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Protecting Multiple Types of Privacy Simultaneously

in EEG-based Brain-Computer Interfaces

Lubin Meng, Xue Jiang, Tianwang Jia, Dongrui Wu

Abstract— A brain-computer interface (BCI) enables direct
communication between the brain and an external device.
Electroencephalogram (EEG) is the preferred input signal in
non-invasive BCIs, due to its convenience and low cost. EEG-
based BCIs have been successfully used in many applications,
such as neurological rehabilitation, text input, games, and so on.
However, EEG signals inherently carry rich personal informa-
tion, necessitating privacy protection. This paper demonstrates
that multiple types of private information (user identity, gender,
and BCI-experience) can be easily inferred from EEG data,
imposing a serious privacy threat to BCIs. To address this issue,
we design perturbations to convert the original EEG data into
privacy-protected EEG data, which conceal the private infor-
mation while maintaining the primary BCI task performance.
Experimental results demonstrated that the privacy-protected
EEG data can significantly reduce the classification accuracy
of user identity, gender and BCI-experience, but almost do not
affect at all the classification accuracy of the primary BCI task,
enabling user privacy protection in EEG-based BCIs.

I. INTRODUCTION

A brain-computer interface (BCI) enables the user to inter-

act with or control an external device (computer, wheelchair,

robot, etc.) using brain signals. The electroencephalogram

(EEG) [1], which captures the brain’s electrical activities

from the scalp, is the most popular input of BCIs, due to

its convenience and low cost. EEG-based BCIs have found

successful applications in neurological rehabilitation [2],

emotion recognition [3], robotic device control [4], and so

on.

Machine learning has achieved great successes in BCIs,

which recognizes complex patterns [5] in EEG signals and

builds high-performance classification/regression models [6].

Typically, a substantial amount of EEG data is required

to train an accurate machine learning model. However,

EEG data not only capture task-specific information but

also include significant personal and private details [7]. For

instance, Martinovic et al. [8] demonstrated that EEG signals

have the potential to disclose various private details, such as

credit cards, PIN numbers, known people, and residential

addresses. Choi et al. [9] found that user identity can be

inferred from resting-state EEG signals with an accuracy of

88.4%. Meng et al. [10] further showed that user identity

can be easily inferred from EEG signals across different

BCI tasks. Kaushik et al. [11] revealed that user gender

and age could be predicted by analyzing resting-state EEG

recordings.
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In response to growing privacy concerns, numerous laws

have been enacted worldwide, such as the General Data Pro-

tection Regulation of the European Union and the Personal

Information Protection Law of China, aimed at enforcing

stringent user privacy protections. Consequently, multiple

privacy-protection techniques have been developed for EEG-

based BCIs. They can be categorized into two groups. The

first is cryptographic, including secure multiparty computa-

tion, homomorphic encryption, and secure processors. Agar-

wal et al. [12] introduced cryptographic protocols based on

secure multiparty computation to safeguard privacy in EEG-

based driver drowsiness estimation. The second category

is privacy-preserving machine learning, enabling machine

learning without directly accessing raw EEG data or model

parameters. Typical approaches include federated learning

and source-free transfer learning. Xia et al. [13] proposed

augmentation-based source-free adaptation, which enables

privacy-preserving transfer learning without accessing the

source EEG data and/or model parameters. Zhang and

Wu [14] used lightweight source-free transfer to address a

similar issue. Zhang et al. [15] further proposed unsupervised

multi-source decentralized privacy-preserving transfer.

Cryptographic and privacy-preserving machine learning

safeguard privacy by restricting EEG data sharing. However,

this significantly constrains the data availability in many

scenarios. For example, the model generated by privacy-

preserving machine learning may not be optimal, and without

access to the EEG data, users cannot further improve the

models or design better algorithms. On the other hand, if

EEG datasets could be publicly shared, it may accelerate re-

search and discovery, particularly in the development of large

models which typically require extensive data for training. To

balance privacy protection and data accessibility, perturbation

was widely used for privacy protection, which adds noise to

or transforms the original data to conceal private information

while maintaining the downstream task information. Meng

et al. [10] deliberately designed two perturbations to convert

the original EEG data into identity-unlearnable EEG data,

which can be used to protect the user identity privacy while

maintaining the primary BCI task performance. However,

the generated perturbations can only protect a single type

of private information (identity) in the EEG data.

