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ABSTRACT
Pair trading is one of the most effective statistical arbitrage strate-
gies which seeks a neutral profit by hedging a pair of selected
assets. Existing methods generally decompose the task into two
separate steps: pair selection and trading. However, the decoupling
of two closely related sub-tasks can block information propaga-
tion and lead to limited overall performance. For pair selection,
ignoring the trading performance results in the wrong assets being
selected with irrelevant price movements, while the agent trained
for trading can overfit to the selected assets without any historical
information of other assets. To address it, in this paper, we pro-
pose a paradigm for automatic pair trading as a unified task rather
than a two-step pipeline. We design a hierarchical reinforcement
learning framework to jointly learn and optimize two sub-tasks. A
high-level policy would select two assets from all possible combina-
tions and a low-level policy would then perform a series of trading
actions. Experimental results on real-world stock data demonstrate
the effectiveness of our method on pair trading compared with both
existing pair selection and trading methods.

CCS CONCEPTS
• Applied computing → Forecasting; • Computing method-
ologies→ Partially-observable Markov decision processes.
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1 INTRODUCTION
Since 1987, pair trading, a basic statistical arbitrage approach, has
been intensively practised and studied [28]. It is an integral compo-
nent of the financial market and plays a crucial role in enhancing
market efficiency [46]. On worldwide markets and varied asset
types, such as stocks, futures, and cryptocurrency, it has been ar-
gued that pair trading is effective in the long term [24]. In contrast
to portfolio selection to find the optimal portfolio with the highest
“risky profit” [20], it seeks “riskless profit” by performing arbitrage
tradings on the abnormal price movements of two correlated as-
sets [28]. It first picks two correlated assets and monitors the spread
between their respective prices. If the spread widens abnormally,
it will execute trading operations on two assets and gain a profit
when the spread recovers to its usual value. For instance, if Google’s
price is usually $2 higher than Facebook’s and it suddenly rises to
$5 higher, the strategy will short Google (expect its price to fall) and
long Facebook (expect its price to increase) and close two tradings
when the spread returns to $2. The total return of the strategy is
the sum of the returns from the two transactions on Google and
Facebook, which relies solely on the spread between the two assets.
Therefore, it is irrelevant to the vast majority of common risks,
such as market fluctuations, since the profit resulting from the risk
on Google would compensate for the loss resulting from the risk
on Facebook. Nonetheless, it depends on two crucial factors: (1)
the chosen two assets should be beneficial for pair trading, with a
spread that exhibits significant mean-reversion and high volatility;
and (2) a flexible agent that can identify abnormal increases and
falls of spread from normal fluctuations.

Generally, previous methods for pair trading divided the pro-
cess into two discrete stages: pair selection and trading. For pair
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selection, they generally employ predefined statistical tests or fun-
damental distance measurements to select two assets based on their
historical price [5, 7, 8, 10, 11, 15, 16, 19, 30, 38, 39, 41, 42, 50]. For
example, a number of previous researches apply the cointegration
test [50] to determine if the historical price spread between two
assets is stable. After selecting the pair, they would engage in trad-
ing using fixed-threshold-based strategies to generate the return in
a subsequent period. Recently, inspired by the successful deploy-
ment of reinforcement learning in other areas [1, 14, 21, 32], there
have been efforts to introduce reinforcement learning to train a
flexible agent and report a significant improvement over traditional
methods [13, 22, 51].

However, existing methods of automated pair trading are still
confronted with drawbacks. Despite the fact that they can ensure
the relevance between the selected two assets and perform tradings
by decoupling pair selection and trading, it prevents the flow of
information between them, which can be a significant concern since
they are tightly coupled. For pair selection, existing methods would
choose the wrong asset pairs since the employed model-free metrics
are target irrelevant, which means, they consider no performance
of candidate asset pairs during the following trading period. For
example, the optimal asset pair with the lowest Euclidean distance
would have zero spread and trading opportunities. It is fundamental
to dynamically learn the measurement of the future profitability of
asset pairs from the data. As for trading, existing methods can be
target overfitting due to only observing the pre-selected asset pair
during the training and ignoring other asset pairs and the market.
Although reinforcement learning allows their methods to learn a
flexible agent which can explore different trading actions during
the training, the learned agent could show poor performance in the
trading period with unseen market data since only partial historical
information is leveraged.

Despite the critical necessity to jointly simulate the two phases
of pair trading, there have been no prior attempts in this area. In
this research, we propose a novel paradigm for automated pair
trading, in which the two-step process is formulated as a unified
task rather than a pipeline with two independently sorted sub-tasks.
The approach must simultaneously choose the trading pair from
candidate pairs in a formation period and trade it in a later trading
period in order to optimize trading performance. Although the
paradigm is straightforward for the task, it poses two challenges to
the development of successful approaches. First, it is challenging to
represent the sequential process of the paradigm in which trading
occurs after pair selection, i.e., selecting two correlated assets and
then trading on their anomalies. Second, there are complicated
relationships between pair selection and trading that must be fully
utilized to generate risk-free profits. Pair selection intuitively sets
the input of trading, while trading offers the output of pair selection
in the form of profit.

To address these issues, we design a new framework TRIALS
that adopts feudal hierarchical reinforcement learning (FHRL) [37]
to jointly learn and optimize two steps: a high-level reinforcement
learning policy as the manager for pair selection, and a low-level
reinforcement learning policy as the worker for trading. The agent
in our proposed framework would first select an asset pair from
all possible combinations of assets, and then perform a series of
trading actions based on the selected pair. Given a set of assets,

for the high-level manager, states are the historical price features
of these assets in the formation period; options are all possible
combinations of these assets; rewards are the overall performance
which is generated from the low-level worker on the trading pe-
riod. As For the low-level worker, given the chosen option as two
selected assets, i.e, Google and Facebook, states are the historical
price features of two assets and the trading information of the agent
such as historical actions, cash, and present net value; actions are
three discrete trading actions including long (Buy Google to sell it
later and sell Facebook to buy it back later), short (Sell Google and
buy Facebook), and clear (Sale previous bought assets and buy pre-
viously sold assets to close tradings); and rewards are the overall
performance of the agent in the formation period. Notice that the
rewards for the high-level manager and the low-level worker are
devised on the trading and formation period respectively, although
they are both generated via the same low-level worker. This al-
lows our method to optimize the agent at two levels jointly, which
guides the high-level manager to select optimal asset pairs accord-
ing to their trading performance on the unseen market data, and
forces the low-level worker to consider different asset pairs and
capture the common profitable patterns for pair trading. We further
verify the effectiveness of our method on U.S. and Chinese stock
datasets compared with both previous pair selection and trading
methods. The experimental results prove that our proposed method
can achieve the best performance, which attributes to the correct
pair selection and corresponding precise trading actions.

