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A B S T R A C T
This research focuses on real-time monitoring and analysis of track and field athletes, addressing
the limitations of traditional monitoring systems in terms of real-time performance and accuracy.
We propose an IoT-optimized system that integrates edge computing and deep learning algorithms.
Traditional systems often experience delays and reduced accuracy when handling complex motion data,
whereas our method, by incorporating a SAC-optimized deep learning model within the IoT architecture,
achieves efficient motion recognition and real-time feedback. Experimental results show that this system
significantly outperforms traditional methods in response time, data processing accuracy, and energy
efficiency, particularly excelling in complex track and field events. This research not only enhances the
precision and efficiency of athlete monitoring but also provides new technical support and application
prospects for sports science research.

1. Introduction
As a fundamental sports discipline, track and field not

only forms the core of major events like the Olympics
and World Championships but also plays a crucial role in
promoting public health Jacobsson, Ekberg, Timpka, Hag-
gren Råsberg, Sjöberg, Mirkovic and Nilsson (2020); Timpka,
Dahlström, Fagher, Adami, Andersson, Jacobsson, Svedin
and Bermon (2022). The wide variety of track and field events,
including sprints, middle and long-distance running, jumps,
and throws, demand high levels of physical fitness, technical
skills, and mental strength from athletes Guo (2022); Zhang
et al. (2023a). To excel in such competitive environments,
athletes require not only innate talent and dedication but
also scientific and systematic training methods Zhang et al.
(2023b); Yuan et al. (2024).

Scientific training not only helps athletes improve their
performance but also effectively prevents sports injuries,
thereby extending their careers Anderson and Barnum (2021).
Traditional training methods rely heavily on the experience of
coaches and the subjective feelings of athletes Tedesqui and
Young (2020), making it challenging to quantify and precisely
control training intensity Martens and Vealey (2024). With
the advancement of technology, efficient data collection
and analysis tools can provide real-time monitoring of
athletes’ training, offering scientific evidence to help coaches
devise more reasonable training plans and maximize athletes’
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potential Wang (2021a); Ma, Nie, Ji and Song (2020); Tan
and Ran (2023).

In recent years, real-time monitoring and data analysis
have become increasingly critical in enhancing athletic
performance. Studies have shown that by monitoring physio-
logical indicators (such as heart rate, body temperature, and
blood oxygen saturation) and performance metrics (such as
speed, acceleration, and force) in real-time, it is possible to
identify problems during training promptly and make targeted
adjustments. For example, analyzing heart rate changes under
different training intensities can assess endurance levels and
recovery status, while monitoring gait and acceleration during
running can optimize technical movements and improve
efficiency Rana and Mittal (2020a). Many studies have begun
exploring the potential of using sensor technology and data
analysis methods for athlete training monitoring. Examples
include heart rate monitoring using wearable devices and
motion analysis through motion capture systems Ponnusamy,
Vasuki, Clement and Eswaran (2022). However, these studies
often focus on single indicators or systems, lacking compre-
hensive analysis of multidimensional data, which makes it
difficult to achieve a holistic understanding of athletes’ train-
ing conditions. Additionally, existing monitoring systems
often rely on cloud computing for data processing, which
introduces data transmission delays and privacy security
issues, failing to meet the requirements for real-time and
secure data handling Hartmann, Hashmi and Imran (2022).

Currently, many studies are attempting to apply edge
computing and IoT technology for real-time monitoring and
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analysis of athletes. Edge computing distributes computing
resources at the network edge, close to data sources, thereby
reducing data transmission delays and enhancing real-time
performance. For instance, some studies have implemented
edge computing architectures to achieve real-time monitoring
of athletes’ heart rate and motion data, using machine learning
algorithms for data analysis and anomaly detection Wang and
Gao (2021). However, these studies typically focus on specific
types of data, lacking integration of multi-source data. The
development of IoT technology has enabled the widespread
use of various sensor devices in sports training monitoring.
For example, by wearing accelerometers, gyroscopes, and
heart rate belts, athletes can have their physiological and
motion data collected in real-time. This data can be trans-
mitted wirelessly to edge computing nodes or the cloud
for processing and analysis Edwards, Talarico, Chaudhari,
Mansfield and Oñate (2023). Nevertheless, existing IoT
monitoring systems often face challenges in data transmission
and processing efficiency, particularly with high-frequency
sampling and large data volumes, leading to delays and data
loss Fadhel and Hasan (2023). In summary, edge computing
and IoT technology can significantly enhance the real-time
processing and response speed of data, reducing transmission
delays. The combination of multiple sensors can provide
comprehensive physiological and motion data, supporting
more precise training analysis and optimization. However,
existing studies often focus on monitoring and analyzing
single data sources, lacking comprehensive utilization of
multi-source data. There are also challenges in data security
and privacy protection, especially during real-time data
transmission and processing.

To address the above issues, this study aims to develop an
efficient real-time monitoring system using edge computing
and IoT technology. Edge computing brings data processing
and analysis closer to the data sources at the edge nodes,
significantly reducing data transmission delays and enhancing
real-time performance and response speed. Simultaneously,
IoT technology enables the networking of various sensor
devices, allowing comprehensive collection and real-time
transmission of athletes’ physiological and motion data. The
main contributions of this study are:

• Designing and implementing a multi-sensor data fusion
method based on edge computing: This significantly
improves the real-time performance and accuracy of
data processing, addressing the limitations of tradi-
tional systems in handling complex motion data.

• Introducing deep reinforcement learning algorithms:
We optimized training plans using deep reinforcement
learning, which enhances the effectiveness of athlete
training, particularly in providing personalized training
recommendations.

• Conducting comprehensive experimental validation:
We evaluated the system’s performance and feasibility
in practical applications, demonstrating its advantages
in real-time monitoring, especially for track and field
athletes.

