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Abstract—Detecting mission-critical anomalous events and
data is a crucial challenge across various industries, including
finance, healthcare, and energy. Quantum computing has recently
emerged as a powerful tool for tackling several machine learning
tasks, but training quantum machine learning models remains
challenging, particularly due to the difficulty of gradient calcu-
lation. The challenge is even greater for anomaly detection, where
unsupervised learning methods are essential to ensure practical
applicability. To address these issues, we propose Quorum, the
first quantum anomaly detection framework designed for unsu-
pervised learning that operates without requiring any training.

I. INTRODUCTION

Anomaly detection plays an essential role in various in-
dustries, from identifying fraudulent transactions in finance
to detecting irregularities in power grids [26], [8], [25], [36]
As datasets grow in complexity, traditional machine learning
(ML) methods struggle with scalability and accuracy. Quantum
computing offers a promising new approach, with its potential
to accelerate computations and detect subtle patterns and
correlations in data. Leveraging quantum algorithms for ML
tasks, particularly for anomaly detection, could transform how
we tackle these challenges [28], [27], [33].

The Challenge. Applying quantum computing to anomaly de-
tection presents significant hurdles. Quantum machine learning
(QML) models typically rely on parameterized circuits that
require training, which is challenging due to the complexity of
computing gradients in quantum systems [16], [31]. Quantum
systems require gradient calculations from first principles
using the parameter shift rule, and these gradients are prone to
exponential vanishing in “barren plateau” regions [13]. More-
over, anomaly detection, by nature, is unsupervised, adding
another layer of difficulty since no labeled data is available
to guide the training [29], [15]. These two factors – quantum
training complexity and unsupervised learning requirements
– create a considerable challenge for developing efficient
quantum anomaly detection methods [29], [14].

The Gap. Current quantum-based approaches for anomaly
detection fall short because they still require training and often
rely on supervised or semi-supervised learning. These methods
involve optimizing quantum circuits with labeled data, which
limits their applicability in real-world scenarios where such
data is scarce. This dependency on training creates both
computational overheads and reduces the flexibility needed for
fully unsupervised tasks [16], [13], [21], [12], [29], [14], [1].

Our Solution. To address this, we propose Quorum, the
first quantum anomaly detection framework that requires zero
training and is designed for unsupervised learning. Quorum
leverages quantum principles such as amplitude encoding,
random quantum transformations, and SWAP tests to identify
anomalies without needing any parameter optimization [16],
[13]. By utilizing quantum correlations and random projec-
tions, Quorum detects anomalies based on deviations from the
statistical norms of quantum transformations [17], [21], [13].

First, Quorum’s open-source technique carefully distributes
the data into buckets based on the likelihood of anomalous
events in the dataset before embedding it into quantum states
using amplitude encoding [12], [2]. Then, Quorum applies
random quantum transformations to this data and uses a SWAP
test to measure similarly between quantum states [13], [16].
Quorum constructs an “embarrassingly parallelizable” ensem-
ble of such random transformations and leverages statistical
measures to identify anomalies. This approach is scalable and
flexible, allowing for efficient anomaly detection without the
computing cost of gradient calculation and training [29], [21].

Quorum’s Evaluation. We evaluate Quorum through ex-
tensive experiments on various datasets, including medical,
industrial, and lexical data. We compare its performance to
a state-of-the-art method that uses a quantum neural network
(QNN) which relies on training and supervised labels. Our
results show that Quorum has a 23% higher average F1 score
over the QNN across evaluated datasets. We also provide an
ablation study of how Quorum performs with different-sized
subsamples (buckets). Quorum consistently identifies subtle
anomalies that the state-of-the-art method may overlook,
proving to be an effective zero-training quantum solution for
unsupervised anomaly detection [29], [21].

II. BACKGROUND

Before we present the design of Quorum, we first provide
some brief but necessary background.

A. Quantum Computing

The fundamental unit of quantum computation is the qubit,
which exists in a superposition of binary states, represented as
|ψ⟩ = α |0⟩+β |1⟩, where α and β are complex numbers that
correspond to the amplitudes of the basis states |0⟩ and |1⟩.
The probabilities of measuring the qubit in the |0⟩ or |1⟩ state
are |α|2 and |β|2, respectively, and these probabilities must
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Fig. 1: Visual representation of the steps taken by Quorum to detect the anomalies in a given dataset using quantum computing.

sum to 1: ∥α∥2 + ∥β∥2 = 1. Qubits can also be entangled,
meaning their quantum states are correlated in such a way that
they cannot be described independently of one another, which
is a key property leveraged in quantum computing applications
and algorithms to achieve a quantum advantage [4].