In summary, our contributions can be listed as:
(1) We are the first to introduce a new task for pair trading

that combines the existing two tasks as pair selection and
trading. In order to optimize the total trading performance,
it is necessary for the approach to simultaneously consider
these two steps, which were previously overlooked in both
pair selection and trading.

(2) We design a novel end-to-end hierarchical framework that in-
troduces feudal hierarchical reinforcement learning to jointly
optimize a high-level policy for pair selection and a low-level
policy for trading.

(3) Experimental results on both U.S. and Chinese stock markets
demonstrate the effectiveness of our method compared with
existing pair selection and trading methods.

2 RELATEDWORK
2.1 Traditional Pair Selection
For pair selection, previous methods aim to find two assets whose
prices have moved together historically in a formation period, and
their future spread is assumed to be historical mean-reverted [24].
They generally adopted statistical or fundamental similarity mea-
surements based on historical price information to perform asset
pair selection before trading. The distance approach was first in-
troduced [8, 10, 16, 19, 38, 39] for pair selection, which simply
adopted distance metrics such as the sum of Euclidean squared
distance (SSD) for the price time series to model the connection
between two assets. However, an ideal asset pair in these model-
free methods were expected to be two assets with exactly the same
price movement in historical time, which have zero trading op-
portunities for no fluctuations of price spread. There were also
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methods [5, 7, 12, 15, 30, 41, 42, 50] that directly model the tradabil-
ity of a candidate pair based on the Engle-Granger cointegration
test, which performs linear regression using the price series of two
assets and expects the residual to be stationary.

However, the mean-reversion properties of the spread of an asset
pair in the future can be irrelevant to their mean-reversion strength
in history, which limits the trading performance of the selected
pair from these parameter-free methods. Although there were also
methods [25] that integrated neural networks to learn the metrics,
they proposed to measure the profit of assets rather than the asset
pairs and selected the top and bottom assets to form the trading
pair, which is difficult to find two matched assets. [54] was the most
similar study which considers pair trading as a unified portfolio
management task. Their methods using historical price spread as
the metric nevertheless suffer from the same issue, even though
they can dynamically learn the trading and allocation ratios of each
pair.

2.2 Reinforcement Learning for Pair Trading
After pair selection, previous methods generate trading signals
which trigger contradictory actions on two assets during the trading
period. Based on the assumption that the spread of the selected pair
would still revert to its historical mean value, previous methods
generally employ simple threshold-based rules that they would
long the undervalued and short the overvalued asset when the
spread is higher or lower than the historical mean by pre-defined
thresholds [24]. However, it requires expert knowledge to identify
the optimal trading thresholds in the time-varying market.

Inspired by the success of applying reinforcement learning (RL)
in financial trading problems [14], previous attempts generally fo-
cused on introducing RL methods to develop flexible trading agents
after pair selection via traditional methods. [13] used the cointegra-
tion method to select trading pairs, and adopted Q-Learning [52] to
select optimal trading parameters. Kim and Kim introduced a deep
Q-network [35] to select the best trading threshold for cointegration
approaches [23]. [31] proposed to detect structural changes and
improve reinforcement learning trading methods. Brim, Wang et al.
directly utilized the RL methods to train an agent for trading [6, 51].
[22] further introduced stop-loss boundaries to control the risk.
Although these methods have shown the benefits of the integration
of RLs as a smart trading agent, they still adopt traditional methods
for pair selection which only consider the historical performance
of the trading pair. Moreover, their trading agent can easily overfit
to the only observable asset pair and show limited performance on
the unseen future market. However, there were no previous efforts
to address the problem, which requires the method to jointly learn
how to select and trade asset pairs.

2.3 Hierarchical Reinforcement Learning
Many approaches have been proposed for building agents within
the context of hierarchical reinforcement learning (HRL) [40, 43,
53]. The feudal framework is one popular approach for HRL, in
which the action space of a higher-level policy consists of sub-goals
corresponding to various sub-tasks and the objective of this lower-
level policy is to achieve the input sub-goal [9]. In HRL, different
levels of temporal abstraction enable efficient credit assignment

over longer timescales [49]. At the same time, a subtask may itself
be easier to learn and the learned sub-tasks lead to more structured
exploration over the course of training of the HRL agent [36]. In
previous works, the low-level policy generally learned handcrafted
sub-goals [26], discovered options [3] or intrinsic rewards [49],
while the high-level policy is learned using extrinsic rewards from
the environment. The decomposition of feudal HRL can also help
to model complex tasks that are difficult for normal RL methods.

As one of the most challenging applications, pair trading con-
sisting of two separate steps requires the method to optimize two
related but different sub-tasks. Existing methods generally deem
the process as a two-step pipeline and apply different methods for
each step respectively. It inevitably blocks the information propaga-
tion between these two steps and introduces extra noise due to the
error accumulation step-by-step. To the best of our knowledge, our
work is the first one that applies HRL in pair trading to end-to-end
learning and inference.

3 HIERARCHICAL PAIR TRADING
FRAMEWORK

In this section, we illustrate the detail of our proposed hierarchical
pair trading framework, as shown in Fig. 1.

3.1 Formalization
Generally, pair trading consists of two steps: pair selection and
trading. In pair selection, it would select two correlated assets from
all possible combinations of assets to form a trading pair. Given
the trading pair, it would perform a series of trading actions to
earn market-neutral profit in a subsequent period. The task aims
to maximize the trading profit of the selected asset pair, which
requires selecting the optimal trading pair and choosing correct
trading actions during the trading period. Different from previous
approaches that generally take two steps separately, in this paper,
we propose to jointly learn to select and trade the pair in a unified
hierarchical framework. Therefore, given a formation period with
𝑇F time points consisting of {0, 1, . . . ,𝑇F − 1}, a subsequent trad-
ing period with 𝑇T time points consisting of {0, 1, . . . ,𝑇T − 1}, and
selected 𝑁 assetsX = {𝑥1, 𝑥2, . . . , 𝑥𝑁 }, there are formation price se-
ries {𝑝𝑥0 , 𝑝

𝑥
1 , . . . , 𝑝

𝑥
𝑇F−1} and trading price series {𝑝

𝑥
0 , 𝑝

𝑥
1 , . . . , 𝑝

𝑥
𝑇T−1}

for each asset 𝑥 ∈ X that is associated with each time point in for-
mation period and trading period respectively.

Formally, we formulate the pair trading process as the feudal
hierarchical reinforcement learning framework [37]. As shown
in Fig.2, a feudal hierarchical reinforcement learning framework
consists of two controllers: a high-level controller called manager
and a low-level controller as worker. The manager is designed to
set the option which aims to maximize the extrinsic reward or
the goal of the task. By selecting an option, the manager would
trigger the worker which is guided by the intrinsic reward. Different
from the extrinsic reward as the overall target of the task, the
intrinsic reward is a sub-goal of the manager given the selected
option. Therefore, the decomposition allows the method to satisfy
requirements at multiple levels to solve complex tasks that are
infeasible for centralized reinforcement learning.

