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This perspective explores various quantum models of consciousness from the viewpoint of quantum information
science, offering potential ideas and insights. The models under consideration can be categorized into three
distinct groups based on the level at which quantum mechanics might operate within the brain: those suggesting
that consciousness arises from electron delocalization within microtubules inside neurons, those proposing it
emerges from the electromagnetic field surrounding the entire neural network, and those positing it originates from
the interactions between individual neurons governed by neurotransmitter molecules. Our focus is particularly on
the Posner model of cognition, for which we provide preliminary calculations on the preservation of entanglement
of phosphate molecules within the geometric structure of Posner clusters. These findings provide valuable
insights into how quantum information theory can enhance our understanding of brain functions.

I. INTRODUCTION

The prevailing assumption in both modern science and philosophy is that consciousness arises from complex synaptic
computations within neural networks, where brain neurons function as fundamental units of information [1, 2]. However, a purely
algorithmic and deterministic perspective seems to leave little room for the inclusion of concepts such as qualia and free will in
the understanding of consciousness. Consequently, the term “quantum” has become a popularly used prefix in fields like social
science [3] and integrative neuroscience [4], even though the connection between quantum phenomena and consciousness remains
a subject of ongoing debate within the physics community [5]. Is the brain really acting as a quantum computer? Have we figured
out each and every process in the brain, irrespective of whether it is classical or potentially quantum? There are quite a few terms,
such as mind [6–8], consciousness [9, 10], instincts, pertaining to the brain, or what goes on inside it that is not accurately defined
because we do not have the appropriate tools yet to gauge them [11], and hence to understand them from a physical perspective.

Quantum theory has been employed to explore various aspects of brain activity in fascinating ways [12]. Each existing model
focuses on a specific dimension of neural processes, such as consciousness, cognition, or perception (including numerosity
perception; see, for instance, the spin model in [13]), with the overarching goal of understanding the brain. Our objective is not to
prove or disprove any theory or to provide a definition distinguishing consciousness from cognition. Instead, we will use the
terminology employed by the authors of these theories. If a theory uses the term "consciousness," we will use it as well.

Additionally, this perspective paper does not offer a comprehensive review of all models available in the literature. While we
acknowledge the significance of well-established approaches, such as the dissipative quantum model of the brain [14] and the
holographic brain theory [15, 16], these fall beyond the scope of our discussion. Instead, our focus is on three specific models that
explore the potential influence of quantum effects on mental processes at three distinct levels: i) the electrons within neurons, ii)
the electromagnetic fields surrounding neurons, and iii) the molecules that mediate neuronal communication.

These models include the orchestrated objective reduction (Orch OR) theory [17–21], which suggests that the collective states of
electrons inside neurons may function as qubits, with their objective and orchestrated collapse mediated by microtubule molecules
playing a key role in the emergence of consciousness; the conscious electromagnetic information (CEMI) field theory [22–26],
which predicts that the electromagnetic field enveloping the neural network can interact with individual cells via single photons,
potentially enabling analog quantum computation; and the Posner model of cognition [27], which explores a molecular form of
quantum computation that employs resources such as quantum entanglement between nuclear spins to synchronize individual
neurons.

Our aim is to provide a perspective from the standpoint of quantum information and demonstrate how it can aid in investigating
the aforementioned theories, placing particular emphasis on the Posner model of cognition. Additionally, we will present
simulation results based on our existing toy model [28], focusing on different geometrical clusters that preserve entanglement and
comprise the tetrahedral geometry, which is characteristic of phosphate in Posner molecules. Our numerical results demonstrate
that this specific geometry not only better preserves coherence but also maintains entanglement. To better understand our results
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and the effects in various geometric configurations, we represent the geometry by diagonalizing the Hamiltonian, a method that
clearly illustrates the impact of buffer isolation on quantum information protection. These findings offer valuable insights into
how quantum information theory can enhance our understanding of brain function.

The paper is organized as follows. Section II examines the role of microtubules in consciousness. Section III investigates the
concept of consciousness in the electromagnetic field. Section IV focuses on the Posner model of cognition. Building on this
concept, section V presents our study on the preservation of entanglement within different geometrical clusters. Section VI offers
a theoretical explanation of our results. Finally, Section VII concludes the review by summarizing the key findings and discussing
their broader implications for future research.

II. QUANTUM CONSCIOUSNESS EMERGING FROM THE MICROTUBULES WITHIN NEURONS

The foundational assumption of the Orch OR theory [18, 21, 29], originally introduced by Nobel laureate Roger Penrose
in Refs. [30, 31], is that consciousness arises from a sequence of discrete events beyond the scope of any computable process.
According to this theory, these events may result from a specific quantum phenomenon known as Diósi–Penrose objective
reduction of the quantum state. This phenomenon, as proposed by Penrose [32–34], involves the collapse of the quantum state
in a manner that is not solely the result of environmental interactions but is inherently linked to the fundamental influence of
space-time on quantum superposition. When these ideas were combined with anesthesiologist Stuart Hameroff’s research on
the biomolecular information processing models [35, 36], the concept of orchestrated objective reduction was integrated with
biological systems [17–20], further advancing the development of the Orch OR theory [21]. Consequently, the Orch OR theory is
also referred to as the Penrose-Hameroff model of consciousness.

