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Probabilistic weather forecasting with 
machine learning

Ilan Price1,2 ✉, Alvaro Sanchez-Gonzalez1,2, Ferran Alet1,2, Tom R. Andersson1,2, 
Andrew El-Kadi1, Dominic Masters1, Timo Ewalds1, Jacklynn Stott1, Shakir Mohamed1, 
Peter Battaglia1 ✉, Remi Lam1 ✉ & Matthew Willson1 ✉

Weather forecasts are fundamentally uncertain, so predicting the range of probable 
weather scenarios is crucial for important decisions, from warning the public about 
hazardous weather to planning renewable energy use. Traditionally, weather forecasts 
have been based on numerical weather prediction (NWP)1, which relies on physics- 
based simulations of the atmosphere. Recent advances in machine learning (ML)- 
based weather prediction (MLWP) have produced ML-based models with less forecast 
error than single NWP simulations2,3. However, these advances have focused primarily 
on single, deterministic forecasts that fail to represent uncertainty and estimate risk. 
Overall, MLWP has remained less accurate and reliable than state-of-the-art NWP 
ensemble forecasts. Here we introduce GenCast, a probabilistic weather model with 
greater skill and speed than the top operational medium-range weather forecast in 
the world, ENS, the ensemble forecast of the European Centre for Medium-Range 
Weather Forecasts4. GenCast is an ML weather prediction method, trained on decades 
of reanalysis data. GenCast generates an ensemble of stochastic 15-day global forecasts, 
at 12-h steps and 0.25° latitude–longitude resolution, for more than 80 surface and 
atmospheric variables, in 8 min. It has greater skill than ENS on 97.2% of 1,320 targets 
we evaluated and better predicts extreme weather, tropical cyclone tracks and wind 
power production. This work helps open the next chapter in operational weather 
forecasting, in which crucial weather-dependent decisions are made more accurately 
and efficiently.

Every day, people, governments and other organizations around the 
world rely on accurate weather forecasts to make many key decisions—
whether to carry an umbrella, when to flee an approaching tropical 
cyclone, how to plan the use of renewable energy in a power grid, or 
how to prepare for a heatwave. But forecasts will always have some 
uncertainty, because we can only partially observe the current weather, 
and even our best weather models are imperfect. The highly non-linear 
physics of weather means that small initial uncertainties and errors 
can rapidly grow into large uncertainties about the future5. Making 
important decisions often requires knowing not just a single prob-
able scenario but the range of possible scenarios and how likely they 
are to occur.

Traditional weather forecasting is based on numerical weather pre-
diction (NWP) algorithms, which approximately solve the equations 
that model atmospheric dynamics. Deterministic NWP methods map 
the current estimate of the weather to a forecast of how the future 
weather will unfold over time. To model the probability distribution of 
different future weather scenarios6,7, weather agencies increasingly rely 
on ensemble forecasts, which generate several NWP-based forecasts, 
each of which models a single possible scenario4,8–11. ENS of the Euro-
pean Centre for Medium-Range Weather Forecasting (ECMWF)4 is the 
state-of-the-art NWP-based ensemble forecast in the broader Integrated 

Forecast System of the ECMWF and will subsume their deterministic 
forecast, HRES, going forward12.

ENS satisfies several key desiderata of a probabilistic weather model. 
First, its ensemble members represent sharp and spectrally realistic 
individual weather trajectories, as opposed to some summary statis-
tic such as a conditional mean. Second, it produces skilful and cali-
brated marginal forecast distributions (forecasts of the weather at a 
given place and time), which is important for many day-to-day users 
of weather forecasts. Third, it captures the aspects of the joint spatio
temporal structure of the forecast distribution that are crucial for 
probabilistic modelling of large-scale phenomena such as cyclones 
and for applications such as forecasting distributed energy generation. 
Nonetheless, ENS—along with other NWP-based ensemble forecasts—is 
still prone to errors, is slow to run and is time-consuming to engineer.

