
Relation-aware based Siamese Denoising
Autoencoder for Malware Few-shot Classification

Jinting Zhu∗, Julian Jang-Jaccard∗, Ian Welch†, Harith AI-Sahaf†, Seyit Camtepe‡ and Aeryn Dunmore∗
∗Cybersecurity Lab,Massey University, New Zealand

∗Email: jzhu3@massey.ac.nz
†School of Engineering and Computer Science, Victoria University of Wellington, Wellington, New Zealand

‡CSIRO Data61, Australia

Abstract—When malware employs an unseen zero-day exploit,
traditional security measures such as vulnerability scanners and
antivirus software can fail to detect them. This is because these
tools rely on known patches and signatures, which do not exist
for new zero-day attacks. Furthermore, existing machine learning
methods, which are trained on specific and occasionally outdated
malware samples, may struggle to adapt to features in new
malware. To address this issue, there is a need for a more
robust machine learning model that can identify relationships
between malware samples without being trained on a particular
malware feature set. This is particularly crucial in the field of
cybersecurity, where the number of malware samples is limited
and obfuscation techniques are widely used. Current approaches
using stacked autoencoders aim to remove the noise introduced
by obfuscation techniques through reconstruction of the input.
However, this approach ignores the semantic relationships be-
tween features across different malware samples. To overcome
this limitation, we propose a novel Siamese Neural Network
(SNN) that uses relation-aware embeddings to calculate more
accurate similarity probabilities based on semantic details of
different malware samples. In addition, by using entropy images
as inputs, our model can extract better structural information
and subtle differences in malware signatures, even in the presence
of obfuscation techniques. Evaluations on two large malware
sample sets using the N-shot and N-way methods show that our
proposed model is highly effective in predicting previously unseen
malware, even in the presence of obfuscation techniques.

I. INTRODUCTION

The security of nations and the privacy of individuals are
highly dependent on the safety and dependability of electronic
devices. The biggest risks in this sector often stem from
unknown threats, where malware is a major contributor. To ad-
dress these threats, cyber security professionals must have the
ability to accurately and quickly detect potential hazards and
identify ongoing attacks. This need has led to the development
of advanced deep learning-based detection methods, which
are essential for defence in the constantly evolving malware
landscape.

Malware detection refers to identifying whether a given
piece of software or a file is malicious or benign. In the
context of zero-day attacks, malware detection faces significant
challenges because these attacks use unknown vulnerabilities
and novel techniques that are not recognized by traditional
detection systems. Detection methods often rely on known
signatures, patterns, or behaviours that have been previously
identified and documented. However, in the case of zero-day

attacks, which exploit the unknown or unaddressed vulner-
ability is referred to as a zero-day vulnerability or zero-day
threat, as these signatures or patterns are not available, making
detection difficult.

Given the popularity of Artificial Intelligence (AI) tech-
niques, their application in detecting zero-day or unknown
malware has become increasingly sophisticated, particularly
with the integration of few-shot learning mechanisms. Few-
shot learning, a subset of machine learning, enables AI systems
to recognize new patterns or anomalies with minimal data
examples. This is especially crucial for identifying zero-
day threats, as these types of malware are often not well-
represented in large datasets. By using few-shot learning, AI
algorithms can quickly adapt to and recognize new, previously
unseen forms of malware with very few examples, significantly
enhancing the speed and efficiency of threat detection. This
approach is a game-changer in cybersecurity, offering robust
defenses against emerging and rapidly evolving digital threats

Among them, many deep learning methods based on static
and dynamic features have been proposed. Motivated by
promising results in the use of AI, various feature-based
detection models have been proposed, including using malware
grayscale images [1] and entropy graphs [2], [3]. Although
these static features have improved AI models in the detection
of many known malware classes, they are vulnerable to new
malware which is without compiled signatures [4]. In addition,
these existing methods are also vulnerable to slight changes
in malware images, which also results in a decrease in the
detection accuracy, most likely due to applying obfuscation
techniques. To mitigate the influences of the obfuscation, [5]
and [6] proposed enhancing the feature representation methods
through an autoencoder. But they were still reported to be
vulnerable to many types of unseen samples [7], [8].

Due to the cost of dynamic feature analysis, more practi-
tioners have defaulted to static feature analysis as it provides
higher levels of efficiency[9]. However, one of the disadvan-
tages of the static feature analysis is that it is susceptible
to inaccuracies due to polymorphic and metamorphic obfus-
cation techniques. Even with the utilization of AI tools in
recent years, static feature analysis is still vulnerable to weak
representations of embedded spatial features and thus seems
to fail to capture core malware signatures [10]. One of the
weaknesses of static feature analysis is that a single feature is

ar
X

iv
:2

41
1.

14
02

9v
1

 [
cs

.C
R

]
 2

1
N

ov
 2

02
4

not always enough to represent the complex interrelationships
among malware. The limited abilities of single representations,
such as the feature learned from the spatial hierarchies through
a back-propagation algorithm, can not completely express
the complex relationships across malware data because there
is a non-linear relationship across the malicious code [11].
Therefore, a model that can capture the relation of malware
through feature embedding is needed. The artificial white noise
can also influence the accuracy of a given detection model in
a probability distribution of zero value in the grey image, such
as no operation (NOP) obfuscation; Entropy is employed to
identify anomalies, unusual patterns, or irregular behaviours in
data, often indicative of malicious activity. Malware and cyber-
attacks typically manifest through such atypical data patterns,
which are effectively discernible via entropy-based analysis.
Additionally, this method demonstrates resilience against noise
introduced by malware developers, enhancing its efficacy in
cybersecurity applications

Malware developers use obfuscation techniques to reduce
the likelihood of detection [12]. To help mitigate this potential
threat, we posit that a robust feature relation can greatly help
the task of malware detection , as malware functions that
exist in a non-relation-aware context operate independently of
the relationships or interactions among system components.
We set out to examine relation-aware few-shot learning with
robust features and to capture the underlying image regularity
in malware samples in which a specific pattern links to the
corresponding malicious function. By using feature relations
[13], [14], we can uncover groups of correlated malware
with common features [15], [16], [17]. Sharma et al. [11]
found that the underlying physical processes behind converting
malware binaries to images are highly non-linear [11], and
this correlation exists between malware instances. Other works
tend to focus on either the correlation between the malware
samples [18] or only on an individual robust feature for the
malware samples. In this study, we provide a novel insight into
how detection mechanisms are constructed using a relation-
aware Siamese embedding in the context of few-shot learning
to classify unseen, obfuscated malware samples. The major
contributions of this paper are:

• Our proposed solution involves utilizing entropy-based
features to train our model, rather than relying solely on
traditional malware image features. The use of entropy-
based features allows for a more comprehensive capture
of the distinctiveness and structural information of the
malware. This leads to improved accuracy when identi-
fying different malware signatures and discovering simi-
larities in obfuscated malware. This innovative approach
significantly contributes to the effective differentiation of
malware classes.

• We propose the implementation of a cutting-edge
Siamese Neural Network (SNN) combined with denois-
ing autoencoders. The utilization of SNN enables our
machine learning model to efficiently classify malware
classes, even when limited samples are available. More-

over, the integration of denoising autoencoders with a
relation-aware module in each branch of the SNN enables
us to effectively capture the semantic differences and the
complex nonlinear relationships between features, in a
pairwise malware comparison.