Broader access to EEG data necessitates more compre-

hensive privacy safeguards. This paper further demonstrates

that in addition to the user identity information, other pri-

vate information (e.g., gender, BCI-experience) can also be

inferred from EEG data. To protect multiple types of privacy

simultaneously, we design the perturbation to convert the
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original EEG data into privacy-protected EEG data. Specif-

ically, we first generate tiny perturbations highly correlated

with each type of private information separately, which can

conceal the private information without affecting BCI task

related information. Then, the superposition of perturbations

corresponding to different types of private information is

used to convert the original EEG data into privacy-protected

EEG data.

In summary, we make the following contributions:

1) We expose a serious privacy problem in EEG-based

BCIs, i.e., multiple types of private information (user

identity, gender, and BCI-experience) can be inferred

from EEG signals.

2) We propose an approach to convert the original EEG

data into privacy-protected EEG data, which can pro-

tect multiple types of private information simultane-

ously while maintaining the primary BCI task perfor-

mance.

II. METHOD

This section introduces the details of protecting multiple

types of private information in EEG data simultaneously.

A. Problem Statement

Given an EEG dataset D = {(xi, yi,Si)}Ni=1, where xi ∈
X ⊂ R

c×t is the i-th EEG trial with c channels and t time

domain samples, yi ∈ Y = {1, ...,K} the task label (e.g.,

target or non-target in event related potential classification),

Si = {pi,m}Mm=1 the set of privacy label that can be inferred

from the EEG trial xi, and pi,m ∈ Pm = {1, ..., Pm} a

specific privacy label (e.g., male and female in gender).

Typically, a Task-Classifier F can be trained on D to learn

the mapping from the EEG input space to the task label

space, i.e., F : X → Y . However, EEG data not only record

task-related information but may also contain rich personal

privacy. So, a Privacy-Classifier Gm can be constructed from

EEG data to mine the private information, i.e., Gm : X →
Pm maps the EEG input space into a specific privacy space.

This paper aims to generate perturbations for the original

EEG data to protect multiple types of private information

simultaneously, while preserving the task-related information

to ensure the normal usage. Specifically, we generate a

perturbed EEG dataset D′ = {(x′

i, yi,Si)}
N
i=1, where x

′ =
x+ δ and δ is a deliberately designed perturbation. For any

privacy Pm, it is difficult to train a Privacy-Classifier Gm

from the perturbed dataset, making the private information

in EEG data unlearnable. However, this perturbed dataset can

still be used to train a good Task-Classifier F as the original

unperturbed dataset D.

B. Perturbation Generation

To prevent Privacy-Classifiers from learning private in-

formation in the EEG data, we design perturbations highly

correlated with the private information, which can mislead

the Privacy-Classifier to learn the perturbation pattern rather

than the true privacy pattern. Additionally, due to the distri-

bution differences between the privacy feature space and the

task feature space, the perturbations generated for privacy

protection may have little impact on the primary BCI task,

which will be verified in Sections III-G and III-H.

Specifically, we first train a Privacy-Classifier G′
m for each

privacy type Pm to evaluate the influence of perturbations on

the privacy-related information, which may be different from

Gm. The loss function for G′
m is

min
θG′

m

E(x,pm)∼DℓCE(G
′

m(x), pm), (1)

where θG′

m
is the parameter set of G′

m, and ℓCE the cross-

entropy loss.

Then, for each privacy Pm, we generate a class-wise per-

turbation δm = [δm,1, ..., δm,Pm
] by minimizing following

loss function:

min
δm

E(x,pm) [ℓCE(G
′

m(x+ δm,pm
), pm) + α‖δm,pm

‖2] ,

(2)

where δm,pm
is the perturbation for class pm of privacy

type Pm, and α is a trade-off parameter. The first term

enhances the correlation between the perturbation δm,pm
and

the privacy class pm, and the second term constrains the

perturbation amplitude.