The remainder of this thesis is structured as follows:
Section 2 reviews related work, including existing training
monitoring systems for track and field athletes, applications
of edge computing, and advancements in deep reinforcement
learning. Section 3 presents the system design, covering
the architecture, data collection and analysis methods, and
the integration of deep reinforcement learning algorithms.
Section 4 details the experimental setup, evaluates system
performance, and compares the proposed algorithms with
existing methods. Section 5 concludes with a summary of
research findings, discusses system limitations, and suggests
directions for future work.

2. Related Work
2.1. Training Monitoring Systems for Track and

Field Athletes
Existing training monitoring systems for track and field

athletes primarily rely on technologies such as wearable
devices, video analysis systems, and motion capture sys-
tems Rana and Mittal (2020b); Peng, Xie, Shivdikar, Hasan,
Zhao, Huang, Khan, Kaeli and Ding (2024a); Xi, Zhang,
Jia and Jiang (2024); Weng and Wu (2024); Chen, Li,
Song and Guo (2024c); Yan, Wu, Kumar and Zhou (2024);
Wan, Zhang, Jiang, Wang and Zhou (2024); Weng, Wu
et al. (2024). Wearable devices, such as heart rate moni-
tors, accelerometers, and gyroscopes, can monitor athletes’
physiological indicators and movement data in real-time,
providing information on their physical condition, training
load, and recovery status Chen (2021); Luo, Xu, Peng, Wang,
Duan, Mahmood, Wen, Ding and Xu (2023b); Zhang (2024);
Zheng, Zhang, Gong, Liu and Chen (2024); Wang, Hu and
Zhou (2024c); Qiao, Li, Lin, Wei, Jiang, Luo and Yang
(2024); Wang, Ji, Wang, Feng and Du (2024d); Chen, Zhang,
Dong, Zhou and Wang (2024a). For example, studies have
used wearable devices to monitor heart rate, step frequency,
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and other physiological parameters in real-time, helping
coaches optimize training plans and prevent injuries Seshadri,
Thom, Harlow, Gabbett, Geletka, Hsu, Drummond, Phelan
and Voos (2021); Luczak, Burch, Lewis, Chander and Ball
(2020). However, the data collected by these devices are
often singular and fail to comprehensively reflect the training
status Wang (2021b). Additionally, the real-time transmission
and stability of data may be problematic during high-intensity
training or competitions Rana and Mittal (2020c).

Video analysis systems capture training footage through
cameras and utilize computer vision technology for mo-
tion analysis, enabling detailed recording and evaluation of
athletes’ technical movements. For instance, research has
employed video analysis systems to record athletes’ running
postures and optimize techniques by analyzing gait and
acceleration Liu, Saquib, Chen, Kazi, Wei, Fu and Tai (2022).
However, such systems typically require high-performance
computing equipment and complex software algorithms,
making them costly Ning, Zhang, Wang, Ning, Chen and
Bai (2023). Moreover, the accuracy of analysis results can be
affected by environmental factors such as lighting conditions
and camera positioning. Motion capture systems use sensors
and markers to record three-dimensional movement data,
providing high-precision technical analysis of movements.
This allows for detailed examination of technical move-
ments Zhao, Ross, Dowling and Graham (2023). Nonetheless,
the complexity of equipment and installation, often requiring
laboratory or specific venues, limits their application in daily
training Tian, Li, Ning, Ran, Qin and Tiwari (2023).

Although these systems have played an essential role in
enhancing the scientific nature and effectiveness of training,
they still exhibit deficiencies in comprehensive multidi-
mensional data analysis, real-time data stability, system
costs, equipment complexity, and data privacy and security.
Most systems monitor only a single type of data, making
it difficult to fully grasp the athletes’ training status Dai
(2022). During high-intensity training, devices are prone
to signal interruptions or data loss, impacting the real-time
nature and stability of data. Furthermore, high costs and
complex equipment limit the widespread application of these
systems in daily training Seçkin, Ateş and Seçkin (2023).
Additionally, issues related to data privacy and security
during transmission and storage require urgent attention.
These shortcomings indicate a need for new technological
approaches to improve the effectiveness and reliability of
training monitoring systems for track and field athletes.

2.2. Edge Computing
The application of edge computing in monitoring the

training of track and field athletes is rapidly transforming
data processing and analysis methods in sports. By deploying
computing resources near data sources, edge computing
significantly reduces data transmission latency and enhances
real-time capabilities. This technology has demonstrated
excellence in improving the real-time performance and
responsiveness of training monitoring systems. Studies have
shown that edge computing can enable real-time data analysis
during sports competitions, providing more timely and
accurate tactical guidance and decision support Dai, Shao
and Zhang (2021); Wang, Zhao, Li, Fraire, Sun and Fang
(2018); Li, Chen, Yu, Dajun, Qiu, Jieting, Baiwei, Shengyuan,
Wan, Ji et al. (2024a); Wang, Jiang, Wang and Zhou (2024e);
Xu, Deng, Dong and Shimada (2022); Jin, Che, Peng, Li,
Metaxas and Pavone (2024); Weng (2024); Cao, Weng,
Li and Yang; Zhang, Qi, Zheng and Shen (2024b). Edge
devices and sensors capture various data during competitions,
such as movement trajectories, physiological indicators, and
environmental conditions. These data are rapidly processed
and analyzed through edge computing platforms, providing
instant feedback to coaches and athletes, thereby optimizing
training and competition strategies Tsiouris, Tsakanikas,
Gatsios and Fotiadis (2020); Chen, Li, Song and Guo (2024b);
Liu, Liu, Qu and Lyu (2025); Dong (2024); Wang, Wang
and Liu (2024b); Peng, Xu, Feng, Zhao, Tan, Zhou, Zhang,
Gong and Zheng (2024b); Peng, Huang, Zhou, Luo, Wang,
Wang, Zhao, Xie, Li, Geng et al. (2023); Shen, Zhang,
Zheng and Qi (2024); Zhou, Wang, Zheng, Zhou, Dai, Luo,
Zhang and Sui (2024b); Gong, Zhang, Zheng, Liu and Chen
(2024). Additionally, the combination of edge computing and
Internet of Things (IoT) technology is particularly important
in practical applications. For example, in the 2018 Qianjiang
Marathon, participants wore smartwatches that monitored
their heart rate and movement status in real-time. Through IoT
technology, these data were transmitted to edge computing
nodes for processing Du, Li, Chen, Hao and Liu (2023);
Luo, Du, Zhang, Song, Li, Zhu, Birkin and Wen (2023a); Li,
Wang, Wu, Peng, Chang, Deng, Kang, Yang, Ni and Hong
(2024b); Sui, Jiang, Lyu, Wang, Zhou, Chen and Alhosain
(2024); Liu, Wang and Chen (2024); Huang, Der Leu, Lu and
Zhou (2024); Liu et al. (2025); Cao, Wang, Sabbagh, Peng,
Zhao, Fraire, Yang and Wang (2018); Zhou, Zhao, Luo, Xie,
Wen, Ding and Xu (2024a); Wang, Sui, Sun, Zhang and Zhou
(2024a). If any anomalies were detected, the system would
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immediately issue an alert, ensuring the safety of the athletes.
Such smart devices not only enhance the intelligence level of
competitions but also significantly promote the development
of emerging technologies in cities.