To this end, we design a high-level controller as the manager
for pair trading, which aims to select two assets as a pair and
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Figure 1: The hierarchical framework for pair trading.
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Figure 2: The feudal hierarchical reinforcement learning
framework.

maximize their trading performance via pair trading. It is expected
that the pair should possess the highest profit in the subsequent
trading period among all possible combinations of assets. Thus the
extrinsic reward for the manager is the profit of the selected pair
in the trading period.

However, to achieve the optimal trading profit of the selected
pair, it is required to consider a different sub-task where the agent
is supposed to perform a series of sequential trading decisions on
the selected pair. Since the target is different from the selection, we
derive a low-level controller as the worker which only focuses on
learning a flexible and profitable trading policy. We adopt the profit
of the selected pair in the formation period to guide the learning of
the worker as the intrinsic reward. After the worker is fully trained
with the historical formation data, it is utilized to yield the trading
performance of the selected pair with the unseen market data in
the trading period, which is further taken as the extrinsic reward.

3.2 Pair Selection with High-Level Controller
For pair selection, we aim to select the optimal asset pair from all
possible pairs of assets. It can be deemed as a contextual bandit [27]
𝑀 = (𝑆ℎ,𝑂,𝑇ℎ, 𝑅ℎ,Ψ, 𝑄ℎ) over options, where 𝑆ℎ refers to the state
space,𝑂 is the option space,𝑇ℎ is the transitions among states, 𝑅ℎ is
the designed reward, Ψ is the observation state which is generated
from the current state 𝑠ℎ ∈ 𝑆ℎ and the option referring to the

high-level action 𝑜 ∈ 𝑂 according to the probability distribution
𝑄ℎ (𝑠ℎ, 𝑜). Different from trading, the pair selection process is a
one-step decision process that the agent would perform an option
𝑜0 ∈ 𝑂 under the current state 𝑠ℎ0 , resulting in the transition from 𝑠ℎ0
to 𝑠ℎ1 with the probability 𝑇 (𝑠ℎ1 |𝑠

ℎ
1 , 𝑜1). After the option is selected,

a low-level POMDP as the worker would be triggered to perform
trading according to the selected option.

3.2.1 Observation. For the agent in the high-level contextual ban-
dit, only limited information of the market state can be observed,
i.e, the price features of the assets in history, which means the
agent can only receive the observation 𝑣0 ∈ Ψ with probability
as 𝑄 (𝑠ℎ1 , 𝑜0). The observation 𝑣0 ∈ Ψ is the price features for all
assets 𝑥 ∈ X associated with each time step 𝑡 ∈ 𝑇𝑓 in the formation
period, including the open price 𝑝𝑜𝑥,𝑡 , the close price 𝑝

𝑐
𝑥,𝑡 , and the

volume 𝑣𝑜𝑙𝑥,𝑡 .

3.2.2 Option. The option 𝑜 is a pair (𝑥𝑖 , 𝑥 𝑗 ) selected from all possi-
ble combinations of assets inX. When the low-level POMDP ended,
the agent would select the next option according to the high-level
contextual bandit.

3.2.3 State. Given the observation 𝑣ℎ0 consisting of the open price
𝑝𝑜𝑥,𝑡 , the close price 𝑝

𝑐
𝑥,𝑡 , and the volume at each time point 𝑣𝑜𝑙𝑥,𝑡

for each asset 𝑥 ∈ X in the formation period 𝑡 ∈ 𝑇F , we adopt
the Bi-directional GRU (Bi-GRU) [18] to capture the temporal cor-
relations between historical price features. Our method takes the
previous hidden state ℎ𝑡−1 as the hidden state of the forward GRU
and the next state ℎ𝑡 as the hidden state of the backward GRU.
Since the asset prices possess strong auto-correlation effects [33],
it is fundamental to model the relationships from both history and
future, which helps the method to capture salient information em-
bedded in the asset price fluctuations. Therefore, we represent our
latent state ℎ𝑡 as:

−→
ℎ𝑡 = GRU(𝑣ℎ0,𝑡 ,

−−−→
ℎ𝑡−1),

←−
ℎ𝑡 = GRU(𝑣ℎ0,𝑡 ,

←−−−
ℎ𝑡+1), ℎ𝑡 = [

−→
ℎ𝑡 ,
←−
ℎ𝑡 ] (1)

whereℎ𝑡 ∈ R𝑑ℎ is the concatenation of the forward hidden state and
backward hidden state,𝑑ℎ is the hidden dimension, and 𝑣ℎ0,𝑡 ∈ R

𝑁×3
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are the price features of all assets at the time step 𝑡 ∈ 𝑇F of the
formation period.

As a matter of fact, Bi-GRU has the long-distance forgetting prob-
lem [4], especially when there are thousands of time steps in the
formation period. We further introduce a temporal attention mech-
anism to dynamically select salient information from all historical
time steps by:

𝛼𝑘 =
𝑒𝑥𝑝 (𝑠𝑐𝑜𝑟𝑒 (ℎ𝑇F , ℎ𝑘 ))∑𝑇F−1

𝑘′=0 𝑒𝑥𝑝 (𝑠𝑐𝑜𝑟𝑒 (ℎ𝑇F , ℎ′𝑘 ))
, 𝑐𝑇F =

𝑇F−1∑︁
𝑘

𝛼𝑘ℎ𝑘 (2)

ℎ̂𝑇F = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝑙𝑢 (𝑊𝑐 [ℎ𝑇F , 𝑐𝑇F ])) (3)

where 𝑠𝑐𝑜𝑟𝑒 (ℎ𝑇F , ℎ𝑘 ) =
ℎ𝑇Fℎ𝑘√

𝑑ℎ
is the scaled dot-product attention

score [48]. We also adopt LeakyRelu and LayerNorm [2] to stabilize
the hidden state dynamics. We adopt the final output ℎ̂𝑇F ∈ R𝑁×𝑑ℎ
as the state 𝑠ℎ0 ∈ R

𝑁×𝑑ℎ of the high-level contextual bandit.

3.2.4 Policy. The stochastic policy for pair selection 𝜇 : S → O
refers to a probability distribution over options:

𝑜0 ∽ 𝜇 (𝑜0 |𝑠ℎ0 ) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑡𝑟𝑖𝑢 (𝑠ℎ0 𝑠
ℎ
0
𝑇 )) (4)

where 𝑡𝑟𝑖𝑢 is to extract and return the flattened upper triangular
part of the given matrix.