The brain is a warm and noisy environment, which is generally not very conducive to quantum effects. For Penrose’s idea to be
plausible, quantum effects would need to survive in the brain at least until a neuron has managed to fire. Hameroff suggested
that microtubules, which are large polymers essential to cellular structure and function, could provide a potential framework
for quantum processes within neurons. These hollow tubes, composed of tubulin dimers, contain π electrons that delocalize
within the aromatic rings of tubulin molecules. In its early formulations [17–20], the Orch OR theory posited that tubulins could
exist in a superposition of distinct mechanical conformations, influenced by London force dipoles within these aromatic rings.
However, more recent iterations of the theory have shifted focus away from conformational superpositions, emphasizing instead
the superposition of tubulin dipole states as the primary mechanism for information encoding [21]. Both in the initial proposals
and in more advanced interpretations of the model, it is hypothesized that π electrons may become delocalized to such an extent
that they could form a network potentially capable of sustaining quantum superposition long enough to influence conscious
thought [37–43].

A. Superradiant excitonic states in microtubules

A promising investigation into the potential for long-range coherent quantum phenomena in cytoskeletal microtubules involves
the study of superradiance [37, 38]. This quantum phenomenon occurs when molecular sites interact with a shared electromagnetic
field, leading to collective light emission as excitations become delocalized across multiple molecules.

Exciton delocalization plays an important role in biological networks of photoactive molecules by providing giant transition
dipoles that can strongly couple to the electromagnetic field, enable superabsorbtion and supertransfer, and transport the cellular
photoexcitation to a specific reaction center. The molecular structures and their quantum dynamics need to be modelled
as open systems, where the first level of the environment is the electromagnetic field to which the “exciton waves” couple.
Traditional quantum optics assumes that photoactive molecules are identical two-level systems and models the delocalization
of a single excitation and its transfer back to the electromagnetic field through photon emission by an effective non-Hermitian
Hamiltonian [44–47]:

Heff = H0 + ∆ − i

2G , (1)

where Heff =
∑

E E|ER⟩⟨EL| such that Heff |ER⟩ = E|ER⟩. Here, H0 accounts for the on-site energies of a single excitation in
the molecular aggregate, and ∆ andG describe the transport of the exciton between different sites as a result of the interaction with
the electromagnetic field. This non-Hermitian Hamiltonian offers an opportunity to go beyond the dipole-dipole approximation,
which is a limiting case of the interactions described by Eq. (1) when the size of the system is much smaller than the wavelength
associated with the transition dipole of the molecular sites [45].

The non-Hermitian Hamiltonian approach outlined above has been recently utilized in Ref. [48] to develop a theoretical
model for exciton transport within microtubules. In this model, aromatic tryptophan amino acids (Trp) – that have the largest
transition dipole moment in the structure of microtubules – were treated as the photoactive molecular sites through which
a single exciton delocalizes. The positions, dipole orientations, and excitations energies of these molecules were obtained



3

by the previous molecular dynamic simulations and quantum chemistry calculations. Then, the biorthogonal eigenspectrum
{E = E − iΓ/2, |ER⟩, |EL⟩} of Eq. (1) was obtained by diagonalizing it for a system consisting of up to 100 spirals of 13
microtubule protofilaments. To this aim, each spiral was assumed to include 104 Trp dipoles.

The imaginary part Γ of the complex eigenvalues E represents the decay width that determines the coupling of extended
excitonic state with the electromagnetic field. When the decay widths of all right eigenstates |ER⟩ were plotted after being
normalized by the single dipole decay width γ in [48], it was realized that the superradiant state corresponds to the lowest
excitonic state for the systems that have more than 12 spirals. It was also demonstrated that either full or a partial randomization
of Trp dipole orientations destroys the superradiance, which in turn indicates that the superradiance depends on the particular
order of these dipoles in microtubules.

The extent of exciton delocalization was also investigated for both the superradiant and subradiant states of 100 spirals in [48].
To this aim, the authors utilized the three dimensional visualization of the probability of finding the exciton on Trp site k, which
reads

P (k) = |⟨k|ER⟩|2∑
k |⟨k|ER⟩|2

. (2)

This investigation revealed that the exciton in the superradiant state is delocalized over all Trp sites on the microtubule’s external
wall, potentially facilitating communication with cellular proteins. Conversely, exciton delocalization in the long-lived subradiant
state is concentrated on the inner wall of the microtubule lumen, possibly contributing to neuronal process synchronization. The
same probability-based analysis using smaller microtubule segments (specific groups of 13 coupled spirals, the minimum number
ensuring the superradiant state as the lowest excitonic state) showed that the ground state of the whole segment acts as a coherent
superposition of the ground states of its smaller components. Furthermore, photoexcitation was found to spread ballistically
along the longitudinal axis, and the superradiance demonstrated robustness to disorder, even with uniformly distributed excitation
energy across Trp dipole sites.

This type of probabilistic analysis of exciton delocalization within a microtubule segment could be further refined by incorpo-
rating established measures from quantum information theory. For instance, assume the microtubule system reaches thermal
equilibrium at inverse temperature β, then the state of the system is given by

ρth =
∑

ϵ

e−βϵ

Z
|ϵR⟩⟨ϵL|, (3)

where Z =
∑

ϵ e
−βϵ. The probability of finding the exciton on Trp site k turns out to be

P (k) = ⟨k|ρth|k⟩ =
∑

ϵ

e−βϵ

Z
⟨k|ϵR⟩⟨ϵL|k⟩, (4)

which can be nonzero across the microtubule segment, although its state is an incoherent mixture. In this example, the simultaneous
presence of the exciton at two different Trp sites with nonzero probabilities cannot be interpreted as the exciton being delocalized
across these two sites. While P (k) and P (j) may have positive values, the off-diagonal term of ρth, which couples these two
sites, ⟨k|ρth|j⟩, can still be zero. Thus, probability-based approaches might be misleading in witnessing exciton delocalization,
especially when the microtubule is an open system.

