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Abstract. In this work, we introduce MedAgentSim, an open-source
simulated clinical environment with doctor, patient, and measurement
agents designed to evaluate and enhance LLM performance in dynamic
diagnostic settings. Unlike prior approaches, our framework requires doc-
tor agents to actively engage with patients through multi-turn conversa-
tions, requesting relevant medical examinations (e.g., temperature, blood
pressure, ECG) and imaging results (e.g., MRI, X-ray) from a measure-
ment agent to mimic the real-world diagnostic process. Additionally, we
incorporate self improvement mechanisms that allow models to itera-
tively refine their diagnostic strategies. We enhance LLM performance
in our simulated setting by integrating multi-agent discussions, chain-of-
thought reasoning, and experience-based knowledge retrieval, facilitating
progressive learning as doctor agents interact with more patients. We also
introduce an evaluation benchmark for assessing the LLM’s ability to
engage in dynamic, context-aware diagnostic interactions. While MedA-
gentSim is fully automated, it also supports a user-controlled mode, en-
abling human interaction with either the doctor or patient agent. Com-
prehensive evaluations in various simulated diagnostic scenarios demon-
strate the effectiveness of our approach. Our code, simulation tool, and
benchmark are available on the project page.

Keywords: Multi Agents · Visual Agents · Self Improving Agents.

1 Introduction

Advancements in Large Language Models (LLMs) and Vision-Language Models
(VLMs) have shown promising capabilities across various medical tasks, achiev-
ing human-level performance on several medical benchmarks [32]. These models
have demonstrated the ability to encode clinical knowledge [41,47], retrieve rele-
vant medical literature [53], and achieve high accuracy in single-turn medical
question-answering tasks [7,22,32,51]. However, current medical LLM assess-
ments often rely on static evaluation benchmarks, where models are provided
with complete patient information and tasked with answering predefined ques-
tions, sometimes with multiple-choice options [17]. These assessments often fail
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to capture the complexity of real-world doctor-patient interactions, where di-
agnosis is not a single-step process but a dynamic, multi-turn dialogue [19].
Such multi-turn doctor-patient interactions are important in clinical scenarios,
as patients often struggle to describe their symptoms accurately due to lim-
ited medical knowledge, ambiguous perceptions, or communication barriers [29].
Consequently, physicians play an active role in structuring these interactions,
posing clarifying questions, and refining their assessments as new information
emerges [60]. Despite the aforementioned clinical significance, recent studies

(a) Screenshot of our simulation environment showing
doctor-patient interaction phase, where the doctor agent
gathers clinical information via multi-turn conversation.

Doctor starts
day in office

Patients searches
for doctor

Agents start
conversation

Doctor performs
medical tests

Multi-agent doctor
discussion

Patient exhibits
symptoms

(b) The sequential pro-
gression of the simulation
and events at each stage.

Fig. 1: Interactive clinical simulations in our MedAgentSim (best viewed when
zoomed in).

have highlighted that LLMs struggle in realistic clinical scenarios where they
are not provided with all relevant information upfront [13,39]. Instead, they
[13,39] shared only limited initial knowledge about the patient to the LLM and
the LLMs are required to engage in a dynamic diagnostic process, systematically
refining their understanding through patient dialogue. However, approaches such
as AI Hospital [13] only introduced evaluation benchmarks, without enhancing
LLMs for multi-turn interactions. Additionally, they relied on chat-based tex-
tual interaction simulations, where LLMs were not required to navigate complex
environments or interact with medical tools.

Recently, LLM-driven game simulations were introduced in [21] for clinical
settings, where closed-source AI agents based on OpenAI GPT-4o [35] were
assigned roles such as doctors and patients [21]. These simulations were effec-
tive in capturing several aspects of real-world clinical complexity by requiring
agents to navigate environments, interact with objects, and engage dynamically
in decision-making. Additionally, these studies [11,21] incorporated memory-
replay techniques to enhance agent performance. However, these approaches
deviate from real-world clinical practice, as doctor agents are provided witha
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pre-compiled, complete medical report of the patient, rather than doctor agents
actively gathering patient information through interactive consultations. Fur-
thermore, these simulations lack the ability to incorporate medical image-based
diagnostic resources such as X-Rays and CT scans, which are critical in real med-
ical decision-making. In addition to relying on closed-source LLMs like GPT-4o,
many of these systems remain closed-source, limiting access to their data, code,
and models, which hinders reproducibility and further research.