Recent advances in machine learning (ML)-based weather prediction 
(MLWP) have been shown to provide greater accuracy and efficiency 
than NWP for non-probabilistic forecasts2,3,13–18. Rather than forecast-
ing a single weather trajectory, or a distribution of trajectories, these 
methods have largely focused on forecasting the mean of the probable 
trajectories, with relatively little emphasis on quantifying the uncer-
tainty associated with a forecast. They are typically trained to minimize 
the mean squared error (MSE) of their predictions and as a result tend 
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to produce blurry forecasts, especially at longer lead times, rather than 
a specific realization of a possible weather state2. There have been lim-
ited attempts to use traditional initial condition perturbation methods 
to produce ensembles with MLWP-based forecasts3,15,18,19. However, 
these methods have not addressed the issue of blurring—meaning that 
their ensemble members do not represent realistic samples from the 
weather distribution—and they have not rivalled operational ensemble 
forecasts such as ENS. An exception is NeuralGCM20, a hybrid NWP–
MLWP method, which combines the dynamical core of a traditional 
NWP with local ML-based parameterizations and shows competitive 
performance with operational ensemble forecasts. However, ensembles 
of this hybrid model have 1.4° spatial resolution, which is an order of 
magnitude coarser than operational NWP-based forecasts.

This work presents GenCast, the first MLWP method, to our knowl-
edge, that significantly outperforms the top operational ensemble 
NWP model, ENS. We demonstrate that GenCast generates ensembles 
of realistic individual weather trajectories, providing both better mar-
ginal and better joint forecast distributions than ENS.

GenCast
GenCast is a probabilistic weather model that generates global 15-day 
ensemble forecasts at 0.25° resolution, which are more accurate than 
the top operational ensemble system, ENS of ECMWF. Generating a 
single 15-day GenCast forecast takes about 8 min on a Cloud TPUv5 
device, and an ensemble of forecasts can be generated in parallel.

GenCast models the conditional probability distribution P(Xt+1|Xt, Xt−1)  
of the future weather state Xt+1 conditional on the current and previ-
ous weather states. A forecast trajectory X1:T of length T is modelled by 
conditioning on the initial and previous states, (X0, X−1), and factoring 
the joint distribution over successive states,

∏P P( , ) = ( , )T

t

T
t t t1: 0 −1

=0

−1
+1 −1X X X X X X

each of which is sampled autoregressively.
The representation of the global weather state, X, consists of six 

surface variables and six atmospheric variables at 13 vertical pres-
sure levels (Extended Data Table 1) on an equiangular 0.25° latitude– 
longitude grid. The forecast horizon is 15 days, with 12 h between suc-
cessive steps t and t + 1, so T = 30. We train GenCast using analysis for 
X, which represents the best estimate of the weather state, inferred 
from observations.

GenCast is implemented as a conditional diffusion model21–23, a gen-
erative ML method that can model the probability distribution of com-
plex data and generate new samples. Diffusion models underpin many 
of the recent advances in modelling natural images, sounds and videos 
under the umbrella of generative AI24,25. Diffusion models work through 
a process of iterative refinement. A future atmospheric state, Xt+1, is 
produced by iteratively refining a candidate state initialized as pure 
noise, t

0
+1Z , conditioned on the previous two atmospheric states (Xt, 

Xt−1). The blue box in Fig. 1 shows how the first forecast step is generated 
from the initial conditions and how the full trajectory, X1:T, is generated 
autoregressively. Because each time step in a forecast is initialized with 
noise ( t

0
+1Z ), the process can be repeated with different noise samples 

to generate an ensemble of trajectories. See Methods for further details 
of the sampling process.

At each stage of the iterative refinement process, GenCast makes 
use of a denoiser neural network, which is trained to remove noise 
artificially added to atmospheric states using the loss function 
described in the Methods. The architecture of the denoiser comprises 
an encoder, processor and decoder. The encoder component maps a 
noisy target state n

t +1Z , as well as the conditioning (Xt, Xt−1), from the 
equiangular 0.25° latitude–longitude grid to an internal learned rep-
resentation defined on a six-times-refined icosahedral mesh. The pro-
cessor component is a graph transformer26 in which each node attends 
to its k-hop neighbourhood on the mesh. The decoder component 
maps from the internal mesh representation back to a denoised target 
state, defined on the grid.