Alternatively, the density matrix formalism provides a powerful framework for quantifying exciton delocalization in micro-
tubules using suitable measures of quantum coherence Cm [49]. This methodology parallels the approach used to quantify proton
delocalization in water ice systems, as detailed in Ref. [50]. Furthermore, measures of quantum superposition [51, 52] can be
applied when ⟨k|j⟩ ≠ 0, drawing an analogy to the analysis of electron delocalization in aromatic molecules, as described in
Ref. [53].

Quantum coherence measures the degree of quantum superposition in a state ρ with respect to an orthogonal basis {|k⟩}. One
widely used measure is the l1 norm of coherence, defined as

Cl1 [ρ] =
∑
k ̸=k′

|⟨k|ρ|k′⟩|. (5)

The l1 norm of coherence is maximized for an excitonic state ρ = |ψ⟩⟨ψ| where

|ψ⟩ =
N∑

k=1

1√
N

|k⟩.

This corresponds to a state where the exciton can be found in each Trp site with equal probability 1/N upon measurement.
Conversely, Cl1 vanishes for incoherent mixtures like ρmix =

∑
k P (k)|k⟩⟨k|.
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Another measure of coherence is the relative entropy of coherence [49]:

CRE [ρ] = min
σ∈I(S)

S(ρ||σ) = S(ρd) − S(ρ), (6)

where the minimization is over the set of incoherent states in the basis {|k⟩}, S(ρ||σ) is the quantum relative entropy, and
S(ρ) = −tr(ρ log2 ρ). S(ρd) is the von Neumann entropy of the state ρd =

∑
k⟨k|ρ|k⟩|k⟩⟨k|. The relative entropy of coherence

measures how distinguishable a density matrix is from its closest incoherent state, providing a way to quantify the coherence
present in the system.

This quantum information-theoretical approach also allows us to rigorously measure exciton delocalization over two blocks
of 13 coupled spirals, say blocks A and B. By taking a partial trace over the degrees of freedom of the other blocks X̄ , we can
calculate the reduced state ρX for any block or block cluster X = {A,B,AB}. Then, Cm[ρA] and Cm[ρB ] quantify intra-block
exciton delocalization inside blocksA andB, respectively. The quantity Cm[ρAB ]−Cm[ρA]−Cm[ρB ] corresponds to inter-block
exciton delocalization, related to the coupling between blocks. This approach provides a theoretical background for experiments
observing exciton delocalization via interference in emission lines from spatially separated blocks. An experiment similar to the
one performed for polyacetylene in [54] can be designed for microtubules.

In addition to enhancing the quantification of delocalization, the perspective of quantum information science could provide an
opportunity to extend the non-Hermitian Hamiltonian approach to a quantum master equation approach. This would allow for
modeling the complete dynamics of photoexcitation in microtubules, including the influence of the surrounding environment
[44–47]. The reduced equation of motion given in Eq. (1) can be derived from a couple of extended master equations that include
the electromagnetic field’s degrees of freedom [44–47]. However, these master equations should also be extended to include
thermal fluctuations of the surrounding environment.

The non-Hermitian approach introduced in Ref. [48] and discussed above, which is relevant to the single-excitation manifold,
was recently extended in a follow-up study to investigate the effects of superradiance induced by ultraviolet excitation of several
biologically relevant Trp mega-networks [55]. In this study, the researchers enhanced their theoretical and computational results
with experimental fluorescence quantum yield measurements in tubulin and microtubules. Interestingly, they observed that the
formation of strongly superradiant states – resulting from collective interactions among over 105 Trp UV-excited transition
dipoles within microtubule structures – enhances the efficiency of ultraviolet light absorption and its redistribution to lower energy
levels. This mechanism may provide potential protection for cells against ultraviolet-induced damage. We have explored how
the framework of quantum information science could further enrich the theoretical approach presented in Ref. [48]. A similar
enhancement is equally applicable to the more recent study presented in Ref. [55].

III. QUANTUM CONSCIOUSNESS EMERGING FROM THE EM FIELD SURROUNDING NEURONS

As discussed above, the Orch OR theory suggests that information processing in the brain occurs at the level of microtubules,
which shape neurons and give them their unique architecture. This idea, however, conflicts with established principles of
neuroscience. Yet, certain phenomena, such as the binding problem, remain challenging to explain at the scale of neural networks.
One idea proposed to address the integration of distinct information processed by localized neural networks across distant regions
of the brain - information distributed over a wide spatial area - is to conceptualize consciousness as a force field [56]. Some
earlier interpretations [57–59] view this force field as having a metaphysical origin, aligning with traditional mind-body dualism.
Alternatively, others [22–26, 60, 61] suggest that it represents the brain’s endogenous electromagnetic (EM) field, reframing the
mind-body problem as a matter-field dualism.

The Conscious Electromagnetic Information (CEMI) Field Theory, proposed by Johnjoe McFadden [22] serves as the foundation
for examining the experimentally observed correlations between synchronized neuronal firing and conscious awareness [62].
According to this theory [23–26], information processed in local neural networks can be transferred to the brain’s EM field,
creating disturbances that reflect this information. It suggests that the information integrated into the EM field corresponds to
conscious experience, which can then be re-downloaded into neural networks, influencing the firing patterns of motor neurons.