3.2.5 Reward. The reward of the high-level contextual bandit is
the same as the target of the task, which is to maximize the profit
of the trading period given the option 𝑜0. However, realizing the
optimal trading profit requires the method to learn a different sub-
task. Therefore, we propose to utilize a low-level POMDP triggered
by the selected option. It is first trained with the intrinsic reward
in the formation period and then utilized to perform tradings to
yield the trading profit in the trading period. Following previous
RL-based trading methods, we also maximize the cumulative profit
over the trading period with 𝑇T time points:

𝑅ℎ =
∏
𝑡 ∈𝑇T
(1 + 𝑅ℎ𝑡 ) (5)

where 𝑅ℎ𝑡 is the return of the low-level policy. We would provide
further details in the following subsections.

3.3 Trading with Low-Level Controller
When the high-level controller has selected a trading pair as the
option, the low-level controller will perform trading based on the
given trading pair as a series of trading actions in a subsequent
trading period to achieve the trading profit. Formally, we formulate
the decision process of the trading as a Partially Observable Markov
Decision Process (POMDP) [17]𝑀 = (𝑆𝑙 , 𝐴,𝑇 𝑙 , 𝑅𝑙 ,Ω, 𝑄𝑙 ), where 𝑆𝑙
refers to the state space, 𝐴 is the action space, 𝑇 𝑙 is the transitions
among states, 𝑅𝑙 is the designed reward, Ω is the partial observation
state which is generated from the current state 𝑠𝑙 ∈ 𝑆𝑙 and action
𝑎 ∈ 𝐴 according to the probability distribution 𝑄𝑙 (𝑠𝑙 , 𝑎). At each
time point, the agent would perform an action 𝑎𝑡 ∈ 𝐴 under the
current state 𝑠𝑙𝑡 , resulting in the transition from 𝑠𝑙𝑡 to 𝑠𝑙

𝑡+1 with
the probability 𝑇 𝑙 (𝑠𝑙

𝑡+1 |𝑠
𝑙
𝑡 , 𝑎𝑡 ). Similar to pair selection, the actual

market states are partially observed and only the historical prices
and volumes of assets, alongwith the historical account information

of the agent such as actions, amounts of cash, and returns can be
leveraged, while other information is ignored. In detail, the agent
can only receive the observation 𝑣𝑙

𝑡+1 ∈ Ω with probability as
𝑄 (𝑠𝑙

𝑡+1, 𝑎𝑡 ), which requires the agent to fully exploit the historical
observations up to present time point.

3.3.1 Observation. The observation 𝑣𝑙𝑡 ∈ Ω consists of two dif-
ferent feature sets, including: (1) the account features 𝑣𝑎𝑡 ∈ Ω𝑎 as
previous action 𝑎𝑡−1, present cash 𝐶𝑡 , present asset value 𝑉𝑡 , and
cumulative profit as the net value𝑁𝑡 ; (2) the price features 𝑜

𝑝
𝑡 ∈ Ω𝑝

as the open price 𝑝𝑜
𝑖,𝑡
, the close price 𝑝𝑐

𝑖,𝑡
, and the volume 𝑣𝑜𝑙𝑖,𝑡 of

for each asset 𝑖 ∈ {𝑋,𝑌 }. Following previous work [29], we sim-
plify the impact of tradings performed by our agent on the market
state as a constant loss to each trading. Therefore the action of our
agent would not affect the state and price features of assets in our
observation.

3.3.2 Action. The action in each time step is to perform a pair of
contradictory trading actions on two assets respectively. The action
space 𝐴 = {𝐿,𝐶, 𝑆} = {1, 0,−1} consists of three discrete actions
each of which involves two trading actions for two assets {𝑋,𝑌 }
respectively. In detail, the L action represents the long trading action
which means to long asset𝑋 and short asset 𝑌 at the same time, the
C action for clear referring to clear two assets if longed or shorted
any before, and the short action for short which is to short asset 𝑋
and long asset 𝑌 . Notice that for different asset pairs, the trading
action at each time step could be assigned to other actions.

3.3.3 State. Different from the policy for pair selection, the agent
is required to estimate the latent market state 𝑠𝑙𝑡 according to the
history 𝐻𝑡 = {𝑣𝑙1, 𝑎1, 𝑣

𝑙
2, · · · , 𝑎𝑡−1, 𝑣

𝑙
𝑡 }. Although the market state

cannot be directly observed, the historical information embedded
in 𝐻𝑡 , especially the sequential dependencies can help the agent to
generate better estimation.

Therefore, we also introduce Bi-GRU to encode the history. The
previous hidden state ℎ𝑡−1 is deemed as the hidden state of the for-
ward GRU and the next state ℎ𝑡 as the hidden state of the backward
GRU:

−→
ℎ𝑡 = GRU(𝑣𝑙0,𝑡 ,

−−−→
ℎ𝑡−1),

←−
ℎ𝑡 = GRU(𝑣𝑙0,𝑡 ,

←−−−
ℎ𝑡+1), ℎ𝑡 = [

−→
ℎ𝑡 ,
←−
ℎ𝑡 ] (6)

where ℎ𝑡 ∈ R𝑑ℎ is also the concatenation of the forward hidden
state and backward hidden state, 𝑑ℎ is the hidden dimension, and
𝑣ℎ0,𝑡 ∈ R

2×𝑀 are the input features of the selected two assets and
𝑀 is the feature dimension. We transform discrete variables such
as previous action 𝑎𝑡−1 in 𝑣𝑎𝑡 into continuous embeddings via an
embedding layer 𝐸𝑎 ∈ R3×𝑑𝑎 , where 𝑑𝑎 is the corresponding em-
bedding size.

We also introduce a temporal attention mechanism:

𝛼𝑘 =
𝑒𝑥𝑝 (𝑠𝑐𝑜𝑟𝑒 (ℎ𝑡 , ℎ𝑘 ))∑𝑡−1

𝑘′=0 𝑒𝑥𝑝 (𝑠𝑐𝑜𝑟𝑒 (ℎ𝑡 , ℎ
′
𝑘
))
, 𝑐𝑡 =

𝑡−1∑︁
𝑘

𝛼𝑘ℎ𝑘 (7)

ℎ̂𝑡 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝑙𝑢 (𝑊𝑐 [ℎ𝑡 , 𝑐𝑡 ])) (8)

where 𝑠𝑐𝑜𝑟𝑒 (ℎ𝑡 , ℎ𝑘 ) =
ℎ𝑡ℎ𝑘√
𝑑ℎ

is the scaled dot-product attention

score. The output ℎ̂𝑡 ∈ R𝑑ℎ as the 𝑠𝑙𝑡 ∈ R𝑑ℎ of the low-level POMDP.
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3.3.4 Policy. The stochastic policy for trading 𝜋 : S → A yields
a probability distribution over actions given the low-level state 𝑠𝑙𝑡
and the high-level option 𝑜0:

𝑎𝑡 ∽ 𝜋 (𝑎𝑡 |𝑠𝑙𝑡 ;𝑜0) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑊𝜋𝑠
𝑙
𝑡 ) (9)

3.3.5 Reward. The intrinsic reward for the low-level controller is
also the cumulative profit over a period with 𝑇 time points:

𝑅 =
∏
𝑡 ∈𝑇
(1 + 𝑅𝑡 ) (10)

where 𝑅𝑡 is the return of the agent given the action 𝑎𝑡 :

𝑅𝑡 = 𝑎𝑡−1𝑟𝑋,𝑡 − 𝑎𝑡−1𝑟𝑌,𝑡 − 𝑐 |𝑎𝑡 − 𝑎𝑡−1 |
= 𝑎𝑡−1 (𝑟𝑋,𝑡 − 𝑟𝑌,𝑡 ) − 𝑐 |𝑎𝑡 − 𝑎𝑡−1 |

(11)

Notice that the return of the agent is irrelevant to the market for
hedging the return of two assets as 𝑟𝑋,𝑡 − 𝑟𝑌,𝑡 . To yield a positive
return, it is required to select the optimal trading pair and precisely
trading actions according to the historical performance of the trad-
ing pair. For training, we use the formation period to guide the
learning of the worker, and the trading period to yield a high-level
extrinsic reward with the fully trained worker.

3.4 Hierarchical Policy Learning
For high-level policy updating, following the Advantage Actor-
Critic method (A2C) [34], We update the policy and the value func-
tion every step as:

∇𝜃𝑃
ℎ
log 𝜇 (𝑜0 |𝑠ℎ0 ;𝜃

𝑃
ℎ
)𝐴(𝑠ℎ0 ;𝜃

𝐴
ℎ
)

∇𝜃𝐴
ℎ

1
2
𝐴2 (𝑠ℎ0 ;𝜃

𝐴
ℎ
)

(12)

where𝐴(𝑠ℎ0 ;𝜃
𝐴
ℎ
) = 𝑟ℎ1 +𝛾𝑉 (𝑠

ℎ
1 ;𝜃

𝐴−
ℎ
) −𝑉 (𝑠ℎ0 ;𝜃

𝐴
ℎ
) is the estimation of

the advantage function for the high-level controller and the option
𝑜0 is sampled from the option distribution 𝜇 (𝑜0 |𝑠ℎ0 ;𝜃

𝑃
ℎ
).

As for low-level policy updating, we apply A2C update similarly,

∇𝜃𝑃
𝑙
log𝜋 (𝑎𝑡 |𝑠𝑙𝑡 ;𝑜0, 𝜃𝑃𝑙 )𝐴(𝑠

𝑙
𝑡 ;𝜃

𝐴
𝑙
)

∇𝜃𝐴
𝑙

1
2
𝐴2 (𝑠𝑙𝑡 ;𝜃𝐴𝑙 )

(13)

where𝐴(𝑠𝑙𝑡 ;𝜃𝐴𝑙 ) = 𝑟 𝑙
𝑡+1+𝛾𝑉 (𝑠

𝑙
𝑡+1;𝜃

𝐴−
𝑙
)−𝑉 (𝑠𝑙𝑡 ;𝜃𝐴𝑙 ) is the estimation

of the advantage function for the low-level controller and action 𝑎𝑡
is sampled from the action distribution 𝜋 (𝑎𝑡 |𝑠𝑙𝑡 ;𝑜0, 𝜃𝑃𝑙 ).

For training, we adopt the same formation period data as the
input to train both high-level and low-level policy, where the per-
formance of the low-level policy during the trading period would be
considered as the reward of the high-level policy. As for evaluation
and testing, we directly infer the option and corresponding actions
without exploration.

Algorithm 1 Training
Require: 𝑁 assets X, loop conditions𝑀, 𝑁

Ensure: Model parameters 𝜃ℎ = {𝜃𝑃
ℎ
, 𝜃𝐴

ℎ
}, 𝜃𝑙 = {𝜃𝑃𝑙 , 𝜃

𝐴
𝑙
}

1: Initialize parameters 𝜃ℎ, 𝜃𝑙 for the high-level controller and
low-level controller respectively

2: for iteration=1, 2, 3, ..., M do
3: Sample option 𝑜0 from 𝜇 (𝑜0 |𝑠ℎ0 )
4: Select pair from X and initialize the trading environment
5: for iteration=1, 2, 3, ..., N do
6: while not reach termination condition do
7: Sample action 𝑎𝑡 from 𝜋 (𝑎𝑡 |𝑠𝑙𝑡 ;𝑜0)
8: Execute action, then obtain the next state and intrinsic

reward from the trading environment
9: Update 𝜃𝑙 by Eq (13)
10: end while
11: end for
12: Obtain extrinsic reward from pair selection environment
13: Update 𝜃ℎ by Eq (12)
14: end for

4 EXPERIMENTS
4.1 Dataset
Following previous methods [24], we build a dataset based on a pool
of real stocks from S&P 5001 for recent 21 years from 01/02/2000
to 12/31/2020. We filter stocks that have missing data throughout
the whole period, resulting in 150 stocks with 5,284 trading days.
To support the evaluation and development of pair trading, we
introduce a new daily emerging stock market dataset (Chinese CSI
300 dataset) including 300 stocks and 5,088 time steps from the
CSMAR database2. Similar to previous work [24], we construct our
stock dataset using a pool of stocks from the CSI 300 index for the
last 21 years, from 01/02/2000 to 12/31/2020. Instead of all stocks in
the market, we select the stocks that used to belong to the major
market index CSI 300 and filter out stocks that have missing price
data over the period. We compare our dataset and the U.S. stock
market dataset S&P 500 in Table 1.

Dataset Market Period Assets Time Steps

S&P 500 U.S 2000 - 2020 150 5284

CSI 300 China 2000 - 2020 300 5088
Table 1: The statistics of datasets.

For each trading day, we use the fundamental price features as
the features of stocks, including open price, close price, and volume.
Additionally, we normalize price features such as open price and
close price with logarithm.

Different from previous methods, we randomly split stocks into
five non-overlapping sub-datasets, as shown in Appendix A. For
each subset with, we perform experiments of our method and base-
lines to evaluate their generality. We use the first 90% trading days
1Tiingo. Tiingo stock market tools. https://api.tiingo.com/documentation/iex
2www.gtarsc.com
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as train data, the following 5% as validation data, and the rest 5% as
test data. For training, we further use the first 85% trading days to
train our methods to simultaneously select the optimal trading pair
from possible combinations and perform optimal trading actions
based on the optimal trading pair in the rest of 5% trading days. The
trained model is evaluated on the validation data to select the best
hyperparameters based on which the performance of the model
among the test data is reported. We independently evaluate and
report the performance of all methods on each subset, along with
the mean and standard deviation over all subsets.

For ourmethod and ablations, we use the RMSProp optimizer [47]
and perform a bayesian parameter search [44] for each subset to
set the optimal hyper-parameters respectively. We implement our
method based on Pytorch and stable-baselines, and conduct all our
experiments on a server with 2 NVIDIA Tesla V100 GPUs.