To address the limitations of existing methods, we introduce MedAgentSim,
an open-source, simulated hospital environment designed to evaluate
and enhance LLM performance in dynamic diagnostic settings. Unlike prior
approaches, our framework, illustrated in Figure 1a, requires doctor agents to
actively engage with patients through multi-turn conversations, prompting med-
ical examinations to capture vital signs such as temperature, blood pressure,
and electrocardiogram (ECG), and requesting imaging results (e.g., MRI, X-
Ray) prior to making a diagnosis. Furthermore, we incorporate self-improvement
mechanisms, allowing the models to iteratively refine their diagnostic strategies
over time. We also introduce an evaluation benchmark designed to bridge the
gap between static evaluations and real-world medical reasoning by assessing
the LLM agent’s ability to engage in dynamic, context-aware diagnostic interac-
tions, bringing it one step closer to practical clinical applications.

The key contributions of our method are summarized as below:

1. A game-based hospital simulation built with open-source LLMs [28,44], where
LLM-powered doctor and patient agents interact in a realistic diagnostic set-
ting. The system is fully automated and it also supports a user-controlled
mode, allowing a human to take control of either the doctor or patient agent
for real-time interaction with the AI counterpart.

2. A multi-agent LLM framework for realistic doctor-patient dialogue, where
the doctor starts with no prior knowledge of the patient’s condition and need
to ask questions for gathering relevant patient information. Test results are
only provided if the doctor specifically requests the necessary tests, ensuring
a process that closely mirrors real-world clinical consultations.

3. A multi-agent diagnostic pipeline that improves baseline LLM performance
by incorporating self-improvement mechanisms, including multi-agent dis-
cussion, chain-of-thought reasoning, and experience-based knowledge retrieval.
The system enables progressive learning, where doctor agents refine their di-
agnostic capabilities as they interact with more patients.

2 Related Work

LLMs in the Medical Field The application of Large Language Models
(LLMs) in medicine has been extensively explored, with early efforts focusing on
domain-specific pretraining to enhance performance on biomedical tasks. This
approach has proven effective, as demonstrated by models such as PubMedBERT
[14] and BioGPT [26], which leverage self-supervised objectives trained on spe-
cialized corpora. Several other models, including BioLinkBERT [58], BioMedX
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[31], DRAGON [57], BioMedLM [5,9], and MedPaLM [40], have followed simi-
lar strategies, refining their capabilities for medical question answering, health
inquiries, and doctor-patient dialogues. Additionally, fine-tuned models such as
DoctorGLM [54], Bianque2 [6], ChatMed-Consult [61], MedicalGPT [55], and
DISCMedLLM [3] have been developed using diverse datasets and optimization
frameworks to improve model adaptability to medical contexts.

More recently, prompt-based approaches have emerged as a competitive al-
ternative to domain-specific pretraining and fine-tuning. Methods such as Med-
Prompt [32], OpenMedLM [27], Prompt-Eng [1], and related works [4] leverage
foundation models without requiring additional pretraining, instead relying on
carefully designed prompt engineering techniques to achieve state-of-the-art re-
sults in medical question answering. These works demonstrate that prompt en-
gineering alone can outperform fine-tuning strategies in certain medical tasks,
highlighting the efficiency and adaptability of foundation models in the health-
care domain.

Multi-Agent LLMs in the Medical Field The multi-agent paradigm in
LLM research has gained significant traction, leveraging the planning and rea-
soning capabilities of LLMs as autonomous agents for complex problem-solving
[10,15,42,59]. While single-agent LLMs have shown proficiency in tasks such as
decision-making and diagnostic assistance [24,32], recent efforts have explored
multi-agent frameworks where multiple LLMs collaborate, mirroring the division
of labor seen in real-world medical practice [13,39,49].