• Instead of relying on traditional distance scores, our
model incorporates relation-aware embeddings to output
more precise similarity probabilities between various
malware samples. This innovative approach enhances
the accuracy of our learning model and enables it to
distinguish between different malware signatures more
effectively.

• Our proposed model has undergone thorough evaluation
and analysis using two substantial sets of malware sam-
ples and the N-shot and N-way methods. The results
demonstrate that our model is highly efficient in iden-
tifying zero-day malware attacks, even those modified by
obfuscation techniques.

The next section begins with related work in Section II. Sec-
tion III introduces the preliminary materials in the obfuscation
technique. Section IV provides the method for constructing our
model and the details of our network architecture. In Section
V, we provide an ablation experiment to clarify our model’s
ability and provide multiple analyses for hyperparameters.
Finally, this paper concludes in Section VI, which provides a
summary, conclusion, and potential directions for future work.

II. RELATED WORK

1) Relational exploring for malware detection: Reveal-
Droid [19] simultaneously adopted multiple types of features
to train their detection model for Android malware. This
method declares that it supports the resistance of four ob-
fuscation techniques: API reflection obfuscation, class name
obfuscation, array encryption, and string encryption. However,
with the limited capability of the model as trained and tested
on the seen classes, it is difficult to apply in a real scenario
where unknown attacks are common. Xu et al. [20] explored
the structural and semantic relations in Android applica-
tions through the entity feature combined with matrices and
meta-paths. Moreover, the imbalanced property of malicious
behavior exists universally in this field. Zheng et al. [21]
applied a meta-learning approach to a classification task of
encrypted traffic and to classify unseen categories based on a
few labeled samples. Han et al. [22] analyze the underlying
correlation given by the explainable framework between the
dynamic and static API call sequences of malware in order to
construct the hybrid feature vector space. Nikolopoulos et al.
[23] constructed the System-call Dependency Graphs obtained
through the dynamic taint analysis over the execution of a
program that exploited the valuable structural characteristics
of the augmented graphs. Mpanti et al. [24] generated the
graph given by degrees and the vertex-weights by utilizing
the functionality of system calls to extend the representation
of malicious behaviors. Above all, generalization on unseen
malicious attacks without depending overly on data size has
proven challenging.

2

Fig. 1: Feature Processing for Entropy Image

2) Malware classification with the feature extraction: The
cybersecurity community has explored automated malware
behavior analysis in the last decade. Many detection mech-
anisms have been proposed to prevent attacks on individual
and national data. The cognitive mechanism to understand the
malware characteristics in the semantic information involves
the dynamic and static features [25], [26], [27], [28], [29],
though the hybrid features [30], [31], [32] are also considered
in some cases.

N-grams have been used as features in several works and
are one of the most common feature types for static analysis.
Byte n-grams are particularly attractive since they require
no knowledge of the file format and do not require any
dynamic analysis. In this manner, one could potentially learn
information from both the headers and the binary code sections
of an executable [33], [34]. This approach is similar to the
research proposed by Kang et al. [35], which captured similar
information through the bytecode frequency. Additionally to
the use of n-gram features for the static analysis, Nataraj et
al. [36] first proposed a technique to extract pixel features
from the grayscale images translated from the raw bytecode
PE files of malware. Motivated by these grayscale features,
Bakour et al. [37] proposed a hybridized ensemble approach
using both local and global features as a voter to make a
decision in an ensemble voting classifier. Although they take
the overfitting problems related to the imbalanced dataset
into account, in addition to the small number of malware
samples, they ignore the effect on performance caused by the
polymorphic obfuscation. In such a situation, the texture of
the malware images could be intentionally changed. Without
this consideration, performance in existing malware detection
research can achieve high accuracy on some datasets, but it
cannot effectively detect obfuscated variants of malware, and
as such the effectiveness of these methods drops dramatically.

Jeon et al. [38] also proposed a hybrid scheme for mal-
ware detection that extracts the static features of the opcode
sequence in the static feature classification step. To overcome
the shortages caused by static in the obfuscated malware, they
also take the dynamic features into account in the next step and

Fig. 2: Obfuscated Code of No Operation (NOP) Insertion

execute the files in a nested virtual environment. Although the
improved approach enables classifying the obfuscated malware
based on hybrid features, most of the existing cybersecurity
assessment tools act on real systems, incurring high costs and
risk [39], [40] and potentially leading to failure [41] in the
virtual environment.

3) Denoising autoencoder for malware detection: One
method of unsupervised learning within the research consists
of an autoencoder architecture [42], [43], [44], which can learn
the reconstructed features from noised samples. Alahmadi et
al. [45] aim to extract meaningful features with the use of
stacked convolutional denoising autoencoders (CAE) because
the obfuscation and the complex nature of these malicious
scripts causes bias in feature selection. Sandra et al. [46]
regarded the adversarial examples as noise that assists the
malware samples in evading detection based on a deep learning
model. To improve malware defenses, they aim to eliminate
most noise in malware images through the denoising autoen-
coder. In addition, Salman et al. [5] proposed an unsupervised
deep learning-based model based on denoising autoencoders
that de-anonymizes the mutated traffic to detect a malicious
attack using obfuscation techniques which, when applied to the
traffic’s statistical characteristics, cause a misclassification.

3

III. OBFUSCATION MATERIALS

A. Bytecode-based Junk code for Obfuscation

Junk code obfuscation is a technique which makes exe-
cutable files impossible to decompile into source code, or
impedes the ability to understand a decompiled program, even
while the original semantic function is preserved. Jien-Tsai
et al. [47] proposed the technique to intentionally introduce
syntactic and semantic errors, called junk code, into a de-
compiled program such that the program would have to be
debugged manually, resulting in a bytecode, signature-based
anti-virus generating an error or failing in the task of malware
detection.

Obfuscation techniques can be applied to benign software to
prevent the benign application from being implanted with ma-
licious functions or intentionally modified for other interests.
Alternatively, the obfuscation technique can also be exploited
into malware to defend against static analysis methods and top-
rated anti-malware products. Malware authors employ poly-
morphic and metamorphic obfuscation techniques, such as No
Operation (NOP) insertion, altering the control flow into the
source function to evade anti-malware solutions which use the
opcode sequence as the malware signature [48], [47]. Under
this situation, a variant may be included with an arbitrary
number of additions, modifications, or deletions to the code
by inserting malicious functions, so as to maintain the original
semantic information. Specifically, a malware variant is rep-
resented as: Mapp = m1,mmod2 ,m3,madd1 ,madd2 , ...,mn,
where madd1

, madd2
are inserted codes and mmod2

is the cor-
responding code modification of m2 while still maintaining the
intended functionality. Evolutionary possibilities of malware
variants are more pronounced in opcode or hexdump [49].
To visualize this procedure, Fig. 1 illustrates the connection
between machine instructions, opcodes, and the hexdump. The
hexdump is usually a common representation for a disas-
sembled analysis, also known as the static representation of
an executable file (or data in general), related to machine
instructions or termed opcodes. It is a technique that aims
to analyze several types of files, including execution files,
shared libraries, object files, etc. The easiest way to obfuscate
malware samples is via the bytecode, which is considered as
an interpreter executes. It can also be compiled into machine
code (opcode) for the target platform. We implemented the
operation on the bytecode with the hexdump of malware
samples in the datasets to create our synthetic dataset used
in this paper.