4.2 Baselines
We compare our methods with the following baselines: (1) Pair
selection methods: they mainly focus on selecting the optimal
asset pair which is expected to yield the best performance with
threshold-based trading rules, such as GGR [16] which uses aver-
age Euclidean distance to select pairs, Cointegration [50] which
adopts the augmented Engle-Granger two-step cointegration test to
select the trading pair, and Correlation [11] which selects two as-
sets that have the highest correlation. (2) Trading methods: they
generally aim to train an agent to perform optimal trading actions
with the asset pair which is generally selected using the augmented
Engle-Granger two-step cointegration test, i.e, Wang et al. [51]
that adopting the reinforcement learning to maximize the overall
profit.

4.3 Metrics
As previous trading methods [51], we first evaluate our method
along with baselines with their trading performance on the test
data using (1) Sharpe ratio (SR) is the ratio of the profit to the
risk [45], which is calculated as (𝐸 (𝑅𝑡 ) − 𝑅𝑓 )/𝑉 (𝑅𝑡 ), where 𝑅𝑡
is the daily return and 𝑅𝑓 is a risk-free daily return that is set
to 0.000085 as previous methods. (2) Annualized return (AR)
is the expected profit of the agent when trading for a year. (3)
Maximum drawdown (MDD)measures the risk as the maximum
potential loss from a peak to a trough during the trading period. (4)
Annualized Volatility (AV) measures the risk as the volatility of
return over the course of a year.

We also employ fundamental measurements to measure the se-
lected pair of all methods: average Euclidean distance (ED) [16]
which is the average euclidean distance of the historical price series
of two assets.

4.4 Main Results
As shown in Table 2, our method TRIALS achieves the best per-
formance among all methods in all metrics and most stock subsets
of both S&P 500 and CSI 300. The detailed performance of each
subset in two datasets is presented in Appendix C. It demonstrates
the effectiveness of our method for simultaneously learning the
pair selection and trading with a unified hierarchical reinforcement
learning framework. In detail, TRIALS has the highest average SR

and AR, which indicates that our trained trading agent can yield a
remarkable profit with controlled risks based on the selected pair
of our method. Our method presents a consistently high perfor-
mance in two datasets, which clearly shows the two tasks in our
unified framework are complementary since the pair selection task
requires the trading performance of assets while the trading task
depends on the selected pair. This is further proved when TRIALS
also yields the lowest average MDD in S&P 500 and a relatively low
MDD in CSI 300. Since AV indicates both the fluctuations during
rises and falls, our method presents a relatively high average AV in
both datasets.

In contrast, previous pair selection methods such as GGR, Coin-
tegration, and Correlation, underperform our method. The average
SR of GGR is -1.37 and -1.19, and its AR in both two datasets are
negative. Cointegration has an even worse average SR of -1.83 and
-1.50, and also negative AR in both datasets. Similarly, correlation
shows an average SR as -1.41 and -1.37 along with a negative SR. It
clearly shows that pair selection methods based on pre-defined sta-
tistical tests or fundamental measurements would fail to select the
optimal trading pair without considering the trading performance
of the asset pairs. Moreover, the statistical tests and fundamental
measurements adopted in their methods cannot measure the prof-
itability of the asset pair even with the test data. For example, our
method has a higher ED compared with existing methods, despite
the fact that our method yields a significant profit in both datasets.

As for trading methods such as Wang et al. which adopt re-
inforcement learning to train a flexible agent, it shows a better
performance than pair trading methods such as Cointegration with
the same selected pair. However, it is limited by the selected pair
based on the cointegration test which is shown to be ineffective in
capturing the profitability of the asset pair, resulting in a lower SR
compared with our method.

4.5 Ablation Study
To evaluate the contributions of two tasks in our unified framework,
we further propose an ablation of our proposed method to compare
with our method, as shown in Table 2, which is TRIALS wo TR
that adopts a fixed trading agent with predefined thresholds after
our RL based pair selection.

Compared with TRIALS wo TR, our method which jointly opti-
mizes the two tasks presents the best performance with the highest
average SR and lowest average ED. In contrast, TRIALS wo TR is
misguided by the trading performance of fixed trading rules which
strongly relies on the wrong estimation of the mean and standard
deviation of the price spread as the historical mean and standard
deviation, resulting in a worse result in comparison to our method.

However, TRIALS wo TR still outperforms existing parameter-
free methods, which proves the importance of dynamically learning
the measurement of the future profitability according to their trad-
ing performance in pair selection.

We also display the visualizations of the learned pair selection
probability of our method in Fig.3. It clearly shows that our method
can precisely capture the complex connections between asset pairs.
For example, EQR engages in the real estate investment and ABT
engages in chemicals. Although there are no direct connections,
our method finds that they are strongly and consistently correlated,
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Model GGR Cointegration Correlation Wang TRIALS TRIALS wo TR

S&P 500

SR⇑ -1.37
(0.79)

-1.83
(0.27)

-1.41
(0.21)

1.18
(0.43)

1.84
(0.24)

0.07
(0.16)

AR⇑ -0.15
(0.09)

-0.36
(0.20)

-0.14
(0.05)

0.21
(0.11)

0.50
(0.14)

0.01
(0.20)

MDD⇑ -0.20
(0.08)

-0.37
(0.20)

-0.20
(0.04)

-0.09
(0.05)

-0.09
(0.01)

-0.25
(0.07)

AV⇓ 0.13
(0.03)

0.27
(0.20)

0.12
(0.02)

0.16
(0.06)

0.22
(0.04)

0.22
(0.04)

ED⇓ 0.014
(5e-3)

0.021
(0.02)

0.007
(0.002)

0.021
(0.02)

0.037
(0.01)

0.01
(4e-3)

CSI 300

SR⇑ -1.19
(0.74)

-1.50
(0.97)

-1.37
(0.25)

0.75
(0.68)

1.91
(0.88)

0.95
(0.88)

AR⇑ -0.17
(0.11)

-0.25
(0.17)

-0.21
(0.07)

0.24
(0.23)

0.68
(0.51)

0.13
(0.12)

MDD⇑ -0.29
(0.06)

-0.29
(0.13)

-0.25
(0.06)

-0.18
(0.09)

-0.14
(0.07)

-0.12
(0.09)

AV⇓ 0.18
(0.03)

0.19
(0.03)

0.17
(0.05)

0.25
(0.07)

0.26
(0.09)

0.17
(0.07)

ED⇓ 0.013
(6e-3)

0.017
(8e-3)

0.015
(8e-3)

0.017
(8e-3)

0.046
(0.02)

0.02
(8e-3)

Table 2: Mean(Standard Deviation) of all metrics on S&P 500 and CSI 300.
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Figure 3: The pair selection probabilities of TRIALS.

which indicates a more complex multi-hop relationship between
these two stocks such as industry spillover. Besides, we display
the temporal attention of our method in Fig.4. As shown in Fig.4,
our method can fully exploit the temporal information by temporal
attention, which means, for AAPL, we would focus more on the
latest features.
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Figure 4: The visualization of temporal attentions

4.6 Case Study
To further verify the profitability of the selected pair and learned
trading agent of our method, we show the detailed trading actions,
positions, and profit during the trading period of the selected pair by
TRIALS, TRIALS wo TR, GGR, and Wang et al. in Set 2, as shown in
Fig.5. The larger version of these figures is presented in Appendix B.
Since GGR and Wang et al. both ignore the trading performance of
assets, there are irrelevant movements of the prices of the selected
pair such as NEE and MS, resulting in wrong tradings with great
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(a) The trading detail of TRIALS. (b) The trading detail of TRIALS wo TR.