GenCast is trained on 40 years of best-estimate analysis from 1979 to 
2018, taken from the publicly available ERA5 (fifth generation ECMWF 
reanalysis) reanalysis dataset27. Reanalysis provides a reconstruction of 
past weather by computing analysis for historical dates and times. For 
simplicity, we refer to ERA5 reanalysis as analysis from here on. Full details 
of the GenCast architecture and training protocol are provided in the 
Methods. When evaluating GenCast, we initialize it with ERA5 analysis.

As an illustrative example, Fig. 2b–d,h–j showcases GenCast forecast 
samples and Fig. 2n–q provides an example of how they can be used in 
important downstream applications, such as predicting the paths of 
tropical cyclones. Typhoon Hagibis—the costliest tropical cyclone of 
2019—is shown as a representative case study. When initialized 7 days 
before the landfall of Typhoon Hagibis, the predicted trajectories of 
GenCast exhibit high uncertainty, covering a wide range of possible 
scenarios. At shorter lead times, the uncertainty of GenCast about 
the path of the cyclone is lower, reflecting greater confidence about  
the landfall timing and location.

Baselines
We compare GenCast to ENS, currently the best operational ensem-
ble forecast, which we regridded from its (pre-June 2023) native  
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Fig. 1 | Schematic of how GenCast produces a forecast. The blue box shows 
how, conditioning on inputs (X0, X−1), an initial noise sample, Z0

1 , is refined by 
the neural network refinement function, rθ (green box), which is parameterized 
by θ. The resulting 1

1Z  is the first refined candidate state, and this process repeats 
N times. The final N

1Z  is then added as a residual to X0 to produce the weather state 
at the next time step, X1. This process then repeats autoregressively, T = 30 
times, conditioning on (Xt, Xt−1) and using a new initial noise sample t

0Z  at  
each step to produce the full weather trajectory sample (for visual clarity,  
we illustrate the previous state in parentheses, (Xt−1), below the current state,  
Xt, but note that it is not added to Z N

t  as a residual for predicting Xt+1). Each 
trajectory generated by independent T

0
1:Z  noise samples represents a sample 

from, P(X1:T|X0, X−1).



86  |  Nature  |  Vol 637  |  2 January 2025

Article

0.2° latitude–longitude resolution to 0.25°. ENS contains 50 perturbed 
ensemble members, so we used 50-member GenCast ensembles to 
perform all evaluations. The public TIGGE archive28 only makes all 50 
ENS ensemble members available for surface variables and for atmos-
pheric variables at eight pressure levels in the troposphere. So these 
are the variables and levels we compare models on.

We also develop a deterministic 12 h step forecast model using the 
GenCast architecture, to serve as a strong ML baseline and an ablation of 
the role of diffusion. We used this model to generate ensemble forecasts 
(denoted as GenCast-Perturbed) by initializing it using ERA5 analysis 
perturbed by Gaussian Process noise; full details are in Supplementary 
Information section A.4.

For a fair comparison of models, we evaluate each model against 
its corresponding best-estimate analysis, following established prac-
tice2,29. We thus evaluate the operational forecasts of ECMWF against 

HRES-fc030 (a dataset comprising the initial conditions used for the 
HRES deterministic forecast of ECMWF), and we evaluate ML models 
that were trained and initialized using ERA5, against ERA530.

We use 2019 as our test period, and, following the protocol in ref. 2, 
we initialize ML models using ERA5 at 06 UTC and 18 UTC, as these 
benefit from only 3 h of look-ahead (with the exception of sea surface 
temperature, which in ERA5 is updated once per 24 h). This ensures 
ML models are not afforded an unfair advantage by initializing from 
states with longer look-ahead windows.