B. Obfuscation of No Operation (NOP) Insertion

No-op instruction (NOP) obfuscation, as shown in Fig
2, is used to waste the CPU execution cycle, where NOP
is an assembly language instruction that does nothing. An
obfuscated malware sample synthesizes the original Android
samples with NOP instruction, which is randomly added into
the disassembled methods while preserving the semantic in-
formation [48], [50]. It is possible to evade malware detection
solutions employing opcode sequences as malware signatures,

through repeats of randomly inserting the bytecode of NOP
multiple times at ambiguous positions in the hexdump form
of a malware sample.

IV. METHODOLOGY

Our approach involves a few-shot classification task using a
Siamese denoising autoencoder against junk code obfuscation.
The details of the proposed scheme are presented in this
section. The evolution of malware samples often has a certain
inheritance correlation with the key functions of previous
versions, or the key functions are packaged with multiple
obfuscation techniques to evade detection. The core of its
detection is to mine such a property that it will be able
to detect new versions that exist or evolve in the future.
A generic few-shot learning method establishes a metric
embedding trained through the support and query samples.
In this work, the relationships are established by a Siamese
relation-aware feature embedding, as shown in Fig 4. With
the embedding learned through the fully connected layer (FC)
or the convolutional layer (CNN), an input feature can be
projected onto the embedding to calculate the relation score
between the support sample and the query sample. A relation-
aware embedding trained in this manner can predict samples
in the untrained class through the query samples.

A. The Entropy Feature Conversion

Entropy feature conversion aims to measure the uncertainty
distribution of the information. Moreover, Vidya et al. [51]
argue that the entropy feature has better feature representation
since it exhibits higher uniqueness and entropy values are
incorporated from local regions to add extra information
content to these images. In the context of the malicious code,
we could build the malicious pattern with characteristics of
entropy information calculated from the binary pattern. In
[52], [53], the authors divided bytecodes into blocks of fixed
size, and then computed the Shannon entropy for each block.
We attempt to further their achievements in image recognition
using the entropy value converted from a binary pattern [29].
We assume that the entropy information can be converted
to an entropy image. This approach preserves the connected
information of each entropy sequence in the context of the
raw bytecode data, as Fig. 3 shows. The entropy images are
comprised of global and local entropy information that can be
calculated with the Shannon entropy equation below:

Ent = −
∑
i

∑
j

M(i, j)logM(i, j) (1)

where M is the probability of an occurrence of a byte value.
The Shannon entropy equation obtains the minimum value
of 0 when all bytecode of the malware have no changes.
Alternatively, the maximum entropy value of byte value 8
is obtained when all the bytecode is different. If specific
information of bytecode occurs with high probabilities, the
entropy value will be smaller. To visualize the entropy pattern
that reflects the pattern of entropy information and the intrinsic

4

(a) Bitman Entropy Pat-
tern

(b) Bitman Entropy Image

(c) Upatre Entropy Pat-
tern

(d) Upatre Entropy Image

Fig. 3: Entropy pattern corresponding to entropy image

connection of each sequence of raw bytecode, we built a grey-
scale matrix through Equation 2, and the entropy values are
then concatenated into a stream of values that can form an
entropy sequence.

P(i,j) = 2ent − 1 (2)

where ent denotes the entropy value of the bytecode block
(i, j) and P(i,j) means that the gray pixel value is in the range
of [0, 255]. The entropy images are concatenated with the
full entropy sequences sequentially to generate an 105× 105
entropy image. However, the sizes of bytecodes are different,
and we fix the width value to resize the image size to 105×
105.

B. Denoising AutoEncoder

In cybersecurity research, denoising encoders have been
widely used in recent years [42], [54], [55].This can be
attributed to the denoising autoencoder (DAE) network’s aim
to reconstruct the data to its original characteristics or its
uncorrupted version, without the noise. This noise can be
considered to be Gaussian noise, music [56], occluded faces
[57], or even junk code.

A typical denoising autoencoder can be stacked using
multiple convolutional layers consisting of encoders (E

M
2)

and decoders (D
M
2) in varied depths. Specifically, the first

M/2 hidden layers encode the input as a new representation,
and the last M/2 layer decodes the representation in the
latent embedding to reconstruct the input. We can define this
equation as:

z
(m,v)
i = a(Wm,v

ae zm−1,v
i + b(m,v)

ae) (3)

where z
(m,v)
i ∈ R and dm,v is the number of nodes,

{Wm,v
ae , b

(m,v)
ae } is the parameter set for all layers with

M + 1 being the number of layers of our network while
a(·) is a nonlinear activation function. The feature matrix is
X(p) = [xp

1, x
p
2, , ..., x

p
3],∈ Rdp×n for one of the sub-networks.

Meanwhile, the corresponding reconstructed representation is
denoted as:

Z(M,v) = [z
(M,v)
1 , z

(M,v)
2 , ..., z

(M,v)
3] (4)

where z
(M,v)
i is the reconstructed representation for the ith

sample in one sub-network. Thus, the low-dimension repre-
sentation Z(M

2 ,v) is obtained by the following reconstruction
loss with mean square error (MSE):

Lmse =
1

2n

n∑
i=1

∥X(p) − Z(M,v))∥2F (5)

where X(p) and Z(M,v)) is the noise sample inputted and the
original samples, respectively.

C. Siamese-based Denoising AutoEncoder

Our model contains a Siamese neural network (SNN) that
is commonly used in contrastive learning. The SNN model
is useful on pairwise identity verification, and it takes as
input two images in order to identify a meaningful distance
between the representations of those two images. Each of the
sub-network is parameterized by the shared weights and bias
{Wm,v

ae , b
(m,v)
ae }, performed on both input images whether or

not they are the same.
With the connection part of encoders (E

M
2) and decoders

(D
M
2), we extracted the features out of the latent embedding

optimized by the siamese denoising autoencoder. A relation-
aware function then calculates the correlation between the two
input images. This correlation of the pair of images for the
latent features in the last fully connected layers within the
encoder (E

M
2) can be denoted as:

dφ(zi, zj) = ∥gϕ(z
(M

2 ,v)
i)− gϕ(z

(M
2 ,v)

j)∥2F (6)

where notation dφ(zi, zj) is represented as dφ and dφ denotes
whether the zi and zj are similar. When this is similar the
dφ is close to one, or zero otherwise. The contrastive loss to
calculate their relationship is computed by:

L
p∑

i=1

L(φ, (z
(M

2 ,v)
i , z

(M
2 ,v)

j)i) (7)

L(φ) = (1− yi)Ls(dφ) + yiLd(dφ) (8)

The classification ability depends on the performance of dφ
calculated by Eq. 8, which linearly represents the Euclidean
distance.

D. Siamese in Relation-Aware Embedding for Malware Clas-
sification

Strategies such as [58], [59] only take the independent
malware signature into account, or rarely consider the non-
linear relationship [60], [61] in the contextual difference
between all malware pairs. Moreover, malware classification
often struggles in data-poor problems where the underlying
structure is characterized by organized but complex relations.

5

Fig. 4: The diagram of Few-shot learning

This is especially true for the interaction of functions of coding
between malware samples.