(c) The trading detail of GGR. (d) The trading detail of Wang et al.

Figure 5: The trading details

loss. As for GGR and TRIALS w/o TR, they show irrational trading
decisions due to the wrongly-estimated thresholds for trading, also
leading to poor trading performance.

Compared with them, our method that jointly learns to select
optimal pair and trade can simultaneously consider the information
of all assets and dynamically learns the measurement according
to the optimal trading performance based on a flexible agent. It
allows our method to select the profitable pair CAT and IPG, which
shows multiple trading opportunities in the trading period which
are precisely captured by our trained trading method. Besides, our
method can observe multiple asset pairs, which forces the worker to
capture the consistent pattern for pair trading instead of overfitting
to only one selected asset pair. Thus the worker in our method can
precisely capture the trading opportunities and yield significant
profit.

In contrast, although TRIALS w/o TR also learns to dynami-
cally select asset pairs according to their trading performance, the
fixed-threshold-based trading method can only provide biased in-
formation, resulting in less profitable pair selection.

5 CONCLUSION
In this paper, we proposed a novel paradigm for automatic pair
trading that unifies the two sub-tasks: pair selection and trading.
Based on it, we designed a feudal hierarchical reinforcement learn-
ing method consisting of a high-level manager for selection and
a low-level worker for trading. The manager focused on selecting
a pair as the option from all possible combinations of assets to
maximize its trading performance, while the worker was to achieve
the option set by the manager and yield the trading performance
of the selected pair after training on historical data. Experimen-
tal results on the real-world stock data prove that the two steps
in pair trading are closely related and complementary, which our
method can fully exploit and jointly optimize to generate a sig-
nificant improvement compared with existing pair selection and
trading methods. In the future, we would further integrate more

representation methods for learning the representations of assets
and consider other information such as natural language texts and
macroeconomic variables.
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A STOCK SUBSET
In this section, we present the stocks of all 5 randomly split sub-
groups in the U.S. and Chinese stock markets in Table 3 and Table
4 respectively.

Set Stocks

1

AMAT, AXP, BA, BAX, EA, EBAY, ED, EOG,
GLW, IBM, IRM, LMT, MAS, MCO, MMM, MOS,
NUE, PFE, PG, PPL, QCOM, RTX, SLB, SPG,
SWKS, TGT, TXT, UNH, USB, WY

2

AAPL, ABT, ADSK, ALB, AMGN, APD, BLK, CAT,
CDNS, CLX, COF, DE, DHI, EMR, EQR, FE,
FMC, GIS, IP, IPG, JPM, MS, NEE, NEM,
NTAP, NWL, ROP, ROST, TJX, VLO

3

ADBE, AES, AVY, BSX, C, CAH, CCL, CL,
CMI, CTSH, DOV, DUK, EXC, F, GE, HSY,
KO, KR, LUV, MRO,MSFT, NKE, PEAK, PLD,
PNC, SCHW, SYY, UPS, VFC, YUM

4

A, ADM, ALL, ATVI, AZO, BMY, COST, CSCO,
CVX, FCX, FDX, GS, HAL, HD, INTC, K,
KIM, LEN, LOW, MCD,MMC, MRK, MSI, NVDA,
PHM, STT, T, WMB, XOM, XRAY

5

AMZN, AON, APA, BAC, BBY, BEN, BK, CMCSA,
CPRT, CVS,DHR, EIX, ETN, FAST, HON, HUM,
MCK, MO, MTB, NLOK, PCAR, PGR, SBUX, TER,
TRV, UNP, VZ, WFC, WHR, WMT

Table 3: The stocks of subsets for S&P 500.
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Set Stocks

1

000012,000016,000022,000024,000027,000029, 000046,000059,
000068,000088,000422,000518, 000520,000539,000541,000559,
000568,000598, 000625,000627,000671,000698,000708,000712,
000717,000729,000776,000825,000831,000878, 000916,000920,
000933,600061,600108,600109, 600118,600125,600138,600151,
600183,600228, 600239,600602,600611,600641,600642,600688,
600710,600717,600744,600770,600795,600811, 600820,600832,
600875,600884,600886,600893

2

000009,000089,000401,000402,000420,000425,000503,000507,
000536,000538,000553,000623,000709,000758,000806,000900,
000912,000927,000937,000938,600005,600009,600057,600058,
600066,600078,600111,600115,600123,600150,600153,600157,
600170,600177,600190,600196,600266,600600,600601,600606,
600639,600643,600649,600662,600724,600726,600780,600783,
600797,600804,600809,600812,600835,600838,600863,600879,
600880,600881,600887,600894

3

000031,000069,000423,000532,000562,000571,000599,000601,
000630,000631,000651,000661,000666,000690,000738,000750,
000767,000768,000778,000780,000793,000823,000828,000898,
000921,000930,000932,600072,600079,600085,600088,600091,
600096,600100,600104,600117,600135,600169,600171,600198,
600200,600210,600216,600608,600630,600635,600657,600663,
600704,600707,600718,600737,600739,600747,600823,600839,
600866,600868,600873,600874

4

000021,000036,000061,000063,000066,000408,000413,000498,
000528,000533,000550,000596,000612,000667,000682,000686,
000703,000707,000718,000728,000735,000737,000786,000883,
000886,000897,000939,000951,600006,600062,600074,600098,
600103,600110,600121,600126,600176,600215,600219,600220,
600221,600621,600633,600648,600654,600655,600660,600675,
600705,600748,600757,600761,600779,600808,600816,600827,
600837,600854,600867,600895

5

000001,000002,000039,000060,000400,000415,000429,000543,
000573,000581,000607,000629,000636,000652,000656,000659,
000680,000685,000727,000733,000783,000792,000800,000807,
000822,000826,000839,000858,000876,000895,000917,000949,
000959,600000,600007,600060,600068,600073,600089,600132,
600161,600188,600207,600208,600637,600638,600652,600653,
600664,600674,600690,600694,600703,600733,600741,600760,
600790,600805,600851,600871

Table 4: The stocks of subsets for CSI 300.