However, the application of edge computing in sports
also faces challenges such as network reliability and data
security issues. Efficient network infrastructure is crucial
for the real-time performance of edge computing, and any
network delay or interruption can impact the timeliness
of data processing. Moreover, as the number of connected
devices increases, data privacy and security issues become
more prominent Zhang, Yang, Peng and Liu (2024a). To
address these challenges, researchers have proposed various
solutions, including redundant and high-bandwidth networks,
edge computing platforms with built-in security features, and
strict access control and encryption protocols Siriwardhana,
Porambage, Liyanage and Ylianttila (2021); Hasan and Idrees
(2024). In summary, edge computing, with its low latency,
high real-time performance, and enhanced data privacy
protection, shows great potential in the training monitoring
systems for track and field athletes. As technology continues
to develop, the integration of edge computing with AI and 5G
technologies will further enhance its application effectiveness,
driving the intelligence and efficiency of sports training and
competition management.

2.3. Deep Reinforcement Learning
Deep Reinforcement Learning (DRL) combines the

advantages of deep learning and reinforcement learning,
enabling the processing of high-dimensional input data and
making optimal or near-optimal decisions. In recent years,
DRL has made significant progress in various complex tasks,
such as autonomous driving, game playing, and robotic
control Kiran, Sobh, Talpaert, Mannion, Al Sallab, Yogamani
and Pérez (2021). Research indicates that DRL holds great
potential for application in sports training monitoring systems.
For instance, by training intelligent agent models, DRL can
simulate and optimize athletes’ training strategies in virtual
environments, providing personalized training recommen-
dations and enhancing training effectiveness Li, Kumar and
Alazab (2022).

However, the application of DRL in sports faces chal-
lenges, such as obtaining efficient training samples, ensuring
model stability, and addressing safety concerns. In practice,
training DRL models requires a large amount of high-
quality data, which is often costly and time-consuming to

acquire. Additionally, DRL models may encounter issues
like overfitting and policy collapse during training, affecting
their stability and reliability in real-world scenarios. To tackle
these challenges, researchers have proposed various improve-
ment methods, including using simulation environments
for pre-training, designing more stable policy optimization
algorithms, and incorporating adversarial training techniques
to enhance the generalization ability and safety of DRL
models Ghadirzadeh, Poklukar, Arndt, Finn, Kyrki, Kragic
and Björkman (2022); Gupta, Singal and Garg (2021). These
advancements suggest that despite the challenges, DRL has a
promising future in sports training monitoring systems, and
continuous technological development will further promote
the intelligence and personalization of sports training.

3. Methods
3.1. System Overview

This study proposes a real-time monitoring and analysis
system for track and field athletes based on IoT, edge
computing, and deep reinforcement learning algorithms. The
IoT component is responsible for real-time data collection
and transmission using sensors such as heart rate monitors,
accelerometers, and gyroscopes worn by athletes. These
sensors gather physiological and motion data, which are
then transmitted wirelessly to edge computing nodes. The
edge computing component processes and analyzes the data
in real-time at nodes close to the data source, significantly
reducing data transmission latency and improving system
responsiveness and real-time capabilities. The edge nodes
are equipped with multi-core processors (e.g., Intel Xeon
CPUs), 16GB of RAM, and high-speed network interfaces (1
Gbps) to handle large volumes of data with minimal delay.
Network reliability and bandwidth management are also key
considerations, with wireless communication protocols such
as Bluetooth and Wi-Fi ensuring stable and low-latency data
transmission between sensors and edge nodes. The deep re-
inforcement learning algorithm component trains intelligent
agent models to simulate and optimize athletes’ training
strategies in virtual environments, providing personalized
training recommendations to enhance training effectiveness.
Figure 1 illustrates the overall system architecture.

The system setup process includes selecting and installing
appropriate sensors on athletes, building an efficient wireless
network architecture, developing data processing and analysis
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Figure 1: MarineYOLO Network Architecture Diagram.

modules at the edge computing nodes, training deep rein-
forcement learning models, and integrating and testing the
system. These steps enable comprehensive monitoring and
optimization of track and field athletes’ training, enhancing
data processing efficiency and the personalization of training
effects. The application of this system not only improves
the quality and safety of athletes’ training but also provides
new technological means for the intelligent and scientific
development of sports training, promoting the advancement
of track and field sports.