These multi-agent setups aim to address the limitations of single-agent decision-
making by introducing specialized agents, each trained or prompted to handle
specific aspects of a medical task [43,50]. By incorporating group collaboration
structures, these systems optimize complex workflows, ensuring more accurate
and contextually aware medical assessments. Notably, MedAgents [43] demon-
strated that multi-agent architectures outperform single-agent LLMs in medical
reasoning tasks, particularly in handling specialized diagnoses and treatment
planning. Such findings reinforce the importance of agent collaboration in med-
ical AI applications, offering scalable and modular approaches for improving
LLM-based healthcare solutions.

Simulated Agents in the Medical Field Most LLM-based medical AI sys-
tems operate in a static question-answering format, where models are provided
full patient details upfront and expected to generate responses from a prede-
fined set of multiple-choice answers [1,4,27,32]. While this approach is useful for
benchmarking, it fails to capture the real-world complexities of patient-doctor
interactions, where information is often incomplete, and medical practitioners
must dynamically query patients to obtain necessary data [13].

To address this limitation, recent research has focused on simulating realistic
patient-doctor interactions using LLM agents [21]. Early work in LLM-powered
simulations demonstrated that when placed in interactive environments with
structured memory and reasoning capabilities, LLMs could exhibit human-like
behavior in decision-making processes [30,36,52]. Building upon this, efforts have
been made to simulate AI-driven hospitals, where LLM-powered doctors and
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patients engage in evolving interactions to improve diagnostic accuracy [11,21].
These simulations enable agents to learn from their mistakes mid-simulation,
refining their diagnostic reasoning over multiple patient interactions, similar to
how human doctors develop expertise through experience [11,21].

By embedding medical LLM agents within a game-based simulation, re-
searchers have introduced a new paradigm for evaluating and training AI-driven
diagnostic models. Unlike traditional static evaluations, these dynamic simu-
lations allow LLM agents to iteratively improve, adapt to evolving medical
scenarios, and enhance their performance through experience-driven learning.
This simulation-based framework presents a promising avenue for developing
autonomous AI medical assistants capable of operating in realistic, interactive
healthcare environments.

3 Methodology: MedAgentSim

Figure 2 shows an overview of the proposed MedAgentSim comprising two key
phases. At first, in the Conversation Phase, agents actively gather all relevant pa-
tient information necessary for diagnosis. Then, in the Experience Replay Phase,
correctly diagnosed cases are stored as memory for future retrieval and learning.
Next, we introduce our overall simulation architecture.
Simulation Environment. The proposed hospital simulation environment builds
upon Generative Agents [36], transforming it into an interactive healthcare set-
ting where autonomous virtual characters, commonly referred to as non-playable
characters (NPCs), simulate real-world hospital dynamics. These NPCs, powered
by an LLM, can move freely, initiate conversations, and interact with medical
equipment, making real-time decisions based on the unfolding scenario.
(a) Agent Roles. The simulation consists of three core agent types: the patient
agent, the doctor agent, and the measurement agent. The patient experiences
symptoms and seeks medical attention from the doctor, who is responsible for
diagnosing and treating conditions. The measurement agent provides diagnostic
test results but only when explicitly requested, requiring the doctor to actively
gather information rather than receiving all patient data upfront. Figure 1b
showcases a sample scenario, demonstrating how agents navigate the environ-
ment and engage in clinical workflows. This baseline framework is referred to as
Multi-Agent Clinic.This framework is referred to as our baseline.
(b) Agent Interaction Modes. Both the doctor and patient agents can func-
tion in one of three distinct modes, determining how they generate and pro-
cess information during interactions. In Generation Mode, the patient agent
autonomously creates a case, generating illnesses, symptoms, and test results,
which are internally stored. The doctor agent must actively extract relevant de-
tails through questioning. In Dataset Mode, patient responses are derived from
a predefined dataset, ensuring consistency with structured medical knowledge,
while the doctor agent follows the same interactive probing process. Finally, in
Control Mode, a human user can assume control of either the doctor or patient,
enabling real-time interactions with the AI-driven counterpart. This mode facil-
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(a) In Conversation Phase, the doctor and patient agents engage
in an interactive dialogue, allowing the doctor to gather vital in-
formation and request necessary diagnostic tests, such as blood
tests and X-Rays, from the measurement agent. As results are
provided, the conversation continues until the doctor has suffi-
cient information. Once ready to diagnose, the process transi-
tions to Experience Replay Phase. Here, past doctor-patient in-
teractions are analyzed through memory buffers, retrieving rele-
vant cases as few-shot examples to enrich the current dialogue. A
team of doctor agents then evaluates this enhanced conversation
using chain-of-thought reasoning and majority-vote ensembling
to reach a consensus, producing a well-informed diagnosis.
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Fig. 2: (a) Overview of the proposed MedAgentSim comprising Conversation
and Experience Replay phases. (b) Our records store module for progressive
learning.