The CEMI field theory asserts that synchronized neural firing is essential for transferring information generated by neural
computation into the brain’s EM field. Without this synchronization, the theory argues, the brain’s EM field would not be
sufficiently perturbed, and the resulting information would contribute only to unconscious awareness.

Moreover, the theory does not claim that integrated information within the EM field directly activates resting neurons. Instead,
it suggests that mechanisms, such as the regulation of voltage-gated ion channels - especially when the membrane potential is
near the threshold, either slightly below or above - might allow the EM field to influence neuronal activity. This influence could
involve either triggering firings that are on the brink of occurring or suppressing those that are barely underway. The theory views
this process as a possible basis for free will.

While quantum effects are not considered a requirement, the theory proposes that the EM field could, under specific conditions,
control neurons through single-photon interactions. This interaction, it suggests, may represent the only way quantum effects are
permitted to manifest within the brain.
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The initial studies [23, 24] aimed to generate testable predictions by presenting theoretical considerations and experimental
evidence related to the origin of the brain’s EM field, the spatiotemporal complexity of its magnitude, and potential mechanisms
for interaction with neural computation. Subsequent updates to the theory have further strengthened this proposal. For example,
Refs. [25, 63, 64] reported experiments demonstrating that synchronous neuronal firing has a functional role in the brain and that
the brain’s endogenous EM field contributes to recruiting neurons into synchronously firing networks. Additionally, Ref. [26]
addressed criticisms suggesting that the binding problem is merely an illusion, showing instead how complex information is
unified into coherent ideas that provide meaning within the brain. In an another update [65–67], it has been proposed that spatially
distributed information can only be integrated through energetic fields, such as the EM field.

Despite being based on a solid conceptual foundation, the CEMI field theory has not garnered the attention it warrants in the
literature [66]. One of the reasons for this is that it still lacks a mathematical model to validate its viability. The central premise of
the theory is that it is not the number of neurons firing, but rather the degree of synchronization in their firing that is related to
conscious awareness. On the other hand, synchronization is one of the most important phenomena in the literature on dynamic
systems, and there is a significant body of knowledge on the mathematical methods used to study it. However, the complexity of
the human brain and the need for dynamic system analysis at the macroscopic level may pose challenges in enriching the CEMI
field theory with mathematical models. At this point, information-theoretic approaches may provide an alternative route for both
theoretical and experimental research.

There is a natural relationship between the concepts of synchronization and correlation. Strong synchronization in a neural
network means that there is a high correlation between individual nerve cells. In other words, information theory could allow
us to focus on the individual nerve cells within the brain’s structure, rather than looking at the entire, vast, and complex brain.
Moreover, the flow of information within a system can be studied more effectively through the concept of correlation rather than
synchronization.

For example, we could model neuronal coherence by developing mathematical models to simulate how correlated neural firing
can create coherent EM fields. This can help us understand how these fields might exhibit quantum coherence properties. In this
context, existing methods related to the transformations between quantum coherence and correlations in Refs. [68–70] can be
guiding.

Another approach is to simulate quantum entanglement to explore potential interactions between different regions of the brain.
The generation of correlations between massive particles interacting with a gravitational field has been a topic of mathematical
investigation for some time [71–73]. Moreover, fluctuation-mediated Casimir-Polder interactions can lead to correlations that
persist, even in the steady state, between initially uncorrelated and spatially separated particles [74]. Using a similar approach, we
could model how a specific type of magnetic field might correlate two nerve cells separated by a particular distance. We could
also use quantum field theory to model interactions between the brain’s EM field and potential quantum fields. This can provide
insights into how macroscopic EM fields might emerge from microscopic quantum processes.

These are promising directions, although they might be complex to compute. Nevertheless, they represent valuable avenues for
exploring the CEMI Field Theory.

IV. QUANTUM CONSCIOUSNESS EMERGING FROM THE MOLECULAR INTERACTIONS AMONG NEURONS

Matthew Fisher proposes a comparison between quantum computing and our brain, suggesting that the latter might function
like a quantum computer [27, 75]. This model aligns closely with neuroscience conventions, where consciousness is associated
with the network of neurocells.

To facilitate quantum computing in the brain, we first need to identify a suitable candidate to act as a qubit. Additionally, the
brain’s mechanism should meet the following criteria:

• Possess a long nuclear-spin coherence time to function as a qubit.

• Have a method for transporting this qubit throughout the brain and into neurons.

• Include a molecular scale quantum memory for storing the qubits.

• Contain a mechanism for quantum entangling multiple qubits.

• Initiate a chemical reaction that triggers quantum measurements, which in turn determine subsequent neuron firing rates,
among other things.

The optimal candidate for a neural qubit in our brain should have a nuclear spin of 1
2 to ensure long-lived coherence. Therefore,

phosphorus emerges as the best candidate for a neural qubit.
The phosphate ion and the pyrophosphate ion serve as transporters for this qubit. In our body, adenosine triphosphate (ATP)

undergoes a hydrolysis reaction,

ATP −→ AMP + PPi,
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producing adenosine monophosphate (AMP) the pyrophosphate ion (PPi). Occasionally, further hydrolysis results in the
production of two separate phosphate ions.