We propose a relation-aware Siamese denoising autoencoder
that enhances the conventional SNN with relational semantic
information. We jointly learn new representations in the non-
linear relationships for C that are assumed to represent the
concatenation of feature maps in depth that can explore a
learnable rather than fixed metric, or non-linear rather than
linear classifier [62], [63], [64].

Modeling the relations between the instance pairs has been
shown to improve the results of classification, and these latent
features can be explored by this relation module to determine
if they are similar using the relation classifier.

ri,j = C(fφ(z
(M

2 ,v))
i , fφ(z

(M
2 ,v))

j), i = 1, 2, ..., C (9)

where the projected features, z(
M
2 ,v)

i , z(
M
2 ,v))

j of the support
sample and query sample, are aimed to be combined with
each other. These are then fed through the sub branch of the
relation-aware siamese neural network fφ.

Lr =

i∑
i=1

j∑
j=1

(ri,j − yi,j)
2 (10)

Given the set of latent features z = {z1, z2, ..., zn} from the
latent embedding for a malware sample and yi,j denotes the
one-hot encoding for the ground-truth label of malware family.
Finally, the objective function for few-shot learning is:

L = Lr + λLmse (11)

where the value of hyperparameter λ settled as 0.7.

E. Network Architecture

In this section, we describe the specific parameters in the
architecture of our model. First, we apply convolutional layers
at the front of the CAE. One advantage of adding a convo-
lutional network is that it is highly invariant to translation,
scaling, tilting or other forms of deformation. Furthermore, the
fully-connected layers at the front part are one of the major
causes of for increasing the number of parameters. We put
convolutional layers first and stack the fully-connected layers
on top of convolutional layers for ease of the reduction to the
target dimension Rd.

The block diagram of the proposed image compression
based in Fig. 5 shows the architecture of the layers, stacking
up to 4 convolutional and batch-normalization layers. The
only preprocessing step before the CAE network consists of
normalizing the entropy pattern to [-1, 1] by calculating the
value of mean and standard deviation of 0.52206 and 0.08426
respectively in the VUW dataset. The size of the input is
denoted as H × W × C, where C represents the number of
colour components. We considered C = 1 for the entropy
images due to the conversion to grey scale images.

In term of network design, a siamese neural network is more
robust to class imbalance [65] as it focuses on learning embed-
dings (in the deeper layer) that place the same classes/concepts
close together in order to learn semantic similarity. We have
also considered the term of the receptive field of the topmost
feature layer in each sub-branch, because if the receptive field

6

Fig. 5: The diagram of our model architecture

is too large it means that there are too many layers, and the
risk of network overfitting will increase. Meanwhile, the entire
network is difficult to converge.

Algorithm1
By considering the Siamese theory of conception, the en-

coder part of our model is designed with 4 convolution layers
in which each layer is followed by a batch normalization layer
and relu activation layer. All convolutional filters have size of
3 × 3 and use a stride of 2 for the encoder part. The order of
the CNN layers in the decoder part is opposite to the encoder
part. A max pool layer is added after the first convolution
layer. Two linear layers are used to improve the classification
performance with the extracted features through the encoder
part, and it is the key module for relational embedding. The
extracted features have are robust against the NOP obfuscation
as they have been training with autoencoder module. We
further compare the performance with the different dimensions
of the linear layer and find that the output dimension of 256
for the first linear layer has better performance than that with
a dimension of 128. Finally, the sigmoid activation function
is taken as the outcome function for relation label 1 or 0.

V. EXPERIMENTS

We evaluated the performance of our proposed model on
two malware datasets according to the few-shot learning mech-
anism. We also conducted the ablation experiments to analyze

Algorithm 1: Pseudocode for Our Proposed Algorithm
Input : Folder root : f, Class num : cc,

Num per class : np, Batch num : bn,
obfuscated samples x1

b , x
2
b and original

samples x1
o, x

2
o, Reconstruction loss : RC,

Relaton loss : RL
Output: Relation score for each pair

1 Dataloader = FewShotTask(f, cc, np, bn)
2 for episoded in range(EPISODE)
3 (x1

b , x
2
b) = Dataloader.iter()

4 en1, en2 = Siamese EncoderNetwork(x1
b , x

2
b)

5 dn1, dn2 = Siamese DecoderNetwork(en1, en2)
6 Pairs (rn) = Feature concatenation((en1,en2))
7 Score (sz) = Siamese RelationNetwork((rn))
8 Loss1 = RC ([dn1, en1],[dn2, en2])
9 Loss2 = RL (sz)

10 Loss = 0.7*Loss1 + Loss2
11 Loss.backward()
12 Optimizer.step()

the effect of various parameters, such as pooling methods,
layer dimension, and hyperparameters. The experiments were
conducted on equipment consisting of 32GB RAM, Nvidia
Geforece RTX 2070(8GB), and Intel i7-9700 CPU@ 3.00GHz.

7

(a) Original Entropy Image (b) Frequency 200 with Nop (c) Frequency 400 with Nop (d) Frequency 600 with Nop

Fig. 6: The appearance comparison between original images and obfuscated images

A. Description of dataset
a) VUW dataset: This dataset utlized VirusShare1 to

collect malware samples. With the VUW dataset, we collected
a total number of 1,048 samples from 11 families/classes of
ransomware, each consisting of a varying number of examples,
as listed in Table I. This dataset intuitively reflects the distribu-
tion of the data in real situations, as some classes, e.g., Petya
and Dalexis, are largely outnumbered by the other classes, e.g.,
Zerber, as shown in the third column of Table I.

b) Malimage dataset: The details of the second malware
dataset, Malimage, published in [36] are listed in Table II.
There are 9,314 instances spread over 25 families in which
the width and height of each malware image differ between
families. Nataraj et al. [36] fixed the width to a certain length
according to the file size and the bytecode sequence. Observed
in the Table II, the number of samples is greater than the VUW
dataset. The malware samples have distinctive image textures
across the different malware families.

TABLE I: Details of the VUW ransomware dataset

Family name Instances Ratio (%)
Bitman 99 9.45
Cerber 91 8.68
Dalexis 9 0.86
Gandcrab 100 9.54
Locky 96 9.16
Petya 6 0.57
Teslacrypt 91 8.68
Upatre 18 1.72
Virlock 162 15.46
Wannacry 178 16.98
Zerber 198 18.89

B. Dataset setup and augmentation
The number of malware samples from different malware

classes in Table I vary significantly. Almost half of the classes
had no more than 25 malware samples, while some only
had one, likely because they were new malware samples
detected recently (e.g., Blocal and Newbak). We increased
the image sample size to allow for at least 30 samples for
every malware class using a data augmentation technique (e.g.,
applying random transformations such as image rotations and
re-scaling), in which the rotations are set up at degrees of 90,
180, and 270. At the same time the mean value and standard
deviation were set to 0.52206 and 0.08426, as shown in Table
III.