Quantum gates, represented as unitary matrices, are the
basic operations applied to qubits. Common single-qubit gates
include the parameterized rotation gates, such as the RX, RY,
and RZ gates, which rotate a qubit around the x, y, and z axes,
respectively. Two-qubit gates, such as the controlled-X (CX)
gate, are used to create entanglement between qubits. These
single- and two-qubit gates are defined as:

RX(θ) =

(
cos θ

2
−i sin θ

2

−i sin θ
2

cos θ
2

)
, RY (θ) =

(
cos θ

2
− sin θ

2

sin θ
2

cos θ
2

)
,

RZ(θ) =

(
e−iθ/2 0

0 eiθ/2

)
, CX =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


Quantum circuits are constructed by applying sequences of

these gates to qubits, followed by measurements. Due to the
probabilistic nature of quantum measurements, a circuit’s ex-
ecution yields a probability distribution of possible outcomes,
which often requires many repetitions (or shots) to obtain
statistically significant results [11], [6]

B. Quantum Encoding and SWAP Test

In quantum computing, classical data must be encoded into
quantum states. One common method is Amplitude Encoding,
[35] which maps classical data points x0, . . . , xn−1 to the
quantum state: |ψ⟩ =

∑n−1
j=0 xj |j⟩. This method allows n

classical data points to be encoded into log2 n qubits, enabling
efficient representation of high-dimensional data.

The SWAP Test is a quantum algorithm used to determine
how similar two quantum states are [7], [22]. It computes the
inner product ⟨ϕ|ψ⟩ between two states |ϕ⟩ and |ψ⟩. If the
states are identical, the test returns a high overlap; otherwise,
a lower overlap indicates dissimilarity. This is a key tool in
quantum anomaly detection, where dissimilarity between two
states may indicate an anomalous data point [22].

C. Anomaly Detection

Anomaly detection involves identifying data points that
deviate significantly from the norm [34], [9]. In unsupervised
anomaly detection, we assume no labeled data is available,
and the goal is to detect anomalies based solely on patterns
within the data [5], [30]. Common classical techniques include
clustering and Isolation Forests. Clustering groups data points
based on similarity, with anomalies detected as points far

from cluster centroids [12], [1]. Isolation Forests, a tree-based
algorithm, isolates anomalies by recursively splitting the data
based on random feature values, where fewer splits indicate
an anomaly [19], [18].

In high-dimensional spaces, autoencoders – neural networks
trained to reconstruct their input – are often used for anomaly
detection [23], [24]. Autoencoders learn compressed repre-
sentations of normal data, and anomalies are detected when
reconstruction errors for new data points are high [1], [20].
This concept extends to the quantum realm, where a quantum
autoencoder can be used to compress and decompress quan-
tum states, flagging quantum outliers based on reconstruction
errors [16], [13].

III. RELATED WORK

Several quantum-based approaches for anomaly detection
have emerged recently, leveraging various quantum algo-
rithms and machine learning techniques. Liu at al. [16] pro-
vided early evidence of the speedup and resource efficiency
experienced with quantum anomaly detection. Building on
this effort, Herr et al.[13] introduce quantum autoencoders
trained with generative-adversarial networks. Both methods
require structured queries or training processes, which prohibit
their adaptability in unsupervised settings. Taking a hybrid
quantum-classical approach, Sakhnenko et al. [29] propose
supervised training-based solutions that require significant
quantum-classical communication. Most recently, Hdaib et
al.[12] propose quantum-enhanced anomaly detection with
classical post-processing, still requiring circuit training.

Other works provide application-specific anomaly detection.
For example, Ngairangbam et al. [21] utilize quantum classi-
fiers that rely on supervised training for high-energy physics
applications. On the other, Kukliansky et al.[14] develop
quantum anomaly detectors for network anomalies. These
approaches rely on domain-specific anomaly properties and are
thus not generally applicable. Thus, there is a strong need for a
fully unsupervised, training-free generalized quantum anomaly
detection method that leverages the unique strengths of quan-
tum systems without the overhead of classical optimization.