Once the transporter is identified, a mechanism is needed to protect the coherence of the phosphorus qubit. This is where the
Posner molecule comes into play. The existence of stable calcium-phosphate molecules in our body indicates that phosphate ions
will bind to calcium cations, protecting them from proton binding. This mechanism extends the coherence time for phosphorus
nuclear spin. The calcium-phosphate molecule is referred to as the Posner cluster.

Next, we need a mechanism to entangle two qubits present in two different Posner clusters. The enzyme pyrophosphatase
ensures this entanglement. In Posner clusters, pseudospin states arise from the collective nuclear spins of phosphorus atoms.
These pseudospin states serve as the quantum degrees of freedom, making the Posner molecule a qutrit due to its three-fold
symmetry.

When two Posner molecules attempt to bind, their pseudospin states become entangled, regardless of whether the binding is
successful. This entanglement is crucial for quantum computations. The two entangled phosphorus nuclear spins, located in
different Posner clusters, influence the firing of corresponding neurons during binding reactions. This means that the reactions in
two different neurons are entangled.

Furthermore, the Posner cluster has been studied experimentally to gather evidence supporting the potential demonstration
of this theory [76–80]. Theoretical studies have also been conducted to model the system using a Hamiltonian framework
and incorporating environmental noise and some quantum information measures such as concurrence. These studies model
Posner molecules with six interacting spins, one for each phosphate molecule. The spin Hamiltonian describes these interactions,
considering the symmetry of the Posner molecule and examining various configurations. They use concurrence to analyze
entanglement within the spin system [81–83]. Another study approaches it from a quantum computing and information perspective,
interpreting each step in Fisher’s proposal as a quantum computing operation, though it does not involve environmental factors
[84].

Some of these studies are skeptical about the possibility of quantum brain processing. However, our goal here is not to
definitively prove or disprove this idea but to illustrate how quantum information could aid in these investigations. To tackle this
complex model, we introduce a simplified toy model to specifically investigate the behavior of phosphate molecules, focusing on
the preservation of entanglement.

V. STUDY OF THE ENTANGLEMENT PRESERVATION

In a recent article, we have explored the preservation of quantum coherence in various geometries [28]. We found that the
tetrahedral geometry is the best candidate for the protection of quantum coherence in a central spin, which closely resembles
the structure of the phosphate molecule. Building upon this work, we now extend our investigation to the preservation of
entanglement.

In our approach, we treat each atom within a phosphate molecule as an identical spin having a magnitude of 1/2. In the context
of a phosphate molecule, a cluster of five spins consists of a central spin (associated with the phosphorus atom) surrounded by
buffer spins (corresponding to oxygen atoms). The buffer spins interact with individual thermal baths, while the central spin
remains isolated from direct environmental interactions. When exposed to a magnetic field along the z-axis, an energy difference
arises between the lower state (spin-up) and the upper state (spin-down), allowing for a two-level description. The buffer spins
eventually reach thermal equilibrium with the environment at an inverse temperature β. In our study, we analyze the geometry
of buffer networks characterized by different arrays of coupling constants, which are either g or 0. These configurations can be
represented using planar graphs. Specifically, for a given number of buffer spins, N , we explore all feasible buffer networks that
can be embedded in a plane. We focus on two extreme cases: one where there is no connectivity among the buffer spins and
another where there is maximum connectivity within the buffer spin network.

For the study of entanglement preservation, we consider two separate clusters with entangled central spins. For example, in a
tetrahedral geometry, these clusters could represent two separate phosphate molecules. In each phosphate molecule, the central
spin corresponds to the phosphorus atom, and these phosphorus atoms are entangled with each other. Our main goal is to preserve
the initial entanglement between two spins, each in a separate network, over time. To accomplish this, we model the system as an
open system. The central spins in both networks are entangled with each other, while the surrounding buffer spins remain in a
thermal state. There is no direct coupling between the spins of the two networks, as they are well separated. We consider two
clusters of N + 1 spins, each cluster consisting of a central spin surrounded by a buffer network. The initial cluster state can be
represented as a product state,

ρ(0) = |ψ1⟩ ⟨ψ1| ⊗ ρ⊗2N
th , (7)

with

|ψ1⟩ = |01⟩ + |10⟩√
2

. (8)
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Hereon, we take ℏ=1. The thermal state of the buffer spins is defined as

ρth = e−β ω
2 σ̂z

Z
, (9)

where σz = |0⟩ ⟨0| − |1⟩ ⟨1| represents the Pauli-z operator and Z = 2 cosh[β ω/2] denotes the partition function. Here, we
assume the Boltzmann constant kB to be equal to 1. The total Hamiltonian of one spin cluster reads as

Ĥ =
N+1∑
i=1

ω

2 σ̂
(i)
z +

∑
i ̸=j

gij(σ̂(i)
x σ̂(j)

x + σ̂(i)
y σ̂(j)

y ) . (10)

The Pauli spin-1/2 operators for the ith spin are denoted by σ(i)
x , σ(i)

y , and σ(i)
z , and the interaction strength between the spin pair

(i, j) is represented by gij . The central spin, labeled by "1", is coupled to the buffer spins at strength g1j = g ̸= 0 in all geometries
under consideration. On the other hand, each buffer network is defined by a different array of coupling constants consisting of
zero or g values, which can be represented by a planar graph. In other words, we consider two different geometries of the spins in
the buffer network: either they do not interact with each other and are coupled only to the central spin (forming a topology that
resembles a star graph), or they are fully connected to all the other spins in the system (giving rise to a complete graph). To be
precise, for N = 5 the fully connected geometry is not a complete graph, as the central spin is positioned right in the middle of
the bulk network (more details are given in [28]), hindering the interaction between spin 2 and spin 6, which are uncoupled.