We performed NOP insertion on the original image at fre-
quencies 200 times each. Observed from Fig 6, the same ran-
somware families have shown a similar entropy pattern. Fig. 6

1VirusShare. https://virusshare.com/

TABLE II: Details of the Malimage dataset

Class name Family Instances
Worm Allaple.L 1591
Worm Allaple.A 2949
Worm Yuner.A 800
PWS Lolyda.AA 1 213
PWS Lolyda.AA 2 184
PWS Lolyda.AA 3 123
Trojan C2Lop.P 146
Trojan C2Lop.gen!g 200
Dialer Instantaccess 431
TDownloader Swizzot.gen!I 132
TDownloader Swizzor.gen!E 128
Worm VB.AT 408
Rogue Fakerean 381
Trojan Alueron.gen!J 198
Trojan Malex.gen!J 136
PWS Lolyda.AT 159
Dialer Adialer.C 125
TDownlaoder Wintrim.BX 97
Dilaer Dialplatform.B 177
TDownlaoder Dontovo.A 162
TDownlaoder Obfuscator.AD 142
Backdoor Agent.FYI 116
Worm:AutoIT Autorun.K 106
Backdoor Rbot!gen 158
Trojan Skintrim.N 80

TABLE III: Model learning parameters and their values

Methods Values Description
rescale 1./255 Resizing an image by a given scaling

factor.
learning rate 1e-02 Epsilon for ZCA whitening.
batch size 19/10-15 1-shot for 19 batch size;

5-shot for 15 batch size
rotation degree 90/180/270 Setting degree of range for random

rotations.
mean 0.52206 the average value in VUW
std 0.08426 the standard deviations in VUW
λ 0.7 the hyperparamter for the loss function

shows the visual difference in the obfuscated malware images,
which also intuitively differs from the original entropy image.
From this change, we can conclude that static signatures can
be easily tampered by using a simple obfuscation technique
such as NOP. However, the appearance of entropy images
at frequencies with 200, 400, 600 does not show obvious
visual differences between them. We conducted experiments
on the 200-frequency dataset to evaluate the performance of
our model.

We measured 1-shot and 5-shot accuracy in 2-way and 5-
way on random datasets drawn from the total set of training
and test sets in each of 20,000 episodes. The malware image
size is fixed for each model.

8

TABLE IV: Accuracy scores (%) tested on two dataset

Model 2-way 1-shot 2-way 5-shot 5-way 1-shot 5-way 5-shot
VUW dataset

Relation [62] 55.8 ± 1.8% 55.2 ± 2.6% 42.6 ± 3.1% 43.2 ± 2.1%
Prototypical [66] 81.1 ± 2.2% 86.4± 1.9% 69.3 ± 2.2% 70.2 ± 2.0%
Prototypical [66] (Gray) 74.2 ± 2.6% 82.6 ± 2.5% 51.3 ± 2.9% 53.7 ± 2.1%
Our model (No augmentation) 80.1 ± 2.9% 83.1 ± 2.2% 60.2 ± 3.4 % 64.3 ± 2.8%
Our model 83.1 ± 3.1% 87.2 ± 2.3% 63.2 ± 2.8% 68.1 ± 3.1%
Prototypical (Obfuscation) 80.3 ± 2.7% 84.8 ± 3.1% 65.2 ± 2.7% 68.3 ± 2.0%
Our model (Obfuscation) 81.7 ± 2.9% 85.2 ± 2.5% 53.2 ± 2.7% 57.3 ± 2.1%

Malimage dataset
Relation [62] 63.2 ± 2.8% 68.1 ± 3.1% 56.8 ± 3.4% 58.2 ± 3.1%
Prototypical [66] 95.6 ± 1.9% 96.7 ± 1.8% 92.3 ± 2.3% 96.9 ± 2.1%
Prototypical [66] (Gray) 94.3 ± 2.1% 94.9 ± 2.3% 90.1 ± 2.5% 94.8 ± 1.9%
Our model (No augmentation) 93.2 ± 1.8% 95.2 ± 1.7% 80.1 ± 2.8% 87.1 ± 1.7%
Our model 96.1 ± 0.7% 97.3 ± 1.4% 83.8 ± 2.1% 90.2 ± 1.8%
Prototypical (Obfuscation) 91.9 ± 1.7% 94.7 ± 1.8% 85.4 ± 1.9% 85.7 ± 1.8%
Our model (Obfuscation) 94.3 ± 1.2% 95.7 ± 1.1% 82.9 ± 2.2% 90.3 ± 2.1%

C. Training Details

We adopt an episode-based training strategy, which takes the
support set and query set into account during each training
episode. This could be noted as C-way K-shot training.
For example, the 5-way 1-shot contains one labeled sample
for each unique class in 5-way. For K-shot where K > 1,
we calculate the element-wise average over the embedding
module outputs of all samples from each training class to form
this class’ feature map. The class-level average pooling is then
concatenated with the query image feature. The number of
query images is dependent on the batch size in each training
episode. For example, 2-way 5-shot contains 19 query images,
the 5-way 5-shot has 15 query images. The corresponding
relationship between the support samples, query samples, and
batch size can be expressed by the following equation,

S ={s(1), ..., s(c), ..., s(C)} ⊂ Ctrain, s(c) = K

Q ={q(1), ..., q(c), ..., q(C)} ⊂ Btrain, q(c) = N
(12)

where c is the class index and K is the number of samples
in class s(c); thus the training samples are constructed with
N×K samples in each episode. Specifically, when we expand
them, we can get the relationship below as:

rij :{(s(1), q(1)), (s(1), q(1)), (s(n), q(1))}, ...
{(s(1), q(c)), (s(c), q(c)), (s(n), q(c))}, ...
{(s(1), q(n)), (s(c), q(n)), (s(n), q(n))}

(13)

observed from this, the (s(1), q(1)), (s(c), q(c)), (s(n), q(n)) are
labelled as 1, others are labelled as 0.

The training sets and testing set are randomly split into
the 9/6 classes and 2/5 classes respectively. The Malimages
dataset is split into 13 classes for training and 12 classes for
testing. We resized the entropy images to 105 × 105 and the
results were gathered randomly 10 times. In one set the whole
model ran 20000 epochs in the training stage and then was
tested over 2000 epochs. The batch size of 19 and 15 were

for the 1-shot and 5-shot respectively. Our model shared the
initialized learning rate with the value of 0.02. Meanwhile, the
hyperparameter for λ in the loss function was 0.7.

D. Experimental Results on VUW Dataset

As seen in Table IV, we evaluated our model on two
different features, the grayscale feature, and the entropy image.
Our model achieved the highest accuracy with 83.1% and
81.7% on 2-way 1-shot and 2-way 5-shot, respectively. As a
comparison, the prototype also has greater improvement with
the entropy image on the 2-way and 5-way result than with
the grayscale feature, which result increased by 7.1%. The
reason that our model and prototype had better performance
than other models is that the representation of entropy images
which exhibits higher uniqueness and entropy values incorpo-
rated into local regions with higher information content. It is
worth noting that instead of taking the sum pooling for the
feature concatenation like a relation network [62] does, we
took the mean pooling for the few-shot learning. We further
compared our performance with the prototype network under
the obfuscated entropy image, and our model still showed a
significant success on the 2-way results, which at 81.7% and
85.2% are higher than the prototype network by 1.4% and
0.4%, respectively.