IV. DESIGN

The design of Quorum leverages quantum dynamics to
identify correlations among data features and detect anomalies
by comparing quantum-transformed data samples. As shown
in Fig. 1, Quorum is structured around several key stages:
preprocessing, quantum embedding, bucketing, feature selec-
tion, and circuit-based statistical analysis. Each of these steps
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Fig. 2: Quorum’s use of SWAP test to determine the similarity
between the compressed and original data sample.

contributes to an efficient and scalable framework for anomaly
detection using quantum methods.

A. Preprocessing and Normalization

Quorum begins with preprocessing the dataset, which in-
volves a variety of steps depending on the dataset’s initial
format. This typically includes transforming all non-numeric
features into float values (e.g., via hashing), removing any
label data that could indicate whether a sample is anomalous,
and performing a range-based normalization. The normaliza-
tion process is essential to ensure that all features contribute
equally to the quantum state, which is critical for the subse-
quent quantum encoding.

Given a dataset with M features, Quorum normalizes each
feature so that its maximum possible value is 1

M . This ensures
that the sum of the squares of all features for any sample does
not exceed 1. The normalization is performed as follows:

normalized feature value =
raw feature value for sample

max feature value
× 1

M

This normalization serves two key purposes. First, it equal-
izes the contribution of all features to the final quantum
state, preventing any feature from dominating due to its scale.
Second, it simplifies the process of amplitude embedding for
quantum states, as the normalized values now range between
[0, 1

M ] for all of the features.

B. Quantum Embedding

After normalization, Quorum embeds the data into quan-
tum states using amplitude encoding. The normalized feature
values are squared to convert them into probabilities, and
an “overflow state” probability is added to account for any
remaining probability mass, ensuring the total probability sums
to 1. This ensures that the total probability mass of the
quantum state is preserved.

A quantum circuit is then created to prepare a state vector
corresponding to these probability amplitudes using amplitude
embedding. This process is repeated for each data point (with
2n features) using two sets of n qubits within the same circuit,
creating two identical encodings: one for the transformation
and one as a reference (Fig. 2). This dual encoding allows
us to compare the transformed data with the original using a
SWAP test (we’ll discuss in Sec. IV-D why this is required).

Each quantum circuit consists of 2n + 1 qubits, where the
additional qubit serves as an ancilla for reading the SWAP
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test result. The SWAP test measures the similarity between
the original and transformed quantum states, preserving the
relative magnitudes of the features in the quantum state.

C. Bucketing and Feature Selection

Following the embedding process, Quorum employs a buck-
eting strategy and performs feature selection to prepare the
data for anomaly detection. As shown in Fig. 3, the dataset is
divided into a series of B random subsets, or buckets. Given
a dataset of size N , there are N/B buckets. This bucketing
strategy enhances the visibility of anomalies by allowing data
points to be compared against smaller, more localized subsets
of the dataset. The size of the buckets (B) is determined based
on the total number of data points and the estimated proportion
of anomalies, both of which determine the probability of
having at least one anomaly in each bucket. By distributing
the data into smaller buckets, Quorum increases the contrast
between normal and anomalous points, making it easier to
detect outliers (anomalous data points).

Feature selection is performed after bucketing to ensure that
the data samples can fit on quantum circuits, with Quorum
using a uniform random selection strategy (Fig. 4). Unlike
traditional downsampling or dimensionality reduction tech-
niques like Principal Component Analysis (PCA), random
selection offers several advantages. It is computationally faster,
avoids bias towards features that might not indicate anomalies,
and allows exploration of feature combinations that might
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otherwise be overlooked. For each quantum circuit with n
qubits, Quorum selects m = (2n−1) features from the dataset,
leaving room for an overflow state. This ensures the selected
features fit within the quantum state space of n qubits.

D. Quantum Circuit Design and Ansatz

The core of Quorum’s anomaly detection framework lies
in the design of its quantum circuits. Unlike traditional quan-
tum autoencoders, which train parameterized gate angles to
optimize encoding-decoding processes, Quorum does not rely
on learning optimal parameters. Instead, it utilizes random
quantum transformations and applies statistical analysis to
detect anomalies without training.

Each quantum circuit begins with an amplitude encoding of
the data, as described above. The first set of encoded qubits
is then passed through an ansatz, which consists of layers of
RX and RZ rotations and CNOT gates. The ansatz performs
random transformations on the encoded data, ensuring a high
degree of variability in the quantum states (Fig. 5).

