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Abstract—We propose a novel symbolic modeling framework
for decision-making under risk that merges interpretability with
the core insights of Prospect Theory. Our approach replaces
opaque utility curves and probability weighting functions with
transparent, effect-size-guided features. We mathematically for-
malize the method, demonstrate its ability to replicate well-known
framing and loss-aversion phenomena, and provide an end-to-
end empirical validation on synthetic datasets. The resulting
model achieves competitive predictive performance while yielding
clear coefficients mapped onto psychological constructs, making
it suitable for applications ranging from AI safety to economic
policy analysis.

Index Terms—Prospect Theory, Symbolic AI, Interpretability,
Effect Size, Decision-Making under Risk

I. INTRODUCTION

Expected Utility Theory (EUT) [1], [2] has historically
served as the cornerstone of economic and game-theoretic
choice models under uncertainty. However, a wealth of ex-
perimental evidence reveals consistent violations of EUT,
including preference reversals, framing effects, and risk asym-
metries [3], [4]. These observations motivated alternative
frameworks such as Prospect Theory (PT) [5] and its cumu-
lative variant [6], which integrate psychological factors (loss
aversion, probability distortion) into the utility calculation [7].

While PT has strong empirical support, its practical deploy-
ment encounters two major hurdles [8]. First, structural esti-
mation of PT can be complex, relying on nonlinear utility and
weighting functions that can be computationally fragile and
difficult to interpret [9]. Second, black-box machine learning
models used for risk classification often lack the psychological
grounding and interpretability required in high-stakes domains
such as healthcare, finance, and AI safety [10]. Thus, a gap
remains for cognitively faithful and computationally tractable
models.

In this paper, we present a symbolic prospect-theoretic
approach, which approximates the core mechanisms
of PT through a logistic decision equation defined
on interpretable features (e.g., frame, certainty,
probability_level, magnitude). We further propose
an effect-size-guided method for feature selection, ensuring
that each symbolic feature retained has a statistically
measurable impact on choice behavior. This hybrid strategy
achieves:

• Interpretability: Each coefficient directly corresponds to
a Prospect Theory construct (framing, probability distor-
tion, etc.).

• Data efficiency: Incorporating only behaviorally relevant
features avoids over-parameterization in utility curves.

• Robustness: Using effect-size thresholds makes the model
more parsimonious and stable.

Empirical simulations on synthetic datasets demonstrate that
our model reproduces key PT phenomena, including loss
aversion, reflection effects, and overweighting of rare events.
We also compare it against:

1) a classical Cumulative Prospect Theory estimator and
2) a standard logistic classifier lacking symbolic features.

Our results highlight strong predictive performance and a high
degree of alignment with established behavioral regularities.

II. BACKGROUND AND RELATED WORK

This section will describe Prospect Theory essentials, sym-
bolic AI, Interpretability, and Effect-Size-Guided feature se-
lection.

A. Prospect Theory Essentials

Prospect Theory (PT) [11], [12] posits that agents evaluate
outcomes relative to a reference point r, categorizing outcomes
as gains (x ≥ r) or losses (x < r). The value function
v(x) is typically concave for gains, convex for losses, and
steeper in the loss domain (loss aversion) [13]. Additionally,
PT includes a probability weighting function π(p) that distorts
probabilities, commonly overweighting small p and under-
weighting large p [5], [6]. Formally, a lottery L with outcomes
{(xi, pi)}ni=1 has PT-utility:

V (L) =

n∑
i=1

π(pi) v(xi − r). (1)

Various parametric forms exist for v(·) (e.g., piecewise power)
and π(·) (e.g., Prelec). Estimating these from data can be
sensitive and prone to local optima [9], [14].

B. Symbolic AI and Interpretability

Symbolic approaches to AI emphasize transparency by
encoding domain knowledge in rules, logic, or algebraic
form [15], [16]. Unlike neural networks, symbolic models
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enable direct interpretation of parameters, facilitating trust and
auditability [17], [18] in domains where decisions require clear
justification (e.g., medical diagnostics, policy-making) [17],
[19].