3.2. Data Collection and Analysis
This section details the data collection process and data

processing methods of the sensor module. To achieve real-
time monitoring and analysis of track and field athletes, our
system employs various sensors for data collection, including
heart rate monitors, accelerometers, and gyroscopes. These
sensors can collect physiological and motion data of athletes
in real-time and transmit the data to edge computing nodes
via a wireless network for processing and analysis. Figure 2
illustrates the sensor module.

Data Collection Process: The sensor module includes
multiple sensors, each responsible for collecting different
types of data. Heart rate monitors collect heart rate data
using photoplethysmography (PPG) to monitor blood flow

and obtain accurate heart rate information in real-time.
Accelerometers and gyroscopes collect motion data of ath-
letes, including speed, acceleration, and direction. These
sensors transmit real-time data to edge computing nodes
via Bluetooth or other wireless communication technologies.
To ensure data accuracy and stability, the sensor module is
equipped with high-precision samplers and designed with
anti-interference capabilities, enabling stable operation in
various environments.

Data Processing Methods: Once the data is transmitted
to the edge computing nodes, the system performs prepro-
cessing, feature extraction, and analysis. The preprocessing
phase includes data cleaning and filtering to remove noise and
outliers, ensuring data quality. Common filtering methods
include Kalman filtering and low-pass filtering. After data
cleaning, feature extraction is conducted to convert raw
data into representative feature indicators, such as average
heart rate, maximum heart rate, and heart rate variability
from heart rate data, and step frequency, stride length, and
acceleration peaks from accelerometer data. The extracted
features and their calculation formulas are presented in Table
1. The system employs a Convolutional Neural Network
(CNN) to analyze and model the extracted features. CNNs
are highly effective at processing complex, multi-sensor data,
allowing for accurate learning and identification of athlete
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Figure 2: Example of wearable device and sensor setup for
athlete monitoring system: (a) Components of the wearable
device, including the Microcontroller Unit (MCU), heart rate
sensor, accelerometer, gyroscope, physiological data sensor, and
wireless communication module. (b) Internal structure of the
sensor chip, including the NFC chip, Low Dropout Regulator
(LDO), amplifier, sensor, and coil. (c) An athlete wearing
multiple sensors on their body, connected via Bluetooth to
a mobile device, demonstrating the practical application of
sensors in real-time data collection.

status, evaluation of training effectiveness, and provision of
personalized training recommendations. These algorithms
learn valuable patterns and insights from the data, helping to
identify athlete status, evaluate training effectiveness, and pro-
vide personalized training recommendations. Additionally,
the system uses deep reinforcement learning algorithms to
optimize training strategies for athletes, achieving intelligent
training management.

To ensure the privacy and security of athlete data during
transmission and storage, our system employs AES (Ad-
vanced Encryption Standard) for encrypting data both at rest
and in transit. This ensures that sensitive information, such as
physiological and motion data, is protected from unauthorized
access. In addition, we implement role-based access control
(RBAC), restricting access to data based on predefined roles,
ensuring that only authorized personnel (such as coaches
and medical staff) have access to specific datasets. These
measures, combined with real-time monitoring capabilities,

Table 1
Feature extraction formulas.

Feature Formula

Mean 𝑎̄ = 1
𝑁

∑𝑁
𝑖=1 𝑎𝑖

Standard Deviation 𝜎 =
√

1
𝑁

∑𝑁
𝑖=1(𝑎𝑖 − 𝑎̄)2

Maximum max(𝑎𝑖)
Minimum min(𝑎𝑖)

Range max(𝑎𝑖) − min(𝑎𝑖)

Root Mean Square
√

1
𝑁

∑𝑁
𝑖=1 𝑎

2
𝑖

Peak-to-Peak max(𝑎𝑖) − min(𝑎𝑖)
Interquartile Range 𝑄3 −𝑄1

Skewness 𝐸[(𝑎𝑖−𝑎̄)3]
𝜎3

Kurtosis 𝐸[(𝑎𝑖−𝑎̄)4]
𝜎4

Entropy −
∑

𝑖 𝑝(𝑎𝑖) log 𝑝(𝑎𝑖)

ensure robust protection of athlete data throughout the
system’s operation.

3.3. SAC-Based Deep Reinforcement Learning
Algorithm

Soft Actor-Critic (SAC) is an off-policy actor-critic deep
reinforcement learning algorithm based on the maximum
entropy reinforcement learning framework Ding, Ma, Chen,
Gao and Li (2021). It aims to maximize expected reward and
entropy, enabling broad exploration and capturing multiple
modes of behavior. In our track and field athlete monitoring
system, the SAC algorithm optimizes sensor data processing
and resource allocation, as detailed in Algorithm 1.

By training intelligent agent models, SAC effectively
allocates computing resources and network bandwidth in
dynamic environments, ensuring efficient and stable real-
time data processing. For instance, SAC dynamically adjusts
resource allocation at edge computing nodes to meet the
varying data flow demands from different athletes, ensuring
continuous and accurate monitoring. The SAC algorithm
also optimizes data transmission paths, reducing latency and
enhancing overall system performance.

Moreover, SAC is used to optimize personalized training
recommendations. Through continuous learning and adjust-
ment, SAC provides optimal training strategies based on
athletes’ historical data and current status, improving training
effectiveness and safety. The application of SAC in the athlete
monitoring system significantly enhances data processing
and resource allocation efficiency while providing intelligent
support for personalized training, advancing the scientific
and intelligent development of sports training.