The ansatz includes three main components: an encoder
circuit with randomly initialized parameters, a partial reset
operation that simulates an information bottleneck by resetting
a subset of qubits, and a decoder circuit that applies the
inverse of the encoder. The random angles for the quantum
gates in the encoder are initialized from a uniform distribution
U(0, 2π), and the decoder negates these angles to revert the
transformations. A SWAP test is then performed between
the transformed and original quantum states to measure their
similarity. This similarity score forms the basis for detecting
anomalies, as normal and anomalous data points will behave
differently under random quantum transformations.

This design enables Quorum to compress data through the
autoencoder and then decode it on the other end of the reset,
with the anticipation that anomalous data would be more likely
to deviate from the original state when the two states are
compared using the SWAP test.

E. Ensemble Groups and Statistical Analysis

To ensure robustness, Quorum processes each data point
through multiple ensemble groups. Each ensemble group in-
volves randomly initialized quantum circuits (θs), ensuring
that the data points are processed differently each time. Ad-
ditionally, the dataset is divided into new buckets for each
ensemble group, providing different perspectives on the data.

Each ensemble group also explores multiple compression
levels (Fig. 6). The compression level, determined by the
number of qubits reset in the partial reset operation, varies
systematically from the highest compression (fewest qubits
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Fig. 6: Quorum leverages multiple compression levels across
different ensemble groups to improve anomaly detection.

retained) to the lowest (most qubits retained). Quorum creates
a multi-dimensional view of each data point’s behavior under
various quantum transformations. This approach leverages the
principle of random projections, where projecting data into
multiple random subspaces can reveal structural information
that might not be apparent in any single projection. Each
ensemble group, with its unique combination of buckets,
feature subsets, circuit parameters, and compression levels,
represents a different “quantum projection” of the data.

Statistical analysis is then performed on the SWAP test
outputs. A key innovation in Quorum’s approach lies in
how these quantum circuit outputs are analyzed to detect
anomalies. For each bucket and each run, the mean and
standard deviation of the SWAP test results are calculated. The
anomaly score for each data point is derived by calculating
the normalized deviation from the bucket mean divided by
the standard deviation. These deviations are summed across
all runs and buckets, producing an overall anomaly score for
each data point (Fig. 7). A higher score indicates a greater
likelihood of an anomaly.

The use of random angles in the quantum circuit is a critical
aspect of Quorum’s design. Rather than learning to reconstruct
inputs accurately, this approach creates a random projection
of the data in high-dimensional Hilbert space. The statistical
analysis then captures how differently each data point behaves
under these random quantum transformations compared to the
average behavior of points in its various buckets.

This design allows Quorum to detect anomalies without
explicitly learning the structure of normal data or performing
any optimization, instead relying on the statistical properties
of how data points respond to random quantum transfor-
mations. The effectiveness of this approach lies in the fact
that anomalous data points tend to behave differently under
these transformations compared to normal data points, as
the randomizations add more deviation to anomalous data
compared to normal data. By aggregating these behaviors
across multiple random initializations, buckets, and compres-
sion levels, Quorum aims to build a comprehensive profile
of each data point’s response to quantum transformations,
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potentially unveiling subtle anomalies that more conventional
techniques might miss.

F. Scalability and Flexibility

A significant advantage of Quorum’s design is its inher-
ent scalability and flexibility. While our initial experiments
utilized 3-qubit encodings (resulting in 7-qubit circuits), the
approach can be readily scaled to accommodate larger en-
codings. For instance, moving to 4-qubit or higher encodings
would introduce additional “moments” to our results for each
compression level, potentially capturing even more nuanced
relationships in the data. This scalability allows users to tailor
the depth and complexity of the quantum transformations to
their specific needs and computational resources.

Furthermore, the design of Quorum lends itself to extensive
parallelization. Each ensemble group is entirely independent
of the others, making the technique embarrassingly parallel.
The scalability of Quorum extends beyond just increasing
the number of qubits or ensemble groups. The flexibility
in choosing the number of compression levels, the size of
buckets, and the number of features selected allows users
to fine-tune the balance between computational cost and the
granularity of anomaly detection.

In the following section, we delve into the methodology
used to obtain our evaluated results.

V. EXPERIMENTAL METHODOLOGY

Experimental Setup. We evaluate Quorum using Qiskit Aer’s
quantum circuit simulator. We use Python 3.10.12 and Qiskit
1.2, IBM’s quantum computing language [3], which is used
to run simulations of quantum circuits locally. Each quantum
circuit is generated via a Qiskit QuantumCircuit object, and
the quantum circuits are run through noiseless simulations.
We run simulations with Quorum and competitors on a local
research cluster with Ubuntu 22.04.2 LTS on a 32-core 2.0
GHz AMD EPYC 7551P processor with 32 GB RAM.