We describe the open quantum system dynamics of the spin network by the following Lindblad master equation [85],

ρ̇(t) = −i[Ĥ, ρ(t)] + D(ρ(t)) , (11)

where the unitary contribution to the dynamics is provided by the self-Hamiltonian of the system given in Eq. (10). By assuming
weakly coupled buffer spins, local thermal dissipation channels are described by the dissipator in Eq. (11) [86–88],

D(ρ) =
N+1∑
i=2

γi (1 + n(ω))[σ̂−
i ρ(t)σ̂+

i − 1
2

{
σ̂+

i σ̂
−
i , ρ(t)

}
]

+
N+1∑
i=2

γi n(ω) [σ̂+
i ρ(t)σ̂−

i − 1
2

{
σ̂−

i σ̂
+
i , ρ(t)

}
] ,

(12)

where n(ω) is the Planck distribution at the spin resonance frequency ω, σ̂± are the Pauli spin ladder operators, and γi = γ is the
coupling constant between the environment and the ith buffer spin, taken to be homogeneous for each buffer spin independently
of the network structure for simplicity.

To verify the entanglement protection of different geometries we look at the logarithmic negativity. The negativity, denoted as
N(ρ), quantifies entanglement in bipartite quantum systems, ρAB [89]. It is given by summing over the absolute of the negative
eigenvalues, λi, of the partially transposed density matrix, ρT

A,

N(ρAB) =
∑

i

|λi|. (13)

The logarithmic negativity, EN , is related to the negativity and serves as a good indicator of the degree of entanglement. It is
defined as

EN (ρAB) = log2(2N(ρAB) + 1). (14)

Notably, Figure 1 illustrates the logarithmic negativity over time between the two central spins in different geometries with
interaction between buffer spins. We observe that entanglement is conserved for an extended duration in the case of N = 4 with
maximum connectivity between buffer spins as shown in Table I. This geometry is the closest to the tetrahedral geometry of the
phosphate molecule. We have also compared the protection time of entanglement between vanishing and maximal connectivities
in the buffer network and shown that protection is optimal when interactions are turned on. In our previous work, we provided
physical insight into the heat transfer within the system, noting that a delay is particularly pronounced in tetrahedral geometries.
This explanation suggests that a similar mechanism could apply to the preservation of entanglement. The initial calculations yield
promising results, offering insights into the feasibility of Fisher’s proposal. This marks the first step toward developing a more
realistic model, where the spins more accurately mirror the biological environment. In the following section, we use a sectional
diagonalization of the Hamiltonian to more clearly reveal the effect of buffer isolation on quantum information protection.
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(a) (b)

(c) (d)

Figure 1. Logarithmic negativity, EN , of the reduced state composed on the two entangled spins with respect to dimensionless time, t. Here, all
the results refer to the model with fully connected buffer spins (for N = 5 the interaction between spin 2 and spin 6 is missing). (a) N = 2. (b)
N = 3. (c) N = 4. (d) N = 5.

Table I. Time, t1, at which the logarithmic negativity between the two center spins is lower than 10−4. The left and right columns correspond to
vanishing and maximal connectivities in the buffer network respectively at fixed N .

N + 1 3 4 5 6
t1 2250 3210 2330 3230 1260 3800 1140 2540

VI. THEORETICAL EXPLANATION

A. Hamiltonian Transformation

We now examine the system with fully connected buffer network, and more specifically its Hamiltonian, from a different
perspective, in an attempt to provide a theoretical explanation of better entanglement preservation in the fully connected geometry.
By applying a unitary transformation to the Hamiltonian, we can transition from a fully connected graph of buffer spins to the
other extreme, where the buffer spins do not interact with each other. These fictitious non-interacting buffer spins will be referred
to as the dressed buffer spins and the new representation after the transformation as the dressed picture.

We rewrite the Hamiltonian in Eq.(10) in terms of ladder operators as

Ĥ =
N+1∑
i=1

ω

2
(
σ+

i σ
−
i − σ−

i σ
+
i

)
+

∑
i̸=j

2gij

(
σ+

i σ
−
j + σ−

i σ
+
j

)
(15)

=
N+1∑
i=1

ω

2

(
2σ+

i σ
−
i − 1(i)

)
+

∑
i ̸=j

2gij

(
σ+

i σ
−
j + σ−

i σ
+
j

)
. (16)

Given the spin operator vectors,

Σ+ = (σ+
1 , . . . , σ

+
N ), (17)

Σ− = (σ−
1 , . . . , σ

−
N ), (18)
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The Hamiltonian, in matrix form, can be expressed as (up to an irrelevant constant):

Ĥ = Σ+HΣT
−, (19)

where H is given by

H =
[
ω v
vT H ′

]
. (20)

The vector v represents the interaction between the central spin (spin 1) and the other spins j (for j = 2, . . . , N + 1), expressed as

v = (2g12, . . . , 2g1N+1) = (G, ..., G), with G = 2g. (21)

Moreover, note that, for N = 2, 3, 4, H ′ = ω1 +GAcom, where Acom is the adjacency matrix of the complete graph of order N
up to a sign.