We follow a standard verification practice29 in evaluating ensemble 
forecasts using best-estimate analysis as ground truth. However, we 
note that this does not reward representing initial condition uncer-
tainty. We also note that we evaluate the raw output of GenCast against 
that of ENS, following standard practice in the field. Both MLWP and 
NWP forecasts can be further improved by post-processing methods, 
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Fig. 2 | Visualization of forecasts and tropical cyclone tracks. a, The ERA5 
analysis state27 for specific humidity at 700 hPa, at validity time 06 UTC,  
12 October 2019, shows Typhoon Hagibis near the centre of the frame, hours 
before making landfall in Japan. b–d, Sample 1 (b), sample 2 (c) and sample 3 (d) 
GenCast forecast states, initialized one day earlier, show how the samples are 
sharp and very similar to one another. e, The GenCast ensemble mean, obtained 
by computing the mean of 50 sample states such as in b–d, is somewhat  
blurry, showing how uncertainty results in a blurrier average state. f, Sample 1 
forecast state from GenCast-Perturbed, initialized one day earlier as in b–e, is 
blurry, similar to a single-step ensemble mean. g, The spatial power spectrum 
of the states in a, b, e and f, in which the line colours match the frames of the 
panels, show how spectra of the GenCast samples closely match with that of 
ERA5, whereas the blurrier GenCast ensemble mean and GenCast-Perturbed 

states have less power at shorter wavelengths. h–m, These subplots are 
analogous to b–g, except the forecasts are initialized 15 days earlier. The GenCast 
samples are still sharp (h–j) and GenCast-Perturbed (l) is still equally blurry, 
whereas the GenCast ensemble mean (k) is even blurrier than at 1-day lead  
time. This is also reflected in the power spectrum (m). n–q, The trajectory of 
Typhoon Hagibis based on ERA527 (in red) and the ensemble of tropical cyclone 
trajectories from GenCast (in blue) up to a validity time 4 h before the cyclone 
made landfall in Japan. GenCast forecasts are shown at lead times of 7 days, 
3 days, 5 days and 1 day. The blue and red circles show cyclone locations at the 
validity time. At long lead times, the cyclone trajectories have a substantial 
spread, whereas for the shorter lead times, the predictive uncertainty collapses 
to a small range of trajectories. Typhoon Hagibis represents the 55th percentile 
of GenCast’s ensemble mean position error among tropical cyclones in 2019.
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and the relative impact of these methods on the two approaches is an 
interesting direction for future work.

Realism of GenCast samples
Figure 2 shows some of the forecast samples of GenCast for Typhoon 
Hagibis, shortly before it made landfall in Japan on 12 October 2019. 
Figure 2b–e,g,h–k,m shows that GenCast forecasts are sharp and have 
spherical harmonic power spectra that closely match the ERA5 ground 
truth at both 1- and 15-day lead times. This reflects how the ensemble 
members of GenCast, like those of ENS, represent realistic samples of the 
weather. As expected, the GenCast ensemble mean is blurry, losing power 
at high frequencies (see also Supplementary Figs. B5 and B6). Forecasts 
by deterministic models trained to minimize forecast MSE—including 
top deterministic MLWP models such as GraphCast2—are blurred and 
closer to the ensemble mean2. Ensemble members generated by per-
turbing these deterministic models also blur. This is especially true for 
multi-step-trained models such as GraphCast, but it is also true (albeit to 
a lesser extent) for models such as GenCast-Perturbed (Fig. 2f,l), which 
are only trained to predict a one-step forecast-distribution mean.

Skilful marginal forecast distributions
Many day-to-day users of weather forecasts rely on the spatiotemporal 
marginals of the forecast distributions, that is, the weather forecast 
for a given place and time. We evaluate the per-grid-cell marginals 
of GenCast and ENS in terms of overall forecast skill, calibration and 
performance on extreme weather prediction.

Ensemble skill
The CRPS31 is a standard measure of the skill of a probabilistic forecast. It 
measures how well the marginal distributions of the forecast represent 
the ground truth, and it is minimized, in expectation, by a forecast whose 
marginals reflect true predictive uncertainty. See Supplementary Infor-
mation section A.5.1 for the mathematical definition of CRPS. As shown 
in the scorecard of Fig. 3, the forecasts of GenCast are significantly more 
skilful (P < 0.05) than that of ENS on 97.2% of our 1,320 variable, lead time 
and vertical level combinations (and 99.6% of targets at lead times greater 
than 36 h). Although dependencies across weather variables mean that 
these 1,320 scorecard targets do not each represent independent fore-
cast tasks, such scorecards are a standard means of summarizing model 
performance. The largest improvements of GenCast are often at shorter 
lead times up to around 3–5 days, for surface variables, as well as tem-
perature and specific humidity at higher pressure levels, for which the 
CRPS skill scores range between 10% and 30% better. GenCast-Perturbed 
also achieves strong results, with better or competitive CRPS compared 
with ENS on 82% of scorecard targets (Supplementary Fig. B7) but is still 
definitively worse than that of GenCast, which outperforms the CRPS 
of GenCast-Perturbed in 99% of targets (Extended Data Fig. 8 and Sup-
plementary Fig. B8). Owing to our lack of confidence in the quality of 
ERA5 precipitation data, we exclude precipitation results from our main 
results and refer readers to Supplementary Information section B.2.