We also perform noisy simulations, where we model our
hardware after IBM’s Brisbane quantum computer to provide
realistic error rates. The noise parameters were obtained di-
rectly from IBM’s Brisbane backend specifications; median
properties are as follows: coherence times (T1 = 230.42 µs,
T2 = 143.41 µs), gate errors (single-qubit SX gate error =
2.274 × 10−4, two-qubit gate error = 2.903 × 10−3), and

TABLE I: Datasets used for Quorum’s evaluation. The right-
most column refers to the likelihood of at least one anomaly
being placed in each bucket.

Dataset Samples Anomalies Features Pr [Anomaly
∈ Bucket]

Breast Cancer 367 10 30 0.75
Pen-Global 809 90 16 0.6

Letter 533 33 32 0.95
Power Plant 1,000 30 5 0.75

readout error (1.38 × 10−2). Note: due to the over 100,000
runs required for Quorum’s evaluation, it was cost-prohibitive
to execute on real hardware. Thus, we use faithful simulations.

Datasets. We evaluate Quorum on four distinct datasets
representing different anomaly detection scenarios (Table I).
Three of the four datasets are directly derived from a related
and widely-cited survey of classical unsupervised anomaly
detection techniques by Goldstein and Uchida [10]. The fourth
dataset, which contains measurements taken from a combined
cycle power plant, was taken from UCI’s machine learning
repository [32]. For the power plant dataset, we inserted “plau-
sible” anomalies into the dataset based on ranges of values that
are possible for each feature. All datasets have labels stripped
for all operations until the evaluation is performed to facilitate
unsupervised anomaly detection.

Experimental Framework. Each experiment consists of mul-
tiple ensemble groups, where an ensemble group represents
a complete run of Quorum with different random initializa-
tions. We use 3-qubit encodings for our primary experiments,
resulting in 7-qubit circuits (including the ancilla qubit).
We chose this circuit size mainly due to limitations on our
computational resources as we ran simulations on our local
systems. For each dataset, we execute with 1,000 ensemble
members, with each member using different random bucket
assignments and feature selections. We executed 4,096 shots
per circuit for measurements. Increasing both shot count and
ensemble members has significant impacts on performance,
with benefits diminishing as they increase past a certain point.
For noisy simulations, we similarly executed 4,096 shots per
circuit. We use different target probabilities for bucket size
determination (see Table I) and provide an ablation study on
the effect of bucket sizes for each of the different datasets.

Evaluation Metrics. We evaluate Quorum’s performance us-
ing several metrics: (1) Detection Rate/Accuracy at various
percentile thresholds, measuring the fraction of true anomalies
captured in the top k% of anomaly scores. We chose to
include this metric to showcase how well our technique
separates anomalies from the rest of the dataset. (2) Precision,
calculated as the ratio of correctly identified anomalies to the
total number of samples flagged as anomalous. (3) Recall,
measured as the ratio of correctly identified anomalies to the
total number of true anomalies in the dataset. And (4) F1
Score, which is the harmonic mean of precision and recall.

Competitive Techniques. We compare Quorum against a
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any anomalies for the letter dataset, and thus, precision, recall,
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state-of-the-art quantum anomaly detection technique that uti-
lizes quantum neural networks to find anomalies in labeled
datasets [14] (we refer to this technique as “QNN”). The
technique is the most suitable among competitors as it shows
improved performance over them and is designed for noisy
quantum hardware, making it a practical benchmark. We
adapted QNN for generic use since it was initially developed
for network anomaly detection. Further, comparing against
QNN’s supervised, training-based approach helps demonstrate
the advantages of our zero-training unsupervised method,
particularly in scenarios where labeled data is unavailable.
Note: no unsupervised, zero-training work exists to compare
against as Quorum is the first of its kind in this domain.

VI. EVALUATION

Our experimental results demonstrate the efficacy of Quo-
rum’s anomaly detection approach across diverse datasets.

Flagship Results. Quorum demonstrates balanced anomaly
detection performance across all evaluated datasets – Fig. 8.
The recall measurements particularly highlight Quorum’s
strengths, where it consistently outperforms the QNN method.
While the QNN achieves perfect precision scores on both the
breast cancer and power plant datasets, this comes at the sig-
nificant cost of being overly conservative in anomaly detection,
leading to its notably poor recall performance. Quorum thus
achieves superior F1 performance across every dataset tested
– 23% higher on average. Quorum’s more nuanced approach
leads to better overall detection capabilities while maintaining
comparable accuracy levels across all datasets. These results
demonstrate that Quorum provides an effective approach to
anomaly detection, successfully balancing precision and recall
without sacrificing overall classification performance.
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normal samples on the breast cancer dataset (16K shots).