E. Experimental Results On Malimage Dataset

It is worth noting that the intra-class variance across all sam-
ples within the Malimage dataset significantly decreased when
compared with the VUW dataset. The feature representation
can give better performance on the condition that there is a
low level of intra-class variance. Our model still achieves the
best performance on the 2-way result with 96.1% and 97.3%
on 2-way 1-shot and 2-way 5-shot respectively on the non-
obfuscated dataset. The performance on the obfuscated dataset
is almost identical to the non-obfuscated dataset, which results
in a drop of only 1.8% and 1.6% on 2-way 1-shot and 2-
way 5-shot respectively. This is contrasted with the prototype
network, which decreased 3.7% and 2.0%. The same situation

9

(a) Initialization Stage (b) Testing Stage

Fig. 7: t-distributed stochastic neighbor embedding (t-SNE) visualisation of embeddings generated using our model

(a) Average pooling (b) Sum pooling

Fig. 8: t-distributed stochastic neighbor embedding (t-SNE) visualization of embeddings generated using our model

happens on the 5-way performance, which resulted in the
obfuscated dataset offering a drop of only 0.9% on 5-way
1-shot. The performance on 5-way 5-shot only has a slight
difference in result, whereas the prototype network decreased
by 6.9% and 11.2% on the 5-way 1 shot and 5-way 5-shot on
the obfuscated dataset. From observation of subtle differences
in the results, we can prove that our model has a positive effect
on the anti-obfuscation technology.

F. Ablation Study

1) Hyperparameter λ with the dimension of the linear
layer: We first analyze how the performance of our model
is affected by the hyperparameter λ and then we combine the
dimensions of the linear layer in order to observe the changes
in the results, as shown in Table V. It has been seen that the
few-shot detection results are sensitive to the dimensions of
the linear layer and the hyperparameter λ. A 256-dimension of
linear layer and λ = 0.7 achieve better performance than other
values, compared with the λ = 0.3. We analyzed the trend of
different dimension combinations in the linear layer and the
value of λ for the performance. It can be seen from the Table
V, that as the value of λ increases while the dimension of the
linear layer fixed, the accuracy rate increases gradually until
the value of λ reaches 0.9. When the value of λ is fixed, the

dimension of 256 performs better than with the dimension of
128.

TABLE V: The performence on Malimage dataset with hyper-
parameter λ for 2-way 5-shot accuracy

λ = 0.3 λ = 0.5 λ = 0.7 λ = 0.9

linear layer
128 80.2 81.7 91.1 85.0
256 82.7 86.4 95.7 86.1

2) Pooling methods for feature selection: We present a t-
SNE visualization of the feature embeddings generated using
our model. Based on different pooling methods used, Fig.
7 (a) illustrates the overall data points added with NOP
obfuscation in the support set and query set, as projected into
the raw embedding in which data points are optimized by
episode training. The relation between the pair of samples is
recognized from Fig. 7 (b). The two clusters are represented
as similarity and dissimilarity, respectively, which offer the
inter- and intra-characteristics. The model can benefit from
the average calculation in the feature embedding since these
averaging calculations are less deviated from the center of the
object, as shown in Fig .8. This figure clearly demonstrates
that the data points in sum pooling are more dispersed, while

10

Fig. 9: The comparison with or without autoencoder

the data points in average pooling are more structured.
3) Impact of autoencoder: To explore the presence of

the autoencoder in the schema, we use only part of the
encoder in our model to learn the embedding representation
while removing the decoder part. The encoder’s purpose is
to reduce the influence of the reconstruction loss function, as
this is designed to create a robust feature against the NOP
obfuscation. Observed from Fig 9, the fluctuation range of
the results obtained by the model without decoding is slightly
larger than that with decoding while the average performance
is decreased as well. The results without the decoder part are
below those with the decoder part during the episodes ranging
from 2000 to 6000. Moreover, its average result throughout the
training phase is also slightly higher than that of the model
without an autoencoder.

VI. CONCLUSION

In this study, we introduce a new approach for detecting
zero-day malware attacks that have been disguised using
obfuscation techniques like junk code and no-operation code
insertions. Our proposed solution, a Siamese Neural Network
(SNN) combined with denoising autoencoders, addresses the
challenge of identifying unseen malware signatures.

We take into account the relationships between features
in different malware samples during the training process,
leveraging entropy-based features to better capture the unique
and structural information of each malware sample, even in
the presence of obfuscation. Instead of relying on traditional
distance scores, we use a relation-aware embedding method
based on probabilities to accurately capture the semantic
differences between malware samples and classify them.

Evaluations were conducted on two widely-used malware
datasets, Malimage and VUW, to demonstrate the effectiveness
of our proposed model in predicting unseen malware classes,
even in the presence of obfuscation techniques.

In the future, we aim to broaden the scope of our research
by incorporating a more extensive range of malware samples.
This will allow us to uncover a more diverse range of cor-
relations and further evaluate the adaptability and versatility
of our proposed model. Additionally, we plan to incorporate
various other obfuscation techniques such as code hiding

using Packers/XOR/Base64, Register reassignment, and Code
Transposition/Subroutine Reordering, among others. This will
further enhance our model’s ability to predict zero-day mal-
ware attacks effectively.

ACKNOWLEDGMENT

This research is supported by the Cyber Security Research
Programme—Artificial Intelligence for Automating Response
to Threats from the Ministry of Business, Innovation, and
Employment (MBIE) of New Zealand as a part of the Catalyst
Strategy Funds under the grant number MAUX1912.

REFERENCES

[1] S. Kumar and B. Janet, “Dtmic: Deep transfer learning for malware
image classification,” Journal of Information Security and Applications,
vol. 64, p. 103063, 2022.

[2] J. Zhu, J. Jang-Jaccard, A. Singh, I. Welch, A.-S. Harith, and S. Camtepe,
“A few-shot meta-learning based siamese neural network using entropy
features for ransomware classification,” Computers & Security, vol. 117,
p. 102691, 2022.

[3] Y. Chai, J. Qiu, L. Yin, L. Zhang, B. B. Gupta, and Z. Tian, “From
data and model levels: Improve the performance of few-shot malware
classification,” IEEE Transactions on Network and Service Management,
2022.

[4] V. Ravi, T. D. Pham, and M. Alazab, “Attention-based multidimensional
deep learning approach for cross-architecture iomt malware detection
and classification in healthcare cyber-physical systems,” IEEE Transac-
tions on Computational Social Systems, pp. 1–10, 2022.

[5] O. Salman, I. H. Elhajj, A. Kayssi, and A. Chehab, “Denoising ad-
versarial autoencoder for obfuscated traffic detection and recovery,” in
International conference on machine learning for networking. Springer,
2019, pp. 99–116.

[6] S. Kumar, S. Meena, S. Khosla, and A. S. Parihar, “Ae-dcnn: Autoen-
coder enhanced deep convolutional neural network for malware classi-
fication,” in 2021 International Conference on Intelligent Technologies
(CONIT). IEEE, 2021, pp. 1–5.

[7] U. Zahoora, M. Rajarajan, Z. Pan, and A. Khan, “Zero-day ransomware
attack detection using deep contractive autoencoder and voting based
ensemble classifier,” Applied Intelligence, vol. 52, no. 12, pp. 13 941–
13 960, 2022.

[8] S. Mahdavifar, D. Alhadidi, and A. A. Ghorbani, “Effective and efficient
hybrid android malware classification using pseudo-label stacked auto-
encoder,” Journal of network and systems management, vol. 30, pp.
1–34, 2022.

[9] J. Saxe and K. Berlin, “Deep neural network based malware detection
using two dimensional binary program features,” in 2015 10th inter-
national conference on malicious and unwanted software (MALWARE).
IEEE, 2015, pp. 11–20.