We also compared the root mean squared error (RMSE) of the ensem-
ble means of GenCast and ENS. The ensemble-mean RMSE measures 
how closely the mean of an ensemble of forecasts matches ground truth. 
Although RMSE is a common metric for deterministic forecasts, it does 
not account for uncertainty, which is central to probabilistic verifica-
tion. Nonetheless, as shown in Extended Data Fig. 1, the ensemble mean 
RMSE of GenCast is as good or better than that of ENS on 96% of targets 
and significantly better (P < 0.05) on 78% of targets.

Ensemble calibration
For a probabilistic forecast to be useful, it should be well-calibrated: 
it should know when it may be wrong and have confidence when it is 
likely to be right. This is a crucial aspect of the quality of the forecast 

distribution, allowing a decision-maker to hedge their choices in pro-
portion to the confidence of the forecast. Two common tools in the 
weather community for evaluating calibration of the marginal forecast 
distributions, on average, are spread/skill ratios and rank histograms.

Well-calibrated probabilistic forecasts exhibit uncertainty (as meas-
ured by ensemble spread), which is commensurate on average with 
the size of their errors32. The degree to which this relationship holds 
can be quantified by the spread/skill ratio defined in Supplementary 
Information section A.5.3. This ratio should be 1 for a perfect ensemble 
forecast, with values greater than 1 suggestive of overdispersion (an 
underconfident forecast) and values less than 1 suggestive of under-
dispersion (overconfidence).

Similarly, the members of an ideal ensemble forecast should be 
indistinguishable from ground truth values. Deviations from this 
property on average can be diagnosed using rank histograms33. The 
rank histogram should be flat if the truth tends to be indistinguishable 
from the ensemble members, inverted U-shaped if the truth mostly 
ranks near the centre of the ensemble (indicating the ensembles are 
overdispersed), and U-shaped if the truth ranks mostly near the tails 
of the ensemble (indicating the ensembles are underdispersed). See 
Supplementary Information section A.5.4 for definitions and details.

Generally, GenCast exhibits good calibration according to these 
verification methods, similar to that exhibited by ENS. The spread/skill 
scores of GenCast are typically fractionally less than but very close to 1 
(Fig. 3b–f and Supplementary Fig. B1) and also tend to have flat rank his-
tograms (Extended Data Fig. 2 and Supplementary Fig. B2). By contrast, 
GenCast-Perturbed is consistently overconfident, showing spread/
skill scores substantially less than 1 and U-shaped rank histograms.

Local surface extremes
Extreme heat, cold, wind and other severe surface weather pose serious 
threats to lives, health and property but can be anticipated and pre-
pared for with the help of quality probabilistic forecasts. We assess the 
predictions of GenCast of whether 2 m temperature, 10 m wind speed 
or mean sea level pressure will exceed some extreme percentile of the 
climatological distribution. When comparing Brier skill scores (Sup-
plementary Information section A.5.5)—a standard metric for evaluating 
probabilistic forecasts of binary events—GenCast significantly (P < 0.05) 
outperforms ENS on predicting the exceedance of the 99.99th, 99.9th and 
99th percentiles for high 2 m temperature and 10 m wind speed, and for 
extremely low temperature and mean sea level pressure below the 0.01st, 
0.1st and 1st percentiles (Extended Data Fig. 3). This is true across all lead 
times, except for lead times longer than 7 days for >99.99th percentile 
10 m wind speed and certain lead times for <0.01 and <0.1 percentile 
mean sea level pressure, for which the improvement is not significant.