Detection Rates. In Fig. 9, Quorum’s detection rate curves ex-
hibit notably steep initial gradients, particularly for the breast
cancer and power plant datasets, which achieve approximately
80% detection rate within the first 10% of the highest deviation
samples in noiseless simulations (see Fig. 10 for a detailed
look at how Quorum grouped the breast cancer data samples).
The performance hierarchy among datasets likely reflects their
inherent separability characteristics, with the breast cancer
dataset showing the most distinctive anomaly patterns (achiev-
ing near-perfect detection at the 10th percentile), followed by
power plant data. The letter and pen datasets, while requiring a
larger percentile of samples for complete detection, still main-
tain clear separation from random performance, achieving a
roughly 60% detection rate within the top 20% of sample devi-
ations for noiseless runs. When subjected to realistic quantum
noise, Quorum demonstrates a high degree of resilience. Noisy
simulations closely track their noiseless counterparts across
all datasets, with only minimal degradation in performance.
Such inherent noise resilience is a significant advantage of
Quorum for near-term applications, as Quorum can maintain
its effectiveness even on noisy hardware without requiring
high-overhead error mitigation or correction methods.

Bucket Size Ablation. Analysis of F1 scores across different
bucket size configurations in Table II reveals that, as expected,
very small bucket sizes generally lead to degraded perfor-
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TABLE II: F1 Scores for different bucket sizes (p is the
probability of at least one anomaly in a bucket).

Dataset p = 0.5 p = 0.6 p = 0.75 p = 0.95 p = 0.98
Breast Cancer 0.500 0.500 0.600 0.500 0.600
Pen Digits 0.333 0.389 0.367 0.389 0.389
Letter 0.152 0.182 0.242 0.273 0.273
Power Plant 0.600 0.600 0.633 0.533 0.600

mance. However, we observe that moderately sized buckets
oftentimes outperform larger ones – for instance, the letter
dataset achieves its peak F1 score of 0.273 at p = 0.95, while
the breast cancer and power plant datasets show improved per-
formance at p = 0.75. This behavior can be explained by the
trade-off between statistical significance and local sensitivity -
while larger buckets provide more robust statistical estimates,
smaller buckets may better capture localized anomaly patterns
by reducing the “averaging out” effect of mixing anomalous
and normal samples from the datasets.

VII. CONCLUSION

In this paper, we introduced Quorum, a novel quantum
anomaly detection framework that operates without requiring
any training. The framework’s design, which incorporates
strategic data bucketing, feature selection, and ensemble analy-
sis, proves particularly effective at identifying anomalies while
remaining computationally efficient through its inherent paral-
lelizability. Our evaluation shows that Quorum can achieve up
to 80% detection rate within the first 10% of highest-deviation
samples, demonstrating strong anomaly-detection power, and
high resilience to noise on near term quantum systems. These
results suggest that Quorum represents a promising and wholly
quantum step forward in anomaly detection.

Quorum’s code is open-sourced at: https://github.com/
positivetechnologylab/Quorum.

ACKNOWLEDGMENT

This work was supported by Rice University, the Rice
University George R. Brown School of Engineering and
Computing, and the Rice University Department of Computer
Science. This work was supported by the DOE Quantum
Testbed Finder Award DE-SC0024301. This work was also
supported by the Ken Kennedy Institute and Rice Quantum
Initiative, which is part of the Smalley-Curl Institute.

REFERENCES

[1] Mohiuddin Ahmed, Abdun Naser Mahmood, and Jiankun Hu. A survey
of network anomaly detection techniques. Journal of Network and
Computer Applications, 60:19–31, 2016.

[2] Javier Alcazar, Vicente Leyton-Ortega, and Alejandro Perdomo-Ortiz.
Classical versus quantum models in machine learning: insights from
a finance application. Machine Learning: Science and Technology,
1(3):035003, 2020.

[3] Gadi Aleksandrowicz, Thomas Alexander, Panagiotis Barkoutsos, Lu-
ciano Bello, Yael Ben-Haim, David Bucher, Francisco Jose Cabrera-
Hernández, Jorge Carballo-Franquis, Adrian Chen, Chun-Fu Chen,
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