Here, we aim to preserve the first spin, corresponding to the central spin, while diagonalizing H ′,

H ′ = UDU†. (22)

For N = 2, 3, 4 this is equivalent to finding the eigenvalues and eigenvectors of the complete graph Acomuj = µjuj . We readily
obtain µ1 = . . . = µN−1 = −1 with multiplicity N − 1, and µN = N − 1 with multiplicity 1. The corresponding eigenvectors
are uj = 1√

2 (|N⟩ − |j⟩) for j = 1, . . . , N − 1, and uN = 1√
N

∑N
j=1 |j⟩ . The matrix D in (22) is diagonal and contains the

frequencies of the dressed buffer spins, which, following our discussion on the eigenvalues of the complete graph and some trivial
algebra for the geometry with N = 5, are given by:

• for N = 2,

(ω̃2, ω̃3) = (ω + 2g, ω − 2g); (23)

• for N = 3,

(ω̃2, ω̃3, ω̃4) = (ω + 4g, ω − 2g, ω − 2g); (24)

• for N = 4,

(ω̃2, ω̃3, ω̃4, ω̃5) = (ω + 6g, ω − 2g, ω − 2g, ω − 2g); (25)

• for N = 5,

(ω̃2, ω̃3, ω̃4, ω̃5, ω̃6) = (ω + 2(1 +
√

7)g, ω + 2(1 −
√

7)g, ω, ω − 2g, ω − 2g). (26)

The spin operator vectors are modified in the dressed picture as Σ → Σ̃ with

Σ̃ = (1 ⊗ U†)Σ, (27)

which gives

Σ̃ = (σ1, σ̃2, . . . , σ̃N ). (28)

As discussed before, σ1 which represents the spin operator of the central spin, remains unchanged.
Next, we rewrite the interaction between the central and the buffer spins in the dressed picture Σ̃, making use of the

transformation

σ±
i =

N+1∑
j=2

Uij σ̃j
±. (29)

We can thus define a new vector of interactions ṽ = (g̃12, . . . , g̃1N+1). Note, however, that the coupling between the central spin
and the buffer spins can be written as Gσ+

1
∑N+1

j=2 σ−
j +H.c., and in the case of a complete graph the sum

∑N+1
j=2 σ−

j corresponds
to a single eigenvector of the graph (uN defined above, with eigenvalue N − 1). In other words, for N = 2, 3, 4 the central spin is
coupled to a single dressed buffer spin with energy ω + (N − 1)G. Furthermore, the coupling constant is equal to G

√
N − 1.
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Figure 2. The first column represents the number of buffer spins, N . Column A represents the non-interacting buffer spins. Column B shows the
interacting buffer spins. Column C shows the dressed buffer spins after the Hamiltonian transformation which is represented by the curved
arrows. In the original representation (column B), all spin couplings are identical. In the new representation, that is, the dressed picture (column
C), the couplings vary as follows: g̃12 = 1.41G for N = 2, g̃12 = 1.73G for N = 3, g̃12 = 2G for N = 4, and g̃12 = −2.23G, g̃14 = 0.21G
for N = 5.

Finally, for the case with N = 5 the buffer spins do not form a perfectly complete graph, as the interaction between spin 2 and
spin 6 is missing. However, a similar reasoning applies and it can be shown that the central spin is coupled to only two dressed
buffer spins, as depicted in Figure 2 (column C). We remark that the decoupling of the central spin from most of the dressed
buffer spins is due to the system Hamiltonian being highly symmetric.

Let us finally address the coupling of the buffer spins with the local baths in the dressed picture. The local thermal dissipation
channels are described by the dissipator (12). By applying the transformation (29), we obtain in the dressed picture the same
dissipator with σi replaced by the suitable linear combination of σ̃j . In the dressed picture, the separate baths acting locally on
each buffer spins become global baths [86, 87] acting collectively on the dressed buffer spins.

In conclusion, through the change of variables (29) we have mapped the problem of a central spin coupled to a network of fully
connected buffer spins to the problem of a central spin coupled to a collection of non-interacting fictitious buffer spins, which
resembles the other model we consider in this work that displays worse entanglement preservation (see for instance Table I).
Contrary to the latter scenario, however, only one of the dressed buffer spins is coupled to the central spin, although through a
stronger interaction and under the action of global baths. This may give us some hints of why the fully connected geometry better
preserves entanglement, as we show in the following.
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B. Calculation for N = 2

Let us explicitly show the calculation for N = 2. For N = 2,

D =
[
ω + 2g 0

0 ω − 2g

]
. (30)

The transformation matrix,

U = 1√
2

[
1 −1
1 1

]
, (31)

transforms the spin matrices as

σ±
2 = 1√

2
(σ̃±

2 − σ̃±
3 ); (32)

σ±
3 = 1√

2
(σ̃±

2 + σ̃±
3 ). (33)

Then, the interaction of the first spin with the buffer spins is transformed as

G(σ+
1 σ

−
2 + σ+

1 σ
−
3 ) −→ 2√

2
G(σ+

1 σ̃
−
2 ), (34)

with g̃12 =
√

2G. It is worth noting that after diagonalization, the interactions between dressed buffer spins are suppressed.

C. Interpretation of the Results

In the non-interacting case, there are N interactions between the central spin and buffer spins (column A in Figure 2). When
interactions between buffer spins are introduced (column B in Figure 2), the interaction between the central spin and the dressed
buffer spins is reduced to a single interaction for N = 2 to N = 4, and to two interactions for N = 5 (as shown in column
C in Figure 2). Using the dressed picture, we can more easily compare these scenarios and understand why interacting buffer
spins offer better quantum information protection. In column B, where the buffer spins are maximally interacting, the interaction
between the central spin and the buffer network (which is connected to the environment and responsible for the loss of quantum
information) is significantly modified. While in the case of non-interacting buffer spins (column A) the central spin is weakly
coupled to N independent and locally dissipating buffer spins, if the buffer network is fully connected (N = 2, 3, 4) then the
central spin interacts with a single dressed buffer spin (column C), which is dissipating into different global baths, in a more and
more intense way as a function of N (coupling constant going as

√
N ).