First Author et al.: Preprint submitted to Elsevier Page 6 of 17



Short Title of the Article

Algorithm 1: Soft Actor-Critic (SAC)
Input: Initial parameters 𝜃1, 𝜃2 for critic networks,
𝜙 for actor network, replay buffer , discount
factor 𝛾 , soft update coefficient 𝜏

Output: Updated critic networks 𝑄𝜃1 , 𝑄𝜃2 , actor
network 𝜋𝜙, and temperature parameter 𝛼

1: Initialize target networks 𝜃′1 ← 𝜃1, 𝜃′2 ← 𝜃22: Initialize replay buffer 
3: for each iteration do
4: for each environment step do
5: Select action 𝑎𝑡 ∼ 𝜋𝜙(𝑎𝑡|𝑠𝑡)6: Execute action 𝑎𝑡, observe reward 𝑟𝑡 and next state 𝑠𝑡+17: Store transition (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) in 
8: end for
9: for each gradient step do

10: Sample mini-batch of transitions (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) from 
11: Compute target value:

𝑦𝑡 = 𝑟𝑡 + 𝛾
(

min
𝑖=1,2

𝑄𝜃′𝑖
(𝑠𝑡+1, 𝑎𝑡+1) − 𝛼 log𝜋𝜙(𝑎𝑡+1|𝑠𝑡+1)

)

12: Update critics by minimizing the loss:

𝐿(𝜃𝑖) = 𝔼(𝑠𝑡 ,𝑎𝑡 ,𝑟𝑡 ,𝑠𝑡+1)∼

[

(

𝑄𝜃𝑖 (𝑠𝑡, 𝑎𝑡) − 𝑦𝑡
)2

]

13: Update actor by minimizing the loss:

𝐽𝜋 (𝜙) = 𝔼𝑠𝑡∼
[

𝛼 log𝜋𝜙(𝑎𝑡|𝑠𝑡) −𝑄𝜃 (𝑠𝑡, 𝑎𝑡)
]

14: Adjust temperature parameter 𝛼 by minimizing:

𝐽 (𝛼) = 𝔼𝑎𝑡∼𝜋𝜙

[

−𝛼 log𝜋𝜙(𝑎𝑡|𝑠𝑡) − 𝛼0
]

15: Soft update target networks:

𝜃′𝑖 ← 𝜏𝜃𝑖 + (1 − 𝜏)𝜃′𝑖

16: end for
17: end for

The SAC algorithm optimizes both the policy and the
value function using the maximum entropy reinforcement
learning framework. Below are the key components and
equations that define the SAC algorithm.

The SAC algorithm seeks to maximize both the expected
return and the entropy of the policy:

𝐽 (𝜋) =
𝑇
∑

𝑡=0
𝔼(𝑠𝑡,𝑎𝑡)∼𝜌𝜋

[

𝑟(𝑠𝑡, 𝑎𝑡) + 𝛼(𝜋(⋅|𝑠𝑡))
] (1)

where (𝜋(⋅|𝑠𝑡)) = − log𝜋(𝑎𝑡|𝑠𝑡) represents the entropy of
the policy 𝜋 at state 𝑠𝑡, and 𝛼 is the temperature parameter.

The soft Q-function 𝑄𝜋(𝑠𝑡, 𝑎𝑡) evaluates the expected
return of action 𝑎𝑡 in state 𝑠𝑡:

𝑄𝜋(𝑠𝑡, 𝑎𝑡) = 𝑟(𝑠𝑡, 𝑎𝑡) + 𝛾𝔼𝑠𝑡+1∼𝑝
[

𝑉 𝜋(𝑠𝑡+1)
] (2)

where 𝑉 𝜋(𝑠𝑡+1) is the value function under the policy 𝜋 and
𝛾 is the discount factor.

The soft value function 𝑉 𝜋(𝑠𝑡) is the expected value of
the soft Q-function under the policy 𝜋:

𝑉 𝜋(𝑠𝑡) = 𝔼𝑎𝑡∼𝜋
[

𝑄𝜋(𝑠𝑡, 𝑎𝑡) − 𝛼 log𝜋(𝑎𝑡|𝑠𝑡)
] (3)

The policy is updated by minimizing the Kullback-
Leibler (KL) divergence between the current policy and the
exponential of the Q-function:

𝐽𝜋 = 𝔼𝑠𝑡∼

[

𝔼𝑎𝑡∼𝜋𝜃

[

𝛼 log(𝜋𝜃(𝑎𝑡|𝑠𝑡)) −𝑄𝜙(𝑠𝑡, 𝑎𝑡)
]

]

(4)

The temperature parameter 𝛼 is adjusted to control the
entropy term, matching expected entropy to a target entropy
0:

𝐽 (𝛼) = 𝔼𝑎𝑡∼𝜋𝜃

[

−𝛼 log𝜋𝜃(𝑎𝑡|𝑠𝑡) − 𝛼0
] (5)

By iteratively updating these components, SAC achieves
a balance between exploration and exploitation, leading to
robust and efficient learning in dynamic environments.

3.4. Deep Learning Classifier
In this study, we conducted a comparative analysis of

three deep learning classifiers: Random Forest (RF) Shan-
mugam, Raja and Pitchai (2021), Gradient Boosting (GB) Upad-
hyay, Manero, Zaman and Sampalli (2020), and CNN Garcia-
Moreno, Bermudez-Edo, Rodríguez-Fórtiz and Garrido
(2020). Each classifier has its unique advantages and applica-
tion scenarios in the athlete monitoring system, as shown in
Figure 3.