C. Effect-Size-Guided Feature Selection

In standard ML, feature selection often relies on large
datasets or black-box methods [20], [21]. By contrast, effect-
size metrics (Cramér’s V , η2, point-biserial correlation) quan-
tify how strongly a feature correlates with the outcome [18],
[22]. We use such metrics to decide which symbolic features
are behaviorally relevant before fitting a logistic equation,
ensuring that each retained feature has demonstrable predictive
utility [20].

III. SYMBOLIC MODELING FRAMEWORK

This section will describe symbolic feature definition, lo-
gistic equation [23], effect-size thresholding, parameter esti-
mation, and synthetic data generation.

A. Symbolic Feature Definition

Let Di index a binary decision (0 = safe, 1 = risky). We
define a set of interpretable features Xi = (xi1, . . . , xid),
each aligned to a known behavioral phenomenon in PT [21].
Examples include:

• framei ∈ {−1,+1}: gain vs. loss context.
• certaintyi ∈ {0, 1}: indicates a sure option.
• prob_leveli ∈ {0, 1}: indicates a small-probability

event (p < 0.2).
• magnitudei ∈ R: a scaled difference in payoffs.
• dominancei ∈ {0, 1}: whether one option stochasti-

cally dominates the other.
The target label is yi ∈ {0, 1}, with 1 denoting choosing the
risky option.

B. Symbolic Logistic Equation

We posit a latent utility:

Ui = β0 +

d∑
j=1

βj xij + ϵi, (2)

where ϵi is logistic noise. The probability of risky choice is:

P(yi = 1) = σ(β⊤Xi), where σ(z) =
1

1 + e−z
. (3)

C. Effect-Size Thresholding

To avoid extraneous or weak features, we compute effect
sizes for each candidate xj :

S(xj) =

{
Cramér’s V (xj , y), xj categorical,
η2(xj , y), xj continuous.

(4)

We include only xj with S(xj) ≥ τ . This ensures the
final feature set is both cognitively plausible and empirically
relevant.

D. Parameter Estimation

Given the filtered Xi, we fit β via maximum likelihood:

β̂ = argmax
β

N∑
i=1

[
yi lnσ(β

⊤Xi)+(1−yi) ln
(
1−σ(β⊤Xi)

)]
.

(5)
Standard software (e.g., scikit-learn) handles optimiza-
tion and provides variance estimates for β.

IV. EMPIRICAL SIMULATIONS AND VALIDATION RESULTS

In this section, we evaluate our symbolic prospect-theoretic
framework on synthetically generated decision data. We com-
pare three models:

1) Symbolic Logistic Model: interpretable, effect-size–
guided features,

2) Black-box Logistic Model: raw numeric inputs without
interpretive constraints,

3) Parametric CPT Model: classical Prospect Theory with
a piecewise power value function and a probability
weighting function, fitted by maximum likelihood.

Our key objectives are to measure: (i) predictive perfor-
mance, (ii) ability to capture Prospect Theory behaviors (e.g.,
framing), and (iii) interpretability.

A. Synthetic Data Generation

We simulate N = 5000 binary choice scenarios, each with:
• a safe payoff Si ∈ [0, 100],
• a risky payoff Ri ∈ [0, 150] with probability pi ∈

[0.1, 0.9],
• symbolic features, e.g., frame ∈ {−1,+1}, low_prob

= I[pi < 0.2], dominance = I[piRi > Si], and so on.
We define a “true” latent utility for choosing the risky option

as:

Ui = β0 + β1(framei) + β2(low_probi) + β3(magnitudei)

+ β4(dominancei). (6)

The observed choice yi ∈ {0, 1} (with 1 denoting “risky”) is
drawn from

yi ∼ Bernoulli
(
σ(Ui)

)
, σ(z) =

1

1 + e−z
. (7)

We split data into 80% train and 20% test.

B. Model Specifications

We compare three decision models:
1) Symbolic Logistic Model, which uses

Prospect-Theory–grounded features;
2) Black-box Logistic Model, trained on raw payoffs and

probabilities; and
3) Parametric CPT Model, employing classical value and

weighting functions.

Common Notation. For each trial i:
• Safe payoff: Si,
• Risky payoff: Ri,
• Win probability: pi ∈ (0, 1),



• Frame: framei ∈ {−1,+1} (+1=gain, −1=loss),
• Choice: yi ∈ {0, 1} (1=risky chosen).