[10] R. Jusoh, A. Firdaus, S. Anwar, M. Z. Osman, M. F. Darmawan,
and M. F. Ab Razak, “Malware detection using static analysis in
android: a review of feco (features, classification, and obfuscation),”
PeerJ Computer Science, vol. 7, p. e522, 2021.

[11] P. Sharma and A. Raglin, “Efficacy of nonlinear manifold learning
in malware image pattern analysis,” in 2018 17th IEEE International
Conference on Machine Learning and Applications (ICMLA). IEEE,
2018, pp. 1095–1102.

[12] Z. Zhu, X. You, C. P. Chen, D. Tao, W. Ou, X. Jiang, and J. Zou,
“An adaptive hybrid pattern for noise-robust texture analysis,” Pattern
Recognition, vol. 48, no. 8, pp. 2592–2608, 2015.

[13] H. Hu, J. Gu, Z. Zhang, J. Dai, and Y. Wei, “Relation networks for
object detection,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2018, pp. 3588–3597.

[14] S. Torabi, M. Dib, E. Bou-Harb, C. Assi, and M. Debbabi, “A strings-
based similarity analysis approach for characterizing iot malware and in-
ferring their underlying relationships,” IEEE Networking Letters, vol. 3,
no. 3, pp. 161–165, 2021.

[15] L. Xu, D. Zhang, N. Jayasena, and J. Cavazos, “Hadm: Hybrid analysis
for detection of malware,” in Proceedings of SAI Intelligent Systems
Conference. Springer, 2016, pp. 702–724.

11

[16] J.-Y. Kim and S.-B. Cho, “Obfuscated malware detection using deep
generative model based on global/local features,” Computers & Security,
vol. 112, p. 102501, 2022.

[17] X. Zhou, W. Liang, S. Shimizu, J. Ma, and Q. Jin, “Siamese neural
network based few-shot learning for anomaly detection in industrial
cyber-physical systems,” IEEE Transactions on Industrial Informatics,
vol. 17, no. 8, pp. 5790–5798, 2020.

[18] Y. Chai, L. Du, J. Qiu, L. Yin, and Z. Tian, “Dynamic prototype network
based on sample adaptation for few-shot malware detection,” IEEE
Transactions on Knowledge and Data Engineering, 2022.

[19] J. Tang, R. Li, Y. Jiang, X. Gu, and Y. Li, “Android malware obfuscation
variants detection method based on multi-granularity opcode features,”
Future Generation Computer Systems, vol. 129, pp. 141–151, 2022.

[20] Z. Xu, M. Li, Y. Hei, P. Li, and J. Liu, “A malicious android malware
detection system based on implicit relationship mining,” in 2021 8th
IEEE International Conference on Cyber Security and Cloud Computing
(CSCloud)/2021 7th IEEE International Conference on Edge Computing
and Scalable Cloud (EdgeCom). IEEE, 2021, pp. 59–64.

[21] W. Zheng, C. Gou, L. Yan, and S. Mo, “Learning to classify: A flow-
based relation network for encrypted traffic classification,” in Proceed-
ings of The Web Conference 2020, 2020, pp. 13–22.

[22] W. Han, J. Xue, Y. Wang, L. Huang, Z. Kong, and L. Mao, “Maldae:
Detecting and explaining malware based on correlation and fusion of
static and dynamic characteristics,” computers & security, vol. 83, pp.
208–233, 2019.

[23] S. D. Nikolopoulos and I. Polenakis, “Behavior-based detection and
classification of malicious software utilizing structural characteristics of
group sequence graphs,” Journal of Computer Virology and Hacking
Techniques, pp. 1–24, 2022.

[24] A. Mpanti, S. D. Nikolopoulos, and I. Polenakis, “A graph-based model
for malicious software detection exploiting domination relations between
system-call groups,” in Proceedings of the 19th International Conference
on Computer Systems and Technologies, 2018, pp. 20–26.

[25] W. Han, J. Xue, Y. Wang, Z. Liu, and Z. Kong, “Malinsight: A systematic
profiling based malware detection framework,” Journal of Network and
Computer Applications, vol. 125, pp. 236–250, 2019.

[26] M. Rabbani, Y. L. Wang, R. Khoshkangini, H. Jelodar, R. Zhao, and
P. Hu, “A hybrid machine learning approach for malicious behaviour
detection and recognition in cloud computing,” Journal of Network and
Computer Applications, vol. 151, p. 102507, 2020.

[27] M. Noor, H. Abbas, and W. B. Shahid, “Countering cyber threats for
industrial applications: An automated approach for malware evasion
detection and analysis,” Journal of Network and Computer Applications,
vol. 103, pp. 249–261, 2018.

[28] D. Morato, E. Berrueta, E. Magaña, and M. Izal, “Ransomware early
detection by the analysis of file sharing traffic,” Journal of Network and
Computer Applications, vol. 124, pp. 14–32, 2018.

[29] S. Wang, Z. Chen, Q. Yan, B. Yang, L. Peng, and Z. Jia, “A mobile
malware detection method using behavior features in network traffic,”
Journal of Network and Computer Applications, vol. 133, pp. 15–25,
2019.

[30] F. Tong and Z. Yan, “A hybrid approach of mobile malware detection in
android,” Journal of Parallel and Distributed computing, vol. 103, pp.
22–31, 2017.

[31] A. Damodaran, F. D. Troia, C. A. Visaggio, T. H. Austin, and M. Stamp,
“A comparison of static, dynamic, and hybrid analysis for malware
detection,” Journal of Computer Virology and Hacking Techniques,
vol. 13, no. 1, pp. 1–12, 2017.

[32] S. Yoo, S. Kim, S. Kim, and B. B. Kang, “Ai-hydra: Advanced
hybrid approach using random forest and deep learning for malware
classification,” Information Sciences, vol. 546, pp. 420–435, 2021.

[33] E. Raff, R. Zak, R. Cox, J. Sylvester, P. Yacci, R. Ward, A. Tracy,
M. McLean, and C. Nicholas, “An investigation of byte n-gram features
for malware classification,” Journal of Computer Virology and Hacking
Techniques, vol. 14, no. 1, pp. 1–20, 2018.

[34] S. Johnson, R. Gowtham, and A. R. Nair, “Ensemble model ransomware
classification: A static analysis-based approach,” in Inventive Computa-
tion and Information Technologies. Springer, 2022, pp. 153–167.

[35] B. Kang, B. Kang, J. Kim, and E. G. Im, “Android malware classification
method: Dalvik bytecode frequency analysis,” in Proceedings of the
2013 research in adaptive and convergent systems, 2013, pp. 349–350.

[36] L. Nataraj, S. Karthikeyan, G. Jacob, and B. S. Manjunath, “Malware
images: visualization and automatic classification,” in Proceedings of the

8th international symposium on visualization for cyber security, 2011,
pp. 1–7.

[37] K. Bakour and H. M. Ünver, “Visdroid: Android malware classification
based on local and global image features, bag of visual words and
machine learning techniques,” Neural Computing and Applications,
vol. 33, no. 8, pp. 3133–3153, 2021.

[38] J. Jeon, B. Jeong, S. Baek, and Y.-S. Jeong, “Hybrid malware detection
based on bi-lstm and spp-net for smart iot,” IEEE Transactions on
Industrial Informatics, vol. 18, no. 7, pp. 4830–4837, 2021.