After generating perturbation for each privacy type, we

can add them to each EEG trial x in D to protect multiple

different types of privacy simultaneously:

x
′ = x+

M∑

m=1

δm,pm
. (3)

Finally, the EEG dataset with privacy protection is D′ =
{(x′

i, yi,Si)}
N
i=1. Since the perturbation for each privacy

type is very small, the aggregated perturbation is still small

enough to have little impact on the primary task performance.

Algorithm 1 gives the pseudo-code of privacy-protected

EEG dataset generation.

III. EXPERIMENTS

This section introduces the experimental settings and re-

sults for validating the performance of the privacy-protected

EEG data.

A. Datasets

The publicly available EEG dataset introduced by Lee et

al. [16] was used in our experiments. It was collected from

54 healthy subjects, among which 16 were experienced BCI

users. Each subject performed a sequence of three tasks:

a 36-symbol event-related potential (ERP) [17] task, a

binary-class motor imagery (MI) [6] task, and a four-target

steady-state visually evoked potential (SSVEP) [18] task.

During each task, 62-channel EEG data were recorded with a

sampling rate of 1,000Hz. The entire experimental procedure

was repeated twice, so the dataset includes two sessions. The

details of each task are as follows:

1) ERP: In the ERP task, the subjects were instructed to

focus on the target symbol which was flashed randomly

to elicit a P300 response. The goal was to classify



Algorithm 1: Privacy-protected EEG dataset gener-

ation.

Input: D = {(xi, yi,Si)}Ni=1, the original EEG

dataset;

{G′

m}
M
m=1, the set of Privacy-Classifiers;

Tm, the maximum number of model training

epochs;

Tp, the maximum number of perturbation

optimization epochs;

Output: A privacy-protected EEG dataset

D′ = {(x′

i, yi,Si)}
N
i=1.

// Perturbation generation for each

single privacy type

for m = 1, ...,M do

Initialize δm ← N (0, 0.001);
for t = 1, ..., Tm do

Update G′
m by (1) on D ;

end

for t = 1, ..., Tp do

Update δm by (2) on D ;

end

end

// Perturbation generation for all

privacy types

for i = 1, ..., N do

Calculate the perturbed EEG trial x′

i by (3);

end

Return D′ = {(x′

i, yi,Si)}
N
i=1.

whether the target symbol flashed or not. The collected

EEG data for the ERP task contained 4,140 trials.

2) MI: In the MI task, the subjects performed the imagery

task of grasping with the corresponding hand when the

left or right arrow cue appeared. The collected EEG

data for the MI task contained 200 trials with balanced

left and right hand imagery tasks.

3) SSVEP: In the SSVEP task, there were four blocks

with different flickering frequencies presented in four

positions on a monitor, and the subjects were asked

to gaze at the target block. The goal was to classify

which block the subject gazed at. The collected EEG

data for the SSVEP task contained 200 trials, with 50

trials per block.

For preprocessing, we downsampled EEG trials to 128Hz

and applied a [1,40]/[4,40]/[4,64]Hz band-pass filter for

ERP/MI/SSVEP, respectively. Next, we extracted EEG trials

between [0,2]s after each task stimuli and standardized the

EEG trials separately for each subject, task, and session using

z-score normalization. To balance the data volume for each

task, we downsampled each session of the ERP task to 200

trials.

Before the experiments, the subjects filled out a ques-

tionnaire to record their personal information and to check

their physical and mental condition, which are all personal

privacies. The subjects’ identity, gender and BCI-experience

(whether they had prior BCI experimental experience or not)

from the questionnaire were used in our experiments. We first

validated that these three types of private information can

be inferred from the original EEG data, and then designed

perturbations to protect them.

B. Models

We used the following three convolutional neural networks

(CNN) as Privacy-Classifiers:

1) EEGNet [19]: EEGNet is a compact CNN architecture

tailored for EEG-based BCIs. It comprises two con-

volutional blocks, utilizing depthwise and separable

convolutions instead of traditional convolutions, to

reduce the number of model parameters.

2) DeepCNN [20]: DeepCNN is composed of four con-

volutional blocks. The initial block is tailored for pro-

cessing EEG data, while the subsequent three blocks

follow a standard convolutional design.