We write the logistic link as

σ(z) =
1

1 + e−z
.

1) Symbolic Logistic Model: Define the feature vector

X
(sym)
i =


1

framei
1[pi < 0.2]

Ri−Si

100
1[ piRi > Si ]

 =


1

framei
low probi
magnitudei
dominancei

 .

We then model

P (yi = 1) = σ
(
α0 + α1 framei + α2 low probi

+ α3 magnitudei + α4 dominancei

)
,

(8)

where α = (α0, . . . , α4)
⊤ are fit by maximum-likelihood lo-

gistic regression (with optional ℓ2 regularization). This model’s
strength lies in its direct mapping of each αj to a Prospect-
Theory construct.

Remark: While logistic regression is itself an interpretable
model, when trained on raw numeric inputs lacking behavioral
alignment (e.g., payoff values and probabilities), it functions
as a psychologically uninterpretable baseline. We refer to
this as the Black-box Logistic Model to distinguish it from
our symbolic logistic model whose features are explicitly
grounded in Prospect Theory constructs.

2) Black-box Logistic Model: Here we use the raw variables
directly:

P (yi = 1) = σ
(
γ0 + γ1 Si + γ2 Ri

+ γ3 pi + γ4 framei

)
,

(9)

with γ = (γ0, . . . , γ4)
⊤ again fit by maximum-likelihood. Be-

cause these inputs lack behavioral alignment, the coefficients
have no clear psychological interpretation.

3) Parametric CPT Model: The classical CPT estimator
uses a piece-wise value function

v(x) =

{
xα, x ≥ 0,

−λ (−x)β , x < 0,
(10)

and a Prelec weighting function

w(p) = exp
(
−[− ln(p)]γ

)
, (11)

where

α, β ∈ (0, 1], λ > 0 (loss aversion), γ > 0 (prob. distortion).

Compute subjective utilities

Usafe,i = v(Si), Urisky,i = w(pi) v(Ri),

then
P (yi = 1) = σ

(
η [Urisky,i − Usafe,i ]

)
, (12)

with sensitivity η > 0.

Estimation.: We fit θ = (α, β, λ, γ, η) by maximising the
log-likelihood of (12) on the training data, using 20 random
restarts and enforcing 0 < α, β, γ ≤ 1, λ, η > 0. Standard
errors are derived from the observed Fisher information.

All models are trained on 80% of the dataset and evaluated
on the remaining 20%.

C. Evaluation Metrics

We measure:
• Accuracy: fraction of correct predictions on the test

set [24], [25],
• AUC (area under ROC curve): ranking quality [24],
• Interpretability: clarity of how parameters map to known

PT or logistic features.

D. Quantitative Results

Table I and Fig 1 summarizes performance on the held-out
20% test set:

TABLE I
MODEL PERFORMANCE ON SYNTHETIC TEST DATA.

Model Accuracy AUC Interpretability

Symbolic Logistic 0.798 0.827 High
Black-box Logistic 0.757 0.797 Low
CPT Parametric 0.488 0.627 Moderate

The Symbolic Logistic Model consistently outperforms
the Black-box Logistic Model in accuracy and AUC while
maintaining full interpretability. While theoretically grounded,
the CPT model fails to match the predictive performance
of either baseline. This suggests that our symbolic approach
offers a robust and computationally efficient alternative to
nonlinear parametric estimation in contexts where interpretable
psychological effects are key.

Symbolic Black-box CPT
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Model Accuracy and AUC

Accuracy AUC

Fig. 1. Accuracy and AUC for each model on the test set. The Symbolic
Logistic model outperforms others in both metrics. Interpretability scores are
discussed in Table I.



E. Coefficient Interpretation and Reflection Effect

For the Symbolic Logistic Model [26], the learned co-
efficients (α̂0, . . . , α̂4) closely match the synthetic data-
generating parameters. In particular, α̂frame is negative, repli-
cating the reflection effect—lower risk preference in gain
frames and higher risk preference in loss frames—consistent
with the original formulation of Prospect Theory [3], [27],
[28].

Figure 2 plots the predicted probability of choosing the
risky option under gain vs. loss frames, holding other features
constant. The model reproduces Prospect Theory’s prediction
of elevated risk-taking behavior under loss-framed scenarios.