itates testing and supports potential real-world deployment, where real patients
could engage with an AI-powered doctor or vice-versa.
Memory and Self-Improvement. Doctor-patient consultations take place
through natural language interactions, where the doctor questions the patient,
infers possible conditions, and orders tests. If a medical test is not requested,
its results remain unavailable, mirroring real-world diagnostic constraints. Once
the doctor is ready to make a diagnosis, the conversation undergoes a experience
replay phase, refining the model’s decision-making over time.
(a) Records Buffer. To enable progressive learning, the system maintains a
record storage and retrieval mechanism that captures both successful and cor-
rected diagnoses. It consists of two dynamically expanding libraries: the Med-
ical Records Buffer, which stores correctly diagnosed cases, and the Experi-
ence Records Buffer, which retains misdiagnosed cases that were later corrected
through reflection. During a new consultation, the system uses k-nearest neigh-
bors (KNN) to retrieve relevant past cases. The Medical Records Buffer provides
full conversations and diagnoses, while the Experience Records Buffer extracts
key insights from the reflection process. This approach leverages prior experi-
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ences, as studies show that LLMs improve accuracy when learning from failures
[56].
(b) COT and Ensembling. The retrieved information is then incorporated
into the consultation, enriching the doctor’s contextual understanding. A multi-
agent system processes the updated input, where multiple doctor agents indepen-
dently assess the case and propose diagnoses. These assessments are aggregated
and refined using chain-of-thought reasoning and majority-vote ensembling [32],
producing a final diagnosis.
(c) Records Storage. Once finalized, the system converts each component
of the case, such as conversation history, diagnosis, medical images, and lab
results, into CLIP [38] embeddings. For lengthy inputs like conversation history,
an LLM (the same one powering the agents) first summarizes the content into 2–3
sentences. When a diagnosis embedding is matched, associated embeddings from
the same case (e.g., conversation history or lab results) are retrieved alongside it,
enabling contextual grounding. Correct diagnosis embeddings are added to the
Medical Records Buffer, while incorrect cases trigger a reflection phase in which
the doctor analyzes the mistake before making a second attempt. If the revised
diagnosis is correct, only the CLIP-embedded reflection insights are stored in the
Experience Records Buffer; otherwise, the case is discarded to ensure learning
is based on meaningful examples. Figure 2b illustrates the full reflection and
storage process.

4 Experiments

Experimental Details. We conducted extensive experiments to evaluate the
effectiveness of MedAgentSim in a real-world doctor-agent setting. Our study
leveraged a diverse set of both open-source models available on Hugging Face [8]
and proprietary models, tested across three primary benchmarks: NEJM [39],
MedQA [17], and MIMIC-IV [18].

For VLM tasks, we utilized the NEJM dataset, which includes 15 complex
real-world cases along with an extended set, NEJM Extended, of 120 additional
cases. MedQA comprises 106 simulated diagnostic scenarios, while its extended
variant, MedQA Extended, contains 214 distinct cases. Additionally, MIMIC-IV
features 288 clinical cases, providing a diverse set of real-world medical inter-
actions. As these datasets are primarily formatted for QA tasks, they are not
directly compatible with our simulation pipeline. To address this, we preprocess
the data using GPT-4o, converting it into a structured JSON format, where the
doctor, patient information, and test results are assigned to the doctor agent,
patient agent, and measurement agent, respectively. Model accuracy is evaluated
using a binary true/false metric for the final diagnosis, with an LLM serving as
the evaluator to account for variability in generated responses. Both the dataset
conversion process and accuracy logs were manually reviewed to ensure reliabil-
ity.