3) ShallowCNN [20]: ShallowCNN is a more straight-

forward variant of DeepCNN, drawing from filter

bank common spatial patterns. It features a single

convolutional block with a larger kernel and employs

a different pooling strategy compared to DeepCNN

C. Performance Measure

Given class-imbalance in gender and BCI-experience clas-

sification, balanced classification accuracy (BCA) was used

to evaluate the Privacy-Classifier’s performance:

BCAm =
1

Pm

Pm∑

p=1

1

Npm

Npm∑

i=1

I(Gm(xi) = pm), (4)

where Pm is the number of classes for privacy type Pm,

Npm
the number of test samples in class pm, and I(·) an

indicator function.

D. Experimental Settings

We performed leave-one-session-out cross-validation, i.e.,

trials from three tasks in one session were mixed as the

training set, and the other session was used as the test set.

The average BCA from two sessions were computed. The

entire cross-validation process was repeated 5 times, and the

average results are reported.

E. Identity, Gender, and BCI-experience Privacy Mining

The original EEG signals contain rich personal private

information. To demonstrate that, Privacy-Classifiers were

trained on the unperturbed EEG dataset to classifier user

identity, gender, and BCI-experience. The test performance

of Privacy-Classifiers are shown in the ‘Unperturbed EEG’

panel of Table I. Regardless of which CNN model (EEG-

Net, DeepCNN, or ShallowCNN) was used as the Privacy-

Classifier, the BCAs for the three types of private information

were much higher than random guess. These results con-

firmed that rich personal private information can be inferred

from EEG data across different BCI tasks, highlighting the

necessity of privacy protection in EEG-based BCIs.



TABLE I

BCAS (%) OF PRIVACY-CLASSIFIERS ON THE ORIGINAL EEG DATA AND

THE PERTURBED EEG DATA.

Privacy Number of Privacy Original Perturbed Average
Type Classes Classifier EEG EEG Reduction

Identity 54
EEGNet 25.55 4.52 20.03

DeepCNN 34.98 3.26 31.72
ShallowCNN 49.13 9.76 39.37

Gender 2
EEGNet 81.01 50.04 30.97

DeepCNN 78.31 51.03 27.28
ShallowCNN 82.31 51.24 31.07

BCI-
2

EEGNet 67.44 50.06 17.38
Experience DeepCNN 70.17 51.09 19.08

ShallowCNN 72.34 50.33 22.01

Average 62.25 35.70 26.55

F. Identity, Gender, and BCI-experience Privacy Protection

To safeguard the private information contained in EEG

data, we converted the original EEG data into privacy-

protected EEG data, making it difficult for machine learning

models to learn the private information.

Specifically, we generated privacy-protected EEG data as

described in Algorithm 1. The test performance of Privacy-

Classifiers trained on privacy-protected EEG data are shown

in the ‘Perturbed EEG’ panel of Table I. For each privacy

type (identity, gender, and BCI-experience) classification, the

BCAs of the Privacy-Classifiers trained on the perturbed

EEG data were significantly lower than their counterparts

on the original EEG data. Especially, for gender and BCI-

experience classification, the BCAs after perturbations were

close to random guess, demonstrating that little private

information can be learned from the privacy-protected EEG

data.

Notice that although the privacy-protected EEG data were

generated by EEGNet, they remained effective for DeepCNN

and ShallowCNN, indicating good generalization of privacy-

protected EEG data.

G. BCI Task Performance

In addition to privacy protection, the perturbations should

also minimize the impact on the primary BCI tasks, i.e., the

performance of Task-Classifiers trained on privacy-protected

EEG data should be similar to their counterparts on the

original unperturbed EEG data.

Table II shows the test performance of the three CNN

models and a traditional model [i.e., xDAWN [21] filtering

and Logistics Regression (LR) classification for ERP, com-

mon spatial pattern (CSP) [22] filtering and LR classification

for MI, and canonical correlation analysis (CCA) [23] for

SSVEP] as Task-Classifier trained on the privacy-protected

EEG data and the original unperturbed EEG data. The

BCAs after applying perturbations were very close to their

counterparts on the original unperturbed EEG, suggesting

that privacy-protected EEG had almost no negative impact

on the performance of primary BCI tasks.

TABLE II

BCAS (%) OF TASK-CLASSIFIERS ON THE ORIGINAL EEG DATA AND

PERTURBED EEG DATA.