[39] S. Sharma, K. Khanna, and P. Ahlawat, “Survey for detection and anal-
ysis of android malware (s) through artificial intelligence techniques,”
in Cyber Security and Digital Forensics. Springer, 2022, pp. 321–337.

[40] A. Furfaro, A. Piccolo, A. Parise, L. Argento, and D. Sacca, “A cloud-
based platform for the emulation of complex cybersecurity scenarios,”
Future Generation Computer Systems, vol. 89, pp. 791–803, 2018.

[41] A. Furfaro, L. Argento, A. Parise, and A. Piccolo, “Using virtual
environments for the assessment of cybersecurity issues in iot scenarios,”
Simulation Modelling Practice and Theory, vol. 73, pp. 43–54, 2017.

[42] A. De Paola, S. Favaloro, S. Gaglio, G. L. Re, and M. Morana,
“Malware detection through low-level features and stacked denoising
autoencoders.” in ITASEC, 2018.

[43] W. Wang, M. Zhao, and J. Wang, “Effective android malware detection
with a hybrid model based on deep autoencoder and convolutional neural
network,” Journal of Ambient Intelligence and Humanized Computing,
vol. 10, no. 8, pp. 3035–3043, 2019.

[44] J.-Y. Kim, S.-J. Bu, and S.-B. Cho, “Zero-day malware detection using
transferred generative adversarial networks based on deep autoencoders,”
Information Sciences, vol. 460, pp. 83–102, 2018.

[45] A. Alahmadi, N. Alkhraan, and W. BinSaeedan, “Mpsautodetect: A
malicious powershell script detection model based on stacked denoising
auto-encoder,” Computers & Security, vol. 116, p. 102658, 2022.

[46] K. Sandra and S.-H. Lee, “Bm3d and deep image prior based denoising
for the defense against adversarial attacks on malware detection net-
works,” International journal of advanced smart convergence, vol. 10,
no. 3, pp. 163–171, 2021.

[47] J.-T. Chan and W. Yang, “Advanced obfuscation techniques for java
bytecode,” Journal of systems and software, vol. 71, no. 1-2, pp. 1–10,
2004.

[48] P. Faruki, A. Bharmal, V. Laxmi, M. S. Gaur, M. Conti, and M. Ra-
jarajan, “Evaluation of android anti-malware techniques against dalvik
bytecode obfuscation,” in 2014 IEEE 13th International Conference on
Trust, Security and Privacy in Computing and Communications. IEEE,
2014, pp. 414–421.

[49] T. Stibor, “A study of detecting computer viruses in real-infected files
in the n-gram representation with machine learning methods,” in Inter-
national Conference on Industrial, Engineering and Other Applications
of Applied Intelligent Systems. Springer, 2010, pp. 509–519.

[50] G. You, G. Kim, S.-j. Cho, and H. Han, “A comparative study on op-
timization, obfuscation, and deobfuscation tools in android.” J. Internet
Serv. Inf. Secur., vol. 11, no. 1, pp. 2–15, 2021.

[51] B. S. Vidya and E. Chandra, “Entropy based local binary pattern
(elbp) feature extraction technique of multimodal biometrics as defence
mechanism for cloud storage,” Alexandria Engineering Journal, vol. 58,
no. 1, pp. 103–114, 2019.

[52] D. Gibert, C. Mateu, J. Planes, and R. Vicens, “Classification of
malware by using structural entropy on convolutional neural networks,”
in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32,
no. 1, 2018.

[53] G. Canfora, F. Mercaldo, and C. A. Visaggio, “An hmm and structural
entropy based detector for android malware: An empirical study,”
Computers & Security, vol. 61, pp. 1–18, 2016.

[54] M. R. B. Shamsuddin, F. H. H. M. Ali, and M. S. B. Z. Abidin, “Trans-
forming malware behavioural dataset for deep denoising autoencoders,”
in IOP Conference Series: Materials Science and Engineering, vol. 769,
no. 1. IOP Publishing, 2020, p. 012071.

[55] G. D’Angelo, M. Ficco, and F. Palmieri, “Malware detection in mo-
bile environments based on autoencoders and api-images,” Journal of
Parallel and Distributed Computing, vol. 137, pp. 26–33, 2020.

[56] M. Zhao, D. Wang, Z. Zhang, and X. Zhang, “Music removal by
convolutional denoising autoencoder in speech recognition,” in 2015
Asia-Pacific Signal and Information Processing Association Annual
Summit and Conference (APSIPA). IEEE, 2015, pp. 338–341.

12

[57] P. Görgel and A. Simsek, “Face recognition via deep stacked denoising
sparse autoencoders (dsdsa),” Applied Mathematics and Computation,
vol. 355, 2019.

[58] D. Vasan, M. Alazab, S. Wassan, H. Naeem, B. Safaei, and Q. Zheng,
“Imcfn: Image-based malware classification using fine-tuned convolu-
tional neural network architecture,” Computer Networks, vol. 171, p.
107138, 2020.

[59] S. Kumar et al., “Mcft-cnn: Malware classification with fine-tune
convolution neural networks using traditional and transfer learning in
internet of things,” Future Generation Computer Systems, vol. 125, pp.
334–351, 2021.

[60] S.-C. Hsiao, D.-Y. Kao, Z.-Y. Liu, and R. Tso, “Malware image
classification using one-shot learning with siamese networks,” Procedia
Computer Science, vol. 159, pp. 1863–1871, 2019.

[61] M. O. T. Sison, “Calculating distances between windows malware using
siamese neural network embeddings,” 2021.

[62] F. Sung, Y. Yang, L. Zhang, T. Xiang, P. H. Torr, and T. M. Hospedales,
“Learning to compare: Relation network for few-shot learning,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2018, pp. 1199–1208.

[63] D. Zhang, Z. Zheng, M. Li, X. He, T. Wang, L. Chen, R. Jia, and
F. Lin, “Reinforced similarity learning: Siamese relation networks for
robust object tracking,” in Proceedings of the 28th ACM International
Conference on Multimedia, 2020, pp. 294–303.

[64] S. Cheng, B. Zhong, G. Li, X. Liu, Z. Tang, X. Li, and J. Wang,
“Learning to filter: Siamese relation network for robust tracking,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2021, pp. 4421–4431.

[65] P. Bedi, N. Gupta, and V. Jindal, “Siam-ids: Handling class imbalance
problem in intrusion detection systems using siamese neural network,”
Procedia Computer Science, vol. 171, pp. 780–789, 2020.

[66] J. Snell, K. Swersky, and R. Zemel, “Prototypical networks for few-shot
learning,” Advances in neural information processing systems, vol. 30,
2017.

13

	Introduction
	Related Work
	Relational exploring for malware detection
	Malware classification with the feature extraction
	Denoising autoencoder for malware detection

	Obfuscation Materials
	Bytecode-based Junk code for Obfuscation
	Obfuscation of No Operation (NOP) Insertion

	Methodology
	The Entropy Feature Conversion
	Denoising AutoEncoder
	Siamese-based Denoising AutoEncoder
	Siamese in Relation-Aware Embedding for Malware Classification
	Network Architecture

	Experiments
	Description of dataset
	Dataset setup and augmentation
	Training Details
	Experimental Results on VUW Dataset
	Experimental Results On Malimage Dataset
	Ablation Study
	Hyperparameter with the dimension of the linear layer
	Pooling methods for feature selection
	Impact of autoencoder

	Conclusion
	References