All models were deployed using vLLM [20] on a 4×48 GB NVIDIA RTX
A6000 setup. For vision-language tasks, we integrated QwenVL [45], for the
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Qwen family of models, and LLaVA 1.5 [25] for the remaining models, with
LLaVA demonstrating strong performance in medical image interpretation, par-
ticularly in generating descriptive reports for X-Rays, MRIs, and other imaging
modalities. The visual game simulation was developed using Phaser, a web-based
game engine [37], with the map designed in Tiled, a 2D level editor [23]. Game
assets were sourced from Generative Agents [36].
Results and Analysis. Table 1 compares the performance of the baseline
Multi-Agent Clinic and our proposed MedAgentSim across key medical bench-
marks, covering both language-based and vision-based tasks. We follow a similar
evaluation strategy to samuel et al. [39] across all the benchmarks. MedAgentSim
integrates LLaVA 1.5-Mistral, a multimodal model combining visual encoding
with large language models.

The results show that MedAgentSim significantly outperforms the baseline
across all benchmarks, particularly in multi-modal tasks. In the NEJM bench-
mark, MedAgentSim achieves 26.7% with LLaMA 3.3, a substantial improvement
over the baseline Multi-Agent Clinic, where models struggle to exceed 20.0%.
This gap widens in NEJM Extended, where MedAgentSim reaches 28.3% with
LLaMA 3.3, surpassing the best baseline performance of 24.2%. These findings
indicate that MedAgentSim is better equipped to interpret medical images and
generate accurate clinical insights.

For language-based reasoning, MedAgentSim consistently demonstrates su-
perior performance. In MedQA, it achieves 70.8% with LLaMA 3.3, while the
best-performing baseline model records 62.3%. Similarly, in MedQA Extended,
MedAgentSim attains 72.0%, a notable increase over the 63.6% baseline. The
most significant performance boost is observed in MIMIC-IV, where MedA-
gentSim reaches 79.5%, far exceeding the highest baseline score of 42.7%.

4.1 Ablation Study

Impact of MedAgentSim Strategies. Table 2 summarizes the impact of
adding incremental reasoning strategies on model accuracy. The integration of
measurement, memory augmentation, chain-of-thought (COT) reasoning, and
ensembling progressively improves diagnostic performance. Notably, the LLaMa
3.3 70B model benefits significantly from memory and COT strategies, achieving
a final accuracy boost of 16.1%.
Model Sensitivity and Bias Reduction. The effectiveness of these strate-
gies in mitigating bias is visualized in Figure 4. The left subfigure quantifies
the baseline model’s susceptibility to biases, measured as accuracy fluctuations
across different diagnostic categories. The right subfigure highlights the stabiliza-
tion effect of enhanced reasoning strategies, which reduce variance and improve
robustness across bias types.
Impact of biases in the diagnosis. To further examine the role of biases in
diagnostic accuracy, we present a radar plot, illustrated in Figure 3, comparing
model performance under different cognitive and implicit bias conditions. The
results indicate that Mixtral [16] and Mistral [44] exhibit greater susceptibility to
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Table 1: Performance of Multi-Agent Clinic and MedAgentSim (Our) models
across medical benchmarks. We used diverse LLMs including closed source. For
visual language tasks, we use LLava 1.5 [25] for visual encoding.

Baseline Size/Type NEJM NEJM Ext. MedQA MedQA Ext. MIMIC-IV

Multi-Agent Clinic

Claude [2] 3.5 — — 62.3 63.6 42.7
ChatGPT [35] 4o 26.7 25.8 52.8 52.3 34.4
ChatGPT [34] 4 13.3 19.2 35.8 33.2 24.7
ChatGPT [33] 3.5 — — 36.8 34.6 27.8
LLaMA 3.3 [28] 70B 20.0 24.2 54.7 53.3 36.8
LLaMA 3 [12] 70B 6.7 5.0 19.8 17.3 13.9
LLaMA 2 [46] 70B — — 4.7 2.8 8.3
Mixtral [16] 8×7B 6.7 2.5 37.7 39.3 30.2
Mistral [44] 24B 6.7 3.3 45.3 41.1 21.9
Qwen2 [48] VL-7B 0.0 1.7 20.8 16.8 25.7
Qwen2.5 [45] 72B 0.0 2.5 38.7 41.6 21.2