In decision-making about extreme weather events, it is often worth 
making preparations given even a relatively small probability of the 
event in question34,35. However, skill in this important regime is not 
well captured by the Brier score, which places equal weight on all 
probability decision thresholds36. We thus use relative economic value 
(REV) curves37,38 (for full details, see Supplementary Information sec-
tion A.5.6) as a standard tool to characterize the potential value of a 
forecast over a range of different probability decision thresholds. Each 
decision threshold corresponds to a cost/loss ratio for a decision prob-
lem in which we must trade off the cost of making preparations against 
the loss incurred if we encounter the weather event unprepared. We 
draw attention in particular to lower cost/loss ratios, which are com-
mon in decision-making around extreme weather. REV is normalized 
relative to the value of a climatological forecast (REV = 0) and a perfect 
forecast (REV = 1). Note that despite the name, the ‘value’ in REV need 
not be economic or monetary, merely quantifiable in relative terms.

Figure 3g,h shows results for predictions of whether 2 m temperature 
and 10 m wind speed will exceed the 99.99th percentile relative to clima-
tology. GenCast (blue curves) yields significantly (P < 0.05) better REV 
than ENS (black curves) across all cost/loss ratios, at lead times of 1 day, 
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5 days and 7 days (solid, dashed and dash-dot lines, respectively), with 
the only exceptions being those (cost/loss, lead time) combinations at 
which neither model outperforms climatology. Extended Data Figs. 4 
and 5 show that GenCast also provides better forecasts of other levels of 
extreme events (other exceedance percentiles), and for other variables, 
including extreme low temperature and low mean sea level pressure.

Skilful joint forecast distributions
Physical constraints impose spatiotemporal dependency structure 
on the joint distribution of weather. For example, we know a cyclone 

will be a spatially local phenomenon following a single trajectory, 
even though its exact path may be uncertain. These spatiotemporal 
dependencies influence the distribution of derived quantities that 
are important for applications, such as cyclone tracks, or the total 
wind power across a specific set of wind farms. For example, the vari-
ance of the total wind power output from a set of wind farms increases 
when positive correlation between their wind speeds increases. It is 
thus important that a weather model captures these dependencies 
in its predictive joint distribution. We perform three evaluations on 
derived variables that require capturing specific aspects of this joint  
structure.
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Fig. 3 | The marginal forecast distributions of GenCast are skilful and well- 
calibrated. a, CRPS scores for GenCast versus ENS4 in 2019. The scorecard 
compares CRPS skill between GenCast and ENS across all variables and eight 
pressure levels. Dark-blue cells on the scorecard indicate a variable, lead time 
and level combination for which GenCast has 20% better (that is, lower) CRPS 
than ENS, whereas dark-red cells indicate 20% lower CRPS for ENS (white means 
they perform equally). The results show that GenCast significantly (P < 0.05) 
outperforms ENS on 97.2% of all reported variable, lead time and level 

combinations. Hatched regions indicate neither model is significantly better. 
b–f, Spread/skill scores for GenCast and ENS for selected variables. Both models 
are generally well-calibrated with spread/skill close to 1. g,h, REV for predictions 
of the exceedance of the 99.99th percentile for 2 m temperature and 10 m wind 
speed, at lead times of 1 day, 5 days and 7 days. GenCast consistently achieves 
greater REV than ENS whenever either forecast is better than climatology, 
particularly at small cost/loss ratios.
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Spatially pooled evaluation
Neighbourhood verification is an established method from the mete-
orological literature that evaluates spatially pooled versions of fore-
casts39. Pooling mitigates the double penalty problem of standard 
per-grid-cell evaluation, in which the models are penalized more for 
predicting a feature (such as a storm) at a spatial offset than not at all. 
Moreover, the distribution of a spatially pooled weather quantity is 
influenced by spatial dependencies, and thus probabilistic pooled 
metrics evaluate how well a model captures some of the spatial depend-
ency structure inherent in weather states.

We compute average-pooled and max-pooled versions of the mar-
ginal CRPS scorecard. Forecasts and analysis targets are aggregated 
over circular spatial regions distributed to jointly cover the surface of 
Earth, and CRPS is computed on these pooled quantities for a range 
of pooling region sizes from 120 km to 3,828 km.