RF is an ensemble learning method based on decision
trees, capable of handling high-dimensional data and pre-
venting overfitting. In this study, Random Forest was used
to identify athletes’ action patterns. Although it performs
relatively fast in terms of training time, its accuracy is slightly
lower than the other two methods when dealing with large and
complex datasets. This limitation is particularly evident when
processing sports data involving subtle posture changes. GB is
an algorithm that enhances the performance of weak learners
through incremental weighting, usually demonstrating high
accuracy and good generalization ability. In this system,
Gradient Boosting exhibited excellent precision in identifying
various athlete actions. However, due to its iterative training
process, the training time is relatively long. Additionally,
Gradient Boosting tends to overfit when handling data
with significant dynamic changes, especially when the data
samples are imbalanced. CNNs excel in processing image and
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Figure 3: The comparison of three deep learning classifiers used in the athlete monitoring system. (a) RF model illustrating
the classification of athlete actions through multiple decision trees, followed by ensemble decision making for final action class
determination; (b) GB model demonstrating the training phase, data splitting into subsets, and the final model training using
these subsets for enhanced classification performance; (c) CNN model representing the process of pose classification, starting from
athlete pose image input, followed by convolution and pooling layers, and culminating in the final classification through global
average pooling.

video data and were used in this study to handle dynamic data
from athletes. CNNs can effectively extract spatiotemporal
features from the data and classify athletes’ action patterns
with high precision. Despite the longer training time, CNNs
demonstrated outstanding accuracy and stability in process-
ing complex data. Furthermore, CNNs have strong scalability
and flexibility, making them adaptable to different sports
scenarios and data scales.

4. Experiments and Results
4.1. Experimental Data

In this section, we conducted a more detailed evaluation
of the proposed real-time monitoring and analysis system by
expanding the dataset and providing a more comprehensive
performance analysis. Data from six different track and field
events (100-meter dash, 400-meter dash, high jump, long
jump, shot put, and discus throw) were collected from 100
athletes, generating a larger and more diverse dataset for
training and evaluation purposes. Each athlete’s data was

collected over a 5-minute period, capturing physiological
and motion data such as heart rate, acceleration, and angular
velocity. The dataset was split into training and testing sets,
and we utilized the CNN classifier to analyze this data. The
dataset was split into training (70%) and testing (30%) sets,
and we utilized the CNN classifier to analyze this data.

The preprocessing of the dataset involved several steps
to ensure high-quality data for model training. First, the
data were cleaned using Kalman filtering to remove noise
and outliers. Following this, key features were extracted,
including average heart rate, acceleration peaks, and step
frequency, to capture meaningful patterns from the raw sensor
data. These preprocessing steps ensured the robustness of the
data, reflecting real-world scenarios and providing a reliable
basis for training and evaluating the models.

This dataset was divided into training and testing sets for
training the CNN classifier. The configuration parameters for
the CNN are provided in Table 2.
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Table 2
Configuration of CNN.

Parameter Configuration

Number of layers 10
Kernel size 3x3

Activation function ReLU
Optimizer Adam

Learning rate 0.001
Batch size 64
Epochs 50

Dropout rate 0.5

Table 3
Configuration of edge nodes for athlete monitoring.

Parameter Description

Number of edge nodes (𝑁) 5
Resource capacity (𝑅) 400-1000

CPU cycle frequency (𝐹 ) 3.5 GHz
Memory size 16 GB

Network bandwidth 1 Gbps

Table 4
Parameter settings of SAC algorithm for real-time analysis.

Parameter Value

xperience replay memory size (𝑈) 500
Minibatch size (𝑉 ) 64

Reward discount factor (𝛾) 0.95
Learning rate of actor network (𝜆𝑎) 0.0005
Learning rate of critic network (𝜆𝑐) 0.001

Target entropy (𝛼) 0.1

Three edge servers were deployed around the training
area to handle service requests from the sensor nodes. The
updated system configuration is shown in Table 3.

And the SAC algorithm was deployed on the edge servers,
with the revised SAC algorithm parameters are presented in
Table 4 .

To ensure a more robust evaluation of the system, we
added two additional control groups: one using a baseline
average-based resource allocation algorithm and another
using a frequency-based algorithm for resource allocation
based on historical usage patterns. This enabled a more
thorough comparison of SAC’s performance across various
metrics, including response time, data processing accuracy,
energy efficiency, and resource utilization.

Results show that the SAC algorithm consistently out-
performed both control groups in all key metrics. The SAC-
based system achieved a response time of 200 milliseconds,
compared to 250 milliseconds for the baseline algorithm, with

an accuracy rate of 98.5% in data processing—higher than
the 96.0% observed in the control group. Additionally, energy
consumption for the SAC system was 30 joules, which was
lower than the baseline’s 35 joules, and resource utilization
reached 90%, indicating optimal system performance under
high loads.
4.2. System Performance Evaluation

This system utilizes different deep reinforcement learning
algorithms to optimize various aspects of athlete monitoring.
Table 5 shows the parameter settings for these algorithms,
while Table 6 compares their performance on system eval-
uation metrics. As shown in Table 6, the SAC algorithm
consistently outperforms other state-of-the-art (SOTA) algo-
rithms such as PPO, DDPG, TD3, and Rainbow DQN across
four key performance metrics: response time, data processing
accuracy, energy consumption, and resource utilization.

• Response Time: SAC achieved the fastest response
time of 200 milliseconds, significantly quicker than
PPO (250 ms) and DDPG (220 ms). This reduced
latency is critical for real-time athlete monitoring,
where timely feedback enables rapid adjustments to
training plans. SAC’s ability to dynamically allocate
resources ensures minimal delay during high-load
scenarios.

• Data Processing Accuracy: The SAC algorithm demon-
strated the highest data processing accuracy, achieving
98.5%, which is superior to both PPO (96.0%) and TD3
(97.8%). The higher accuracy is essential for precise
analysis of athletes’ physiological and motion data,
especially in dynamic sports environments that require
high precision.

• Energy Consumption: SAC also showed superior en-
ergy efficiency, consuming only 30 joules compared to
35 joules for PPO and 32 joules for DDPG. This lower
energy consumption is particularly advantageous for
long-term monitoring applications, as it reduces the
overall power demand of the system.

• Resource Utilization: Finally, SAC achieved the high-
est resource utilization rate of 90%, outperforming PPO
(85%) and DDPG (88%). Efficient resource utilization
ensures that the system operates at optimal capacity,
making full use of available computational resources
while maintaining stability and performance during
periods of high data flow.
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Table 5
Parameter Settings for Different Algorithms in the Athlete
Monitoring System.