Focusing now on the dynamics of the central spin only, the difference between the two scenarios described above lies in a
transition from a Markovian to a non-Markovian dynamics. Indeed, if dissipation comes from a collection of identical and weakly
coupled systems, the dynamics has a more Markovian behavior corresponding to a roughly flat spectral density of the environment
(this is an exact result if we consider N → ∞ non-interacting buffer spins [85]). On the other hand, a stronger coupling with a
single dressed buffer spin implies a more and more non-Markovian behavior, as the dressed spin filters the thermal white noise
into Lorentzian noise. Furthermore, it is well-known that a non-Markovian dynamics better preserves quantum information, as
non-Markovianity induces a backflow of quantum information from the reservoir to the central spin [90–100]. It is thus reasonable
to expect that the fully connected buffer network preserves entanglement during a longer time than the non-interacting network,
as we indeed observe.

For N ≥ 5, it is physically impossible to construct a fully connected network, given the position of the central spin (see e.g.
[28]), and for instance for N = 5 the interaction between spin 2 and spin 6 is missing. So, the dressed buffer network does not
reduce to a single interaction. Instead, the central spin is coupled to two non-interacting dressed buffer spins, while three more
are left uncoupled. Anyway, we can draw similar conclusions as for the case of perfectly fully connected buffer network, i.e.,
the dynamics will have a more non-Markovian behavior than in the case of non-interacting buffer network, leading to better
entanglement preservation. This behavior, however, will be less pronounced than in the case of a fully connected network.

Finally, we point out that in the tetrahedral geometry (N = 4), there is a significant improvement in quantum information
preservation (Figure 1). We observe that N = 4 presents the strongest possible coupling between the central spin and a singled
dressed buffer spin (Figure 2), as for N ≥ 5 the fully connected geometry is not possible. Consequently, quantum information
would be preserved longer due to the strongest possible non-Markovian behavior, arising in the case of N = 4.
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Figure 3. Trace norm distance, D, between ρ1 and ρ2 over dimensionless time for different numbers of buffer spins: N = 2, N = 3, N = 4
and N = 5. The buffer spins interact with each other.

D. Numerical Verification

To verify numerically this observation we can calculate the trace distance measure of non-Markovianity [101]. Trace distance
between two density matrices ρ1(t) and ρ2(t) at time t can be calculated as

D(ρ1(t), ρ2(t)) = 1
2∥ρ1(t) − ρ2(t)∥1, (35)

where ∥A∥1 denotes the trace norm of matrix A, which is the sum of the singular values of A. To verify non-Markovianity, we use
the trace distance to compare two initially orthogonal states. The initial states of the central spins, |ϕ1⟩ and |ϕ2⟩ , corresponding
to ρ1 and ρ2 in the trace distance measure, are taken as

|ϕ1⟩ = 1√
2

(|0⟩ + |1⟩); (36)

|ϕ2⟩ = 1√
2

(|0⟩ − |1⟩). (37)

Non-Markovianity is identified when the trace distance between these states, which reflects their distinguishability, increases at
certain times during their evolution. This increase indicates a backflow of information from the environment (buffer network) to
the system.

After evolving the two initial states, |ϕ1⟩ and |ϕ2⟩, we then compare them at each time instant using the trace norm distance.
As shown in Figure 3, for N = 4, we observe more pronounced oscillations, indicating higher non-Markovianity. This may
explain our earlier findings and the enhanced protection observed in the tetrahedral geometry.

VII. CONCLUSION

The brain remains a profoundly mysterious biological entity, linking us to everything around us and shaping our identity and
perception of the world, thus forming the foundation of all scientific fields. Understanding the brain is crucial for addressing
brain diseases and potentially developing the next generation of artificial intelligence. Numerous questions arise in the literature:
What if our perspective of quantum physics itself needs reviewing? What is the role of the observer in the quantum experiment
[102]? Is the physics of the mind and the thought of the observer taken into consideration during any experiment [103]? Could
consciousness be related to relativity for instance [104]? Is consciousness dependent on life [105], or can an atom be conscious
too [106]?

In this perspective, we explored several quantum brain theories described in the literature. We began with the hypothesis
of consciousness occurring within microtubules, then moved on to its potential explanation within the electromagnetic field,
culminating with an analysis of cognition via the Posner cluster model. Specifically, we provided insights into this model by
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examining a toy model that resembles the phosphate molecule in the Posner cluster and looking at the preservation of quantum
entanglement. Our findings suggest that the tetrahedral geometry, adopted by the phosphate molecule in the Posner Cluster, offers
superior entanglement protection. To further elucidate our results and the effects in different geometries, we map the geometry to
an alternative representation by diagonalizing the Hamiltonian. This approach more clearly reveals the impact of an effective
almost isolated buffer network (a single dressed buffer spin coupled to the central spin) on quantum information protection.

While our findings do not conclusively prove Matthew Fisher’s proposal on cognition, they offer valuable insights into how
simplified models and quantum information measures can provide different perspectives and enhance our understanding of these
theories.
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