Fig. 2. Reflection effect in the symbolic model: higher risk preference in loss
frames.

F. CPT Parameter Estimates and Diagnostic Behavior

To evaluate the behavioral plausibility of the CPT model,
we analyzed the learned parameters: α̂ = 0.20, β̂ = 0.77,
λ̂ = 0.71, γ̂ = 2.00, and η̂ = 0.20. These values result in an
unusually flat value function and aggressive underweighting
of probabilities, leading to near-random predictions on most
trials.

Figure 3 shows the estimated value function v(x), which
exhibits low curvature and reduced loss sensitivity (λ̂ <
1). Figure 4 depicts the Prelec weighting function, where
γ̂ > 1 causes mid-range probabilities to be heavily under-
weighted—contrary to canonical Prospect Theory.

These patterns suggest that the CPT optimizer converged
to a degenerate region of the parameter space, likely due to
identifiability issues or local minima in the likelihood surface.
Despite its theoretical richness, the parametric CPT model
proved brittle under this estimation regime, while the Symbolic
Logistic model remained stable and interpretable.

V. DISCUSSION AND CONCLUSION

Our empirical findings underscore the value of a symbolic,
interpretable framework for modeling decision-making under
risk. The Symbolic Logistic Model, which encodes Prospect
Theory constructs into a linear classification architecture,
consistently outperformed the Black-box Logistic Model in

Fig. 3. Estimated CPT value function. Shallow slope and λ̂ < 1 indicate
weak loss aversion.

Fig. 4. Estimated Prelec probability weighting function. γ̂ = 2.0 causes
underweighting of most probabilities.

both accuracy and AUC, and even outperformed the CPT
Parametric Model in practice.

A. Interpretability and Alignment with Theory

The symbolic model achieved high predictive accuracy
while maintaining direct correspondence between its coef-
ficients and psychologically meaningful constructs such as
framing, loss dominance, and probability distortion. This in-
terpretability is not merely cosmetic—it enables behavioral
validation and theoretical mapping, offering a compelling
middle ground between rigid theory and empirical modeling.

B. Challenges in CPT Estimation

While the CPT model is theoretically well-established, its
empirical performance in our study was hindered by opti-
mization challenges. Despite using multiple random restarts
and behavioral parameter bounds, the model consistently con-
verged to a degenerate region of parameter space. The learned
value function lacked curvature and exhibited λ̂ < 1, implying



inverse loss aversion. Likewise, the Prelec weighting func-
tion’s high γ̂ value induced extreme underweighting of most
probabilities, diminishing the model’s ability to discriminate
between options.

These pathologies—captured graphically in Figures 3
and 4—highlight the fragility of CPT’s nonlinear estimation
pipeline, particularly in synthetic or noisy settings. In contrast,
the Symbolic Logistic Model remained stable, data-efficient,
and behaviorally faithful.

C. Implications for Cognitive Modeling and AI Ethics

Our results suggest that when properly aligned with be-
havioral theory, symbolic approaches can rival or exceed
classical utility-based models while offering enhanced trans-
parency [29], [30]. This has meaningful implications for high-
stakes domains such as clinical decision-making, insurance
risk modeling, or algorithmic fairness in AI systems, where
interpretability and auditability are paramount.

D. Future Directions

Future work can expand this framework in several di-
rections. First, real-world datasets involving multi-outcome
lotteries or longitudinal decision logs would provide a more
rigorous testbed. Second, hybrid architectures that combine
symbolic feature representations with neural backends may
allow richer inputs (e.g., images or text) while retaining inter-
pretability at the decision layer. Finally, introducing Bayesian
priors over symbolic features or coefficients may enable un-
certainty quantification and regularization grounded in psycho-
logical plausibility.

E. Conclusion

This study demonstrated that a Symbolic Prospect-Theoretic
framework offers a robust, interpretable, and empirically
grounded approach to modeling human choice under un-
certainty. Unlike the CPT model, which requires nonlinear
estimation and is sensitive to local minima, our method
remains computationally stable and aligns naturally with core
constructs in behavioral economics. As a result, it presents a
viable foundation for advancing interpretable cognitive models
in both scientific and applied AI domains.
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