Parameter PPO SAC DDPG TD3 Rainbow DQN

Learning Rate 0.001 0.0005 0.001 0.0003 0.0001
Gamma 0.95 0.99 0.98 0.99 0.99
Buffer Size NULL 106 106 106 106
Batch Size 128 256 128 100 64
Max Steps per Episode 1000 1000 1000 1000 1000
Timesteps 106 106 106 106 106
Episodes 15000 15000 15000 15000 15000

Table 6
Comparison of Different Algorithms on System Performance
Metrics. Bold values indicate the best performance.

Metric PPO SAC DDPG TD3 Rainbow DQN

Response Time (ms) 250 200 220 210 240
Data Processing Accuracy (%) 96.0 98.5 97.2 97.8 95.5
Energy Consumption (J) 35 30 32 31 34
Resource Utilization (%) 85 90 88 89 86

Through comparing the performance of different algo-
rithms on system metrics, it is evident that the SAC algorithm
excels in all aspects. The SAC algorithm has a response time
of 200 milliseconds, significantly faster than other algorithms,
which is crucial for real-time data processing. In terms of
data processing accuracy, the SAC algorithm achieves 98.5%,
significantly higher than other algorithms, ensuring higher
monitoring precision. It has the lowest energy consumption,
only 30 joules, indicating greater energy efficiency over long-
term use. Regarding resource utilization, the SAC algorithm
leads with a 90% utilization rate, indicating more efficient use
of system resources. Using the SAC algorithm significantly
improves the performance of the real-time monitoring system
for track and field athletes, meeting the requirements for
efficient real-time monitoring. These results indicate that
the SAC algorithm performs best in response time, data
processing accuracy, energy consumption, and resource
utilization. The SAC algorithm can effectively enhance the
system’s real-time capabilities and data processing efficiency
while reducing energy consumption and improving resource
utilization, making it the optimal algorithm for enhancing the
athlete monitoring system.

The SAC algorithm’s superior performance across all four
metrics is due to its maximum entropy reinforcement learning
framework, which balances exploration and exploitation.
This enables more efficient resource allocation and real-time
processing, ensuring that the system can adapt dynamically
to changing conditions and provide reliable, timely feedback
in real-time athlete monitoring applications.

The SAC-optimized system demonstrates robust scala-
bility, capable of handling varying loads, including moni-
toring multiple athletes simultaneously and processing large
volumes of data. During high-load scenarios, such as when
multiple data streams from different athletes are processed
concurrently, the SAC algorithm dynamically allocates re-
sources to maintain optimal system performance. The results
show that even under heavy data loads, the system maintains a
response time of 200 milliseconds, with a resource utilization
rate of 90%, ensuring minimal performance degradation.

Figure 4 more intuitively displays the table data, showing
the average response times of Rainbow DQN, TD3, DDPG,
SAC, and PPO algorithms from 6:00 AM to 7:00 PM. It is
evident that the SAC algorithm has an average response time
around 1 second, significantly lower than the other algorithms,
highlighting its efficiency in real-time data processing. In con-
trast, the response times for PPO, DDPG, and TD3 are slightly
higher, with Rainbow DQN having the highest response
time. The comparison indicates that the SAC algorithm has
a notable advantage in response time, which is crucial for
real-time athlete monitoring systems. A faster response time
allows for timely feedback on the athlete’s status, aiding
coaches and athletes in making prompt adjustments and
decisions, thereby enhancing training effectiveness.

Figure 5 highlights the performance disparities between
the SAC-based system and the non-SAC system in both speed
and precision across multiple track and field events. In Figure
5(a), the SAC-based system consistently outperforms the non-
SAC system, demonstrating faster processing times across
all events, especially in more complex tasks like shot put
and discus throw. Figure 5(b) illustrates that the SAC-based
system maintains a significantly higher precision across all
events, with the most notable difference observed in shot put
and discus throw, where the SAC system achieves up to 30%
greater accuracy. These results underscore the superiority
of the SAC-based system in enhancing both the speed and
accuracy of real-time athlete monitoring and analysis.

4.3. Comparison of Deep Learning Classifier
To visualize the classification performance of RF, GB,

and CNN deep learning classifiers across different sports cat-
egories, we generated confusion matrices for each classifier
and plotted heatmaps (as shown in Figure 6). The heatmaps
illustrate the accuracy of each classifier in recognizing
different sports categories.
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Figure 4: Comparison of Average Response Times for Different Algorithms Across Various Time Periods.

Figure 5: Speed and Precision Comparison between SAC-Based and Non-SAC Systems across Various Track and Field Events.
(a) demonstrates the time efficiency in milliseconds for different events, (b) highlights the precision percentage in detecting and
analyzing athletes’ performances.

As illustrated in Figure 6, CNN excels in handling
complex data, maintaining high accuracy across nearly all
categories. Specifically, in categories A03 and A05, CNN
achieved prediction accuracies of 0.98 and 0.95, respectively,
demonstrating its ability to effectively capture key features
in athlete actions for precise classification. In contrast, RF
performed well in most categories but showed a slight drop in
accuracy for categories A02 and A04, with accuracies of 0.89
and 0.92, respectively. This indicates some limitations when
dealing with more complex data. GB performed slightly lower
overall compared to CNN, particularly in categories A02 and

A04, where the prediction accuracies were 0.87 and 0.91,
respectively, suggesting potential challenges in managing
data complexity and diversity.

