. Financial Services 0.03 2.05 0.47
1398.HK Industrial & Commercial Bank of China Financial Services 0.02 1.35 0.38
2388.HK BOC Hong Kong (Holdings) Ltd. Financial Services 0.01 1.43 0.19
0002.HK CLP Holdings Limited Utilities 0.005 1.10 -0.23
2888.HK Standard Chartered PLC Financial Services 0.03 1.93 -0.18
0941.HK China Mobile Limited Communication Services 0.03 1.39 0.70
0003.HK HK & China Gas Co. Ltd. Utilities -0.02 1.26 -1.41
0823.HK Link REIT Real Estate Investment -0.01 1.50 -0.37
0016.HK Sun Hung Kai Properties Ltd. Real Estate -0.01 1.46 -0.07
0267.HK CITIC Limited Diversified Holdings 0.02 1.85 -0.03
0011.HK Hang Seng Bank Limited Financial Services -0.01 1.45 -0.10
0836.HK China Resources Power Holdings Utilities 0.04 2.46 0.14
0027.HK Galaxy Entertainment Group Ltd. Consumer Discretionary -0.04 2.53 -0.19
0012.HK Henderson Land Development Co. Ltd. Real Estate -0.01 1.60 -0.03
1038.HK CK Infrastructure Holdings Ltd. Infrastructure 0.004 1.39 -0.56
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Figure 9: Rolling performance metrics for the U.S. market under daily rebalancing (April 2019–March 2025) and during the
COVID-19 period (March 2020–February 2022). The top two panels show rolling next-day mean returns and Sharpe ratios for the
U.S. market using daily rebalancing across portfolio strategies: equal weight, sample covariance, and copula-based covariance with
two and three constraints. Temporal patterns mirror those under weekly rebalancing, with copula-based strategies achieving more
stable and elevated Sharpe ratios during high-volatility periods. The bottom two panels zoom into the COVID-19 period.
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Figure 10: Rolling asset-level statistics and optimal weights for the U.S. market under daily rebalancing (April 2019–March 2025).
The top panels show rolling mean returns and volatilities by asset under daily rebalancing, capturing finer temporal fluctuations
in asset behavior. The bottom panel illustrates the evolution of optimal portfolio weights derived from copula-based covariance
estimation with three constraints. The dynamic reallocation patterns highlight the model’s responsiveness to short-term changes in
asset-level risk and dependence.
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Figure 11: Time-averaged distribution of rolling optimal portfolio weights and corresponding risk contributions under
thecopula_cov_3constraint strategy for the U.S. market.
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Figure 12: Goodness-of-fit and skewness estimates for SGT models — United States. P-values from the AD test and estimated
skewness parameters (λ) for weekly return distributions fitted using the SGT-distribution across U.S. equities. The results demonstrate
strong model fit and highlight moderate to negative skewness in several technology and consumer stocks.
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Figure 13: Rolling performance metrics for the Indian market under daily rebalancing (April 2019–March 2025) and during the
COVID-19 period (March 2020–February 2022). The top two panels report rolling next-day mean returns and Sharpe ratios based
on portfolios constructed using equal weighting, sample covariance, and copula-based covariance matrices with two and three
constraints. The bottom two panels focus on the COVID-19 period, revealing that copula-based strategies outperform others in terms
of risk-adjusted performance, particularly during recovery phases following market stress.
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Figure 14: Rolling asset-level statistics and optimal weights for the Indian market under daily rebalancing (April 2019–March 2025).
The top panels show rolling mean returns and volatilities by asset, capturing heterogeneous dynamics across time and securities. The
bottom panel depicts the evolution of optimal portfolio weights based on copula-implied covariance with three constraints.
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Figure 15: Time-averaged distribution of rolling optimal portfolio weights and corresponding risk contributions under the
copula_cov_3constraint strategy for the Indian market.
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Figure 16: Goodness-of-fit and skewness estimates for SGT models — India. AD test p-values and skewness estimates for SGT-fitted
weekly return distributions across major Indian stocks. Most assets exhibit good distributional fit and mildly positive skewness,
suggesting upside asymmetry among defensives and large-cap financials.
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Figure 17: Rolling performance metrics for the Hong Kong market under daily rebalancing (April 2019–March 2025) and during
the COVID-19 period (March 2020–February 2022). The top two panels display rolling next-day mean returns and Sharpe ratios
across portfolio strategies: equal weight, sample covariance, and copula-based covariance estimators with two and three constraints.
Copula-based portfolios with three constraints show superior stability and performance, particularly during the COVID-19 shock and
recovery periods. The bottom panels zoom in on the COVID-19 phase, highlighting performance differentials under extreme market
conditions.
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Figure 18: Rolling asset-level statistics and optimal portfolio weights for the Hong Kong market under daily rebalancing (April
2019–March 2025). The top panels display rolling mean returns and volatilities by asset, with elevated volatility observed during
periods of market stress, notably in early 2020 and late 2021. The bottom panel shows the evolution of optimal portfolio weights
based on copula-implied covariance with three constraints.
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Figure 19: Time-averaged distribution of rolling optimal portfolio weights and corresponding risk contributions under the
copula_cov_3constraint strategy for the Hong Kong market.
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Figure 20: Goodness-of-fit and skewness estimates for SGT models — Hong Kong. SGT model evaluation for Hong Kong equities
using AD test p-values and estimated λ parameters. The fitted models show consistent goodness-of-fit, with moderate positive
skewness evident in utilities and telecom sectors, indicating asymmetric tail behavior typical of the region’s market structure.

22


	Introduction
	Methodology
	Marginal Density Modeling using Skewed Generalized t Distribution
	Nonparametric Copula Model Using Smoothed Beta Copula
	Portfolio Optimization using Quadratic Programming
	Visualization of Portfolio Performance Measures

	Financial Data
	Empirical Analysis
	Skewed Generalized t Distribution for Asset Returns

	Discussion