B RESULT PRESENTATION
We present a larger version of the detailed trading actions, posi-
tions, and profit during the trading period of the selected pair by
BanditPair and GGR in Set 2 of S&P 500, as shown in Fig.6.

C DETAIL PERFORMANCE
As shown in Table 5 and Table 6, we report in this section the
performance of each approach over all 5 subgroups of the U.S. and
Chinese stock markets.
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Model GGR Cointegration Correlation Wang TRIALS TRIALS wo TR

Set 1

SR⇑ -0.39 -1.56 -1.26 1.32 1.57 -0.08

AR⇑ -0.03 -0.39 -0.14 0.32 0.51 -0.04

MDD⇑ -0.15 -0.41 -0.23 -0.11 -0.09 -0.32

AV⇓ 0.12 0.30 0.13 0.21 0.27 0.28

ED⇓ 0.008 0.035 0.010 0.036 0.027 0.011

Set 2

SR⇑ -2.01 -1.84 -1.58 0.73 2.10 -0.08

AR⇑ -0.29 -0.20 -0.19 0.14 0.64 -0.01

MDD⇑ -0.33 -0.25 -0.22 -0.08 0.11 -0.21

AV⇓ 0.17 0.13 0.14 0.17 0.24 0.19

ED⇓ 0.015 0.008 0.006 0.008 0.037 0.010

Set 3

SR⇑ -1.49 -1.74 -1.30 1.70 1.86 0.02

AR⇑ -0.20 -0.74 -0.10 0.36 0.34 0.10

MDD⇑ -0.24 -0.74 -0.13 -0.10 -0.08 -0.20

AV⇓ 0.16 0.65 0.09 0.18 0.15 0.20

ED⇓ 0.022 0.044 0.005 0.005 0.029 0.008

Set 4

SR⇑ -0.55 -1.66 -1.16 1.51 2.10 0.15

AR⇑ -0.06 -0.18 -0.08 0.10 0.67 0.03

MDD⇑ -0.10 -0.20 -0.16 0 -0.10 -0.33

AV⇓ 0.14 0.13 0.09 0.05 0.25 0.24

ED⇓ 0.016 0.006 0.006 0.006 0.060 0.302

Set 5

SR⇑ -2.42 -2.35 -1.73 0.61 1.56 0.35

AR⇑ -0.16 -0.27 -0.20 0.13 0.34 0.07

MDD⇑ -0.19 -0.27 -0.25 -0.14 -0.09 -0.18

AV⇓ 0.08 0.13 0.13 0.19 0.18 0.18

ED⇓ 0.010 0.009 0.007 0.007 0.033 0.009

Mean
(Std)

SR⇑ -1.37
(0.79)

-1.83
(0.27)

-1.41
(0.21)

1.18
(0.43)

1.84
(0.24)

0.07
(0.16)

AR⇑ -0.15
(0.09)

-0.36
(0.20)

-0.14
(0.05)

0.21
(0.11)

0.50
(0.14)

0.01
(0.20)

MDD⇑ -0.20
(0.08)

-0.37
(0.20)

-0.20
(0.04)

-0.09
(0.05)

-0.09
(0.01)

-0.25
(0.07)

AV⇓ 0.13
(0.03)

0.27
(0.20)

0.12
(0.02)

0.16
(0.06)

0.22
(0.04)

0.22
(0.04)

ED⇓ 0.014
(5e-3)

0.021
(0.02)

0.007
(0.002)

0.021
(0.02)

0.037
(0.01)

0.01
(4e-3)

Table 5: Trading performance on S&P 500.
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(a) The trading detail of TRIALS.

(b) The trading detail of TRIALS w/o TR.

(c) The trading detail of GGR.

(d) The trading detail of Wang et al.

Figure 6: The trading details
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Model GGR Cointegration Correlation Wang TRIALS TRIALS wo TR

Set 1

SR⇑ 0.22 -2.19 -0.20 0.19 0.75 0.73

AR⇑ 0.05 -0.31 -7e-3 0.05 0.13 0.14

MDD⇑ -0.27 -0.30 -0.11 -0.22 -0.08 -0.16

AV⇓ 0.20 0.17 0.11 0.16 0.15 0.17

ED⇓ 0.007 0.008* 0.011 0.008* 0.006 0.015

Set 2

SR⇑ -1.18 -1.55 -1.27 0.17 2.41 1.11

AR⇑ -0.18 -0.21 -0.16 0.04 0.31 0.11

MDD⇑ -0.31 -0.27 -0.21 -0.18 -0.14 -0.10

AV⇓ 0.17 0.16 0.14 0.12 0.10 0.19

ED⇓ 0.016 0.007 0.031 0.007 0.023 0.008

Set 3

SR⇑ -1.54 -0.60 -0.62 1.61 0.31 0.56

AR⇑ -0.15 -0.11 -0.08 0.24 0.06 0.08

MDD⇑ -0.15 -0.18 -0.18 -0.29 -0.12 -0.12

AV⇓ 0.12 0.20 0.16 0.10 0.17 0.12

ED⇓ 0.007* 0.018 0.009 0.018 0.011 0.007

Set 4

SR⇑ -1.90 -2.68 -1.06 0.79 2.57 2.36

AR⇑ -0.29 -0.47 -0.22 0.29 0.53 0.45

MDD⇑ -0.08 -0.10 -0.07 -0.70 0 0

AV⇓ 0.18 0.23 0.23 0.24 0.16 0.15

ED⇓ 0.013 0.028* 0.014 0.028* 0.056 0.018

Set 5

SR⇑ -0.68 -0.03 -1.76 1.91 1.03 1.03

AR⇑ -0.14 -6e-4 -0.24 0.69 0.17 0.17

MDD⇑ -0.32 -0.14 -0.23 -0.79 -0.11 -0.11

AV⇓ 0.22 0.18 0.16 0.20 0.15 0.15

ED⇓ 0.024 0.024 0.011 0.024 0.024 0.014

Mean
(Std)

SR⇑ -1.19
(0.74)

-1.50
(0.97)

-1.37
(0.25)

0.75
(0.68)

1.91
(0.88)

0.95
(0.88)

AR⇑ -0.17
(0.11)

-0.25
(0.17)

-0.21
(0.07)

0.24
(0.23)

0.68
(0.51)

0.13
(0.12)

MDD⇑ -0.29
(0.06)

-0.29
(0.13)

-0.25
(0.06)

-0.18
(0.09)

-0.14
(0.07)

-0.12
(0.09)

AV⇓ 0.18
(0.03)

0.19
(0.03)

0.17
(0.05)

0.25
(0.07)

0.26
(0.09)

0.17
(0.07)

ED⇓ 0.013
(6e-3)

0.017
(8e-3)

0.015
(8e-3)

0.017
(8e-3)

0.046
(0.02)

0.02
(8e-3)

Table 6: Trading performance on CSI 300.
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