By comparing the performance of these three classifiers,
we conclude that CNNs, due to their robust feature extraction
capabilities and high accuracy, are the most suitable primary
models for data classification in a real-time athlete monitoring
system. Although Gradient Boosting also performs well in
certain scenarios, its stability in handling complex data is not
as strong as that of CNNs. While Random Forest offers faster
training speed, its lower accuracy makes it more suitable as an
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Figure 6: Confusion matrix heatmaps for RF, GB, and CNN in athlete action classification tasks. Each matrix shows the prediction
accuracy of the models across six different action categories (A01-A06). The color intensity represents the accuracy of the model’s
predictions, with darker blue indicating higher accuracy and lighter blue indicating lower accuracy.

auxiliary classifier. In future system optimizations, combining
the strengths of multiple classifiers could be considered to
further enhance the overall system performance.

4.4. Visualization Display
In this study, we developed an advanced model for moni-

toring track and field athletes by integrating a SAC-optimized
system. The comparative visualization shown in Figure 7
depicts the actual movements of athletes in different track and
field events alongside the skeletal pose estimations predicted
by the model. This visualization clearly demonstrates the
model’s accuracy and robustness in capturing and analyzing
dynamic athletic data. Through these visualizations, we
can more intuitively understand the performance of the
SAC-optimized system in practical applications, thereby
providing reliable technical support for performance analysis
and improvement.

While the system is designed primarily for track and
field events, it can be adapted to other sports by modifying
the sensor setup and deep learning models. For example, in
team sports like soccer or basketball, the types of motion
data collected would focus more on acceleration, direction
changes, and team-based dynamics, which can be easily
integrated into the system by recalibrating the sensors and
retraining the models. Additionally, wearable devices such as
IMUs (Inertial Measurement Units) can be incorporated for
sports requiring more detailed movement analysis. These
adjustments enable the system to generalize effectively
across various sports, enhancing its versatility and practical
deployment across diverse athletic environments.

5. Discussion
The revised evaluation demonstrated that the SAC-

optimized real-time monitoring system offers significant
improvements in both speed and accuracy across various track
and field events, particularly in high jump and discus throw,
where precise motion recognition is critical. By incorporating
deeper analysis into the experimental setup, we were able
to confirm that the SAC algorithm is well-suited for real-
time athlete monitoring, excelling in response time, data
processing accuracy, and energy efficiency.

The results of the speed and accuracy comparison experi-
ments show that the optimized system not only provides faster
response times across various track and field events but also
maintains higher accuracy compared to the system without
such optimizations. This advantage is especially evident
in complex athletic events such as high jump and discus
throw, where precise timing and posture recognition are
critical. The comparative analysis of different deep learning
classifiers, including Random Forest, Gradient Boosting, and
CNN, further supports this conclusion, revealing that CNN
excels in handling complex, high-dimensional data, which
is particularly important in athlete performance monitoring.
The heatmaps generated by each classifier corroborate this
finding, showing that CNN achieves higher accuracy across
all athlete action categories with fewer misclassification
instances. The visualization of athlete actions and pose
estimation provides additional insights into the practical
effectiveness of the optimized system. The system is capable
of accurately replicating and analyzing dynamic athlete
movements in real-time, enhancing the effectiveness of
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Figure 7: comparative visualization of various athletic events, juxtaposed with corresponding pose estimation models. The top row
shows real-world images of athletes, while the bottom row presents the generated skeletal models used for detailed motion analysis.

performance evaluations and providing valuable feedback
to athletes and coaches.

The complexity of the proposed system lies in several
areas. First, the integration of IoT sensors, edge computing
nodes, and real-time data processing pipelines introduces
architectural complexity, as the system must ensure stable
data transmission with minimal latency while managing data
from multiple athletes. Second, the use of the Soft Actor-
Critic (SAC) algorithm adds computational complexity due to
its multi-network setup and continuous learning requirements,
which demand significant processing power and memory.
Furthermore, real-time constraints, such as ensuring high
accuracy and low response times while handling fluctuating
data loads, increase the overall complexity of resource man-
agement. Despite these challenges, the system is optimized
to balance performance with scalability, as demonstrated by

its superior results in response time, accuracy, and resource
utilization.

However, the system’s reliance on high-performance hard-
ware remains a limitation, as it may not be applicable in lower-
resource environments. Additionally, further refinements may
be needed to handle extremely complex data, where small
errors or delays could affect overall system accuracy. Future
work should focus on minimizing hardware requirements
and expanding the system’s adaptability to a wider range of
sports and conditions. Moreover, incorporating additional
data sources such as wearable devices may further enhance
the system’s versatility and provide more accurate feedback
for athletes and coaches.
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6. Conclusion
In this study, we developed and evaluated a system

optimized with edge computing and deep learning algorithms,
specifically designed for real-time monitoring and analysis
of track and field athletes. The results demonstrate that
the system exhibits excellent performance across various
track and field events, particularly in complex activities
such as high jump and discus throw, where it achieves
fast response times and high-precision motion recognition.
Compared to traditional methods, the study confirms the
significant advantages of this system in terms of response
time, accuracy, and energy efficiency. The proposed SAC-
optimized system improves response time (200 ms vs. 250
ms) and data processing accuracy (98.5%) in real-time
monitoring, particularly for complex events like high jump
and discus throw. These gains are attributed to the integration
of edge computing and dynamic resource allocation, ensuring
efficient performance even under high data loads. These
findings validate the effectiveness of edge computing and
deep learning technologies in athlete monitoring, providing
crucial technical support for the scientific analysis and
improvement of athletic performance.

Despite the significant advantages, the system has certain
limitations in practical applications. First, it is heavily reliant
on high-performance hardware, which may limit its broader
applicability in diverse environments. Additionally, when
processing extremely complex motion data, the system may
still encounter some errors and delays, indicating the need for
further algorithm optimization in future research. Currently,
the system’s application is mainly focused on track and
field events. Future studies could explore expanding the
monitoring capabilities to a wider range of sports to enhance
the system’s versatility and practicality. Further research
could also consider integrating more sensor data, such as from
wearable devices, to enhance data processing capabilities and
optimize the model for better adaptability and stability across
different sports scenarios.
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