MedAgentSim (Ours)

ChatGPT [35] 4o 26.7 27.5 66.0 67.8 75.3
LLaMA 3.3 [28] 70B 26.7 28.3 70.8 72.0 79.5
Mistral [44] 24B 13.3 9.2 53.8 49.5 56.6
Qwen2 [48] VL-7B 6.7 4.2 31.3 29.2 38.2
Qwen2.5 [45] 72B 6.7 4.2 55.7 57.5 66.0

Table 2: Incremental improvements in model accuracy as measurement, memory,
COT, and ensembling techniques are added.

Mistral 24B Accuracy LLaMa 3.3 70B Accuracy

Baseline 45.3% Baseline 54.7%
+ Measurement 47.2% + Measurement 59.4%
+ Memory 51.9% + Memory 65.1%
+ COT 52.8% + COT 68.9%
+ Ensembling 53.8% + Ensembling 70.8%

Patient Cognitive Doctor Implicit

Socioeconomic

Sexual 
Orientation

Sexual 
Orientation

No Bias

Gender

Culture

Education
Religion

Socioeconomic

Sexual 
Orientation

Sexual 
Orientation

No Bias

Gender

Culture

EducationReligion

Patient Implicit

Gender

No Bias

Sexual 
Orientation

Socioeconomic

Race

Education

Culture

Religion

Patient Cognitive

Race

Patient Cognitive

Mistral Ratio LLama Ratio Mixtral Ratio GPT Ratio

Doctor Cognitive
No Bias

Recency

Status Quo

Confirmation

Frequency

False 
Consensus

Recency

False 
Consensus

No Bias

Self Diagnosis

Frequency

Fig. 3: Impact of Cognitive and Implicit Biases on Model Accuracy. This radar
plot visualizes the accuracy variations of different models under various bias con-
ditions. Larger deviations from the center indicate greater robustness to biases,
while more compact shapes suggest higher sensitivity.
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patient cognitive biases, whereas LLaMa and GPT demonstrate higher stability.
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Fig. 4: The left figure shows the initial bias distribution, while the right figure
illustrates bias reduction after incorporating additional features.

5 Ethical Considerations

This work involves the simulation of clinical environments using large language
models (LLMs) and synthetic patient data. As MedAgentSim simulates diag-
nostic interactions and decision-making processes, it is important to emphasize
that the system is intended strictly for research purposes and is not designed
or validated for real-world clinical use. Any deployment of similar AI systems
in healthcare settings must undergo rigorous clinical validation, regulatory ap-
proval, and expert oversight.

We acknowledge the potential for bias in LLM outputs, particularly when
models are trained on large-scale web data that may encode societal and medi-
cal biases. To address this, we conducted a bias analysis to evaluate disparities
in model performance and highlight the importance of fairness-aware model de-
velopment. However, further research is necessary to ensure equitable and safe
AI behavior across diverse populations and medical contexts.

Finally, we advocate for transparency and reproducibility in AI research. To
that end, MedAgentSim is released as an open-source framework, allowing the
broader community to audit, extend, and build upon this work while promoting
responsible AI development in healthcare.

6 Conclusion

We introduced MedAgentSim, a multi-agent framework for interactive doctor-
patient simulations that enhances diagnostic accuracy through structured rea-
soning, measurement-based decision-making, and self-improvement mechanisms.
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Our results demonstrate that memory, chain-of-thought prompting, and ensem-
bling significantly improve performance in realistic clinical scenarios. Addition-
ally, our bias analysis highlights disparities in model robustness, emphasizing the
need for fairness-aware AI in clinical applications. By bridging the gap between
static benchmarks and real-world diagnostic reasoning, MedAgentSim provides
a more adaptive approach to AI-driven healthcare.
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