BCI Number of Task Original Perturbed Average
Task Classes Classifier EEG EEG Reduction

ERP 2

EEGNet 82.44 82.15 0.29
DeepCNN 82.62 82.53 0.09

ShallowCNN 79.43 79.04 0.39
xDAWN+LR 78.36 76.32 2.04

MI 2

EEGNet 74.35 74.37 -0.02
DeepCNN 77.59 77.66 -0.07

ShallowCNN 75.67 75.57 0.10
CSP+LR 63.58 64.08 -0.50

SSVEP 4

EEGNet 95.51 95.40 0.11
DeepCNN 95.95 95.82 0.13

ShallowCNN 93.59 92.57 1.02
CCA 90.30 90.30 0.00

Average 82.45 82.15 0.30

H. Characteristics of the Privacy-Protected EEG Data

We further show that the characteristics of the EEG

data before and after privacy protection are very similar

from various perspectives, ensuring the effectiveness of the

primary BCI tasks.

Fig. 1 shows the original unperturbed EEG trials and their

perturbed counterparts from ERP, MI and SSVEP tasks. For

clarity, only three EEG channels (F4, Cz, and F3) are shown.

We can observe that the privacy-protected EEG trials and the

original unperturbed EEG trials are almost identical for all

three BCI tasks.

Fig. 2 shows the average Cz channel spectrograms of the

original unperturbed EEG trials and the privacy-protected

EEG trials for the target class on the ERP task, the imagi-

nation of the right hand on the MI task, and the target with

12Hz flickering frequency on the SSVEP task. The perturbed

spectrograms were almost identical to the unperturbed coun-

terparts, suggesting that the perturbations hardly affect the

spectrogram of the EEG trials.

Fig. 3 shows the average topoplots of the original unper-

turbed EEG trials and the privacy-protected EEG trials for the

target class on the ERP task, the imagination of the right hand

on the MI task, and the target with 12Hz flickering frequency

on the SSVEP task. One can hardly observe any differences

between the unperturbed and perturbed topoplots regardless

of the BCI task, indicating that perturbations hardly change

the spatial information of the EEG trials.

I. Visualization of the Training Process

Fig. 4 shows how the training and test BCAs of the

Privacy-Classifiers and the Task-Classifiers change with the

number of training epochs on the original unperturbed EEG

data and their perturbed counterparts, respectively. Observe

that:

1) The training BCAs of the Privacy-Classifiers on

the original unperturbed EEG data and the privacy-

protected EEG data were close after convergence; how-

ever, the test BCAs of the Privacy-Classifiers trained
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Fig. 1. Original unperturbed EEG trials and their perturbed counterparts
from the three BCI tasks, which are almost identical. (a) ERP; (b) MI; and,
(c) SSVEP. The perturbations are magnified 10 times for better visualization.
The interval between each dashed line represents the amplitude of 8mV for
EEG signals, and 0.5mV for perturbations.

on the privacy-protected EEG data were significantly

lower than those trained on their unperturbed coun-

terparts, suggesting that the private information in the

EEG data had been successfully concealed.

2) The BCA curves for both training and test of the Task-

Classifiers on the original unperturbed EEG data and

their perturbed counterparts nearly indistinguishable,

indicating once again that the perturbations had little

impact on the primary BCI tasks.

IV. CONCLUSIONS

There is rich private information in EEG signals, such

as user identity, gender and BCI-experience, necessitating

privacy protection in EEG-based BCIs. This paper has

demonstrated that user’s identity, gender, and BCI-experience

can be easily inferred by machine learning models from

EEG signals, exposing a serious privacy issue in EEG-based

BCIs, which may significantly impact users’ willingness to

share their EEG data. To address this issue, we designed

perturbations to convert the original EEG data into privacy-

protected EEG data, which can conceal user private infor-
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Fig. 2. Average Cz channel spectrograms of the original unperturbed EEG
trials and the privacy-protected EEG trials on three BCI tasks. (a) ERP; (b)
MI; and, (c) SSVEP.

mation while preserving the performance of the primary

BCI tasks. Experimental results showed that the generated

privacy-protected EEG data can significantly reduce simulta-

neously the classification accuracies on user identity, gender,

and BCI-experience, while almost do not impact the primary

BCI task classification performance at all.
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