Across all 5,400 pooled verification targets—spanning each vari-
able, level, lead time and spatial scale—GenCast outperforms ENS on 
average-pooled CRPS in 98.1% of targets and on max-pooled CRPS in 
97.6% of targets, with relative performance increasing at larger scales 
(Extended Data Figs. 6 and 7). GenCast-Perturbed is competitive with 
or better than ENS on 86% of targets for average-pooled CRPS, but only 
50% of targets for max-pooled CRPS (Supplementary Figs. B15 and B16), 
and in both cases is worse than GenCast on 94% and 97% of targets, 
respectively. This suggests that GenCast captures spatial dependen-
cies better than ENS and GenCast-Perturbed across all surface and 
atmospheric variables.

Regional wind power forecasting
In the electricity sector, power grid operators use regional wind 
power forecasts for tasks such as unit commitment and reserve quan-
tification40, in which leveraging forecast uncertainty can improve 
decision-making41,42. However, forecast errors make it harder to 
ensure the balance of supply and demand, increasing reliance on fos-
sil fuel-based spinning reserves40, thus undermining the potential of 
wind power for reducing carbon emissions43.

To estimate the potential impact of GenCast in wind energy appli-
cations, we conducted a simplified regional wind power forecasting 
experiment, in which 10 m wind speed of forecasts and analysis targets 
are interpolated at all 5,344 wind farm locations from the Global Power 
Plant Database44. These 10 m wind speeds are then converted to wind 
power using a standard idealized power curve (Supplementary Fig. A1) 
multiplied by the nominal capacity of each wind farm. Wind power (in 
megawatts) is then summed across arbitrary groupings of wind farms 
defined by the pooling regions from the above spatially pooled evalu-
ation with sizes of 120 km, 240 km and 480 km.

GenCast outperforms the CRPS of ENS by around 20% up to lead times 
of 2 days, 10–20% from 2 days to 4 days, and retains statistically signifi-
cant (P < 0.05) improvements out to 7 days (Fig. 4a and Supplementary 

Fig. B17). This is a substantially greater improvement than that provided 
by GenCast-Perturbed (Supplementary Fig. B18).

It is important to note that this experiment does not account for com-
plications of curtailment because of non-weather effects (for example, 
turbine maintenance) or grid topology. We also use 10 m wind speeds; 
most turbines are closer to 100 m above the ground. Nonetheless, these 
results indicate that GenCast provides more skilful wind forecasts that 
can capture joint spatial structure across real-world wind farm sites, 
indicating a potential value for the management and use of wind energy.

Tropical cyclones
Tropical cyclones cause thousands of deaths and tens of billions of 
dollars in damages on average every year. Mitigating these devastating 
consequences depends on accurate predictions of cyclone trajecto-
ries45. Preventative measures may be justified even when the risk of a 
cyclone impact is low, making probabilistic cyclone forecasts particu-
larly important34,46. Moreover, cyclones are defined by the interactions 
of multiple weather variables across different atmospheric levels and 
over time, as such probabilistic cyclone trajectory forecasting consti-
tutes a substantial test of both the tails and the spatiotemporal joint 
structure in the predictive distribution of a model. To assess the cyclone 
prediction skill of GenCast and ENS, we apply the TempestExtremes 
tropical cyclone tracker47 to GenCast, ENS, ERA5 and HRES-fc0 and 
evaluate the two models using established deterministic and probabil-
istic verification methods from the tropical cyclone literature.

First, we evaluate the position error of ensemble mean cyclone tra-
jectories from GenCast and ENS, using a pairing procedure to ensure 
evaluation on the same set of cyclones. The ensemble mean track of 
GenCast is consistently more skilful than that of ENS. On average, Gen-
Cast gives a 12-h advantage in accuracy between 1 day and 4 days ahead 
(Fig. 4b), with significantly (P < 0.05) lower error between 12 h and 
3.5 day lead times (inclusive, Supplementary Fig. B9).

Ensemble mean cyclone trajectories provide intuitive summaries of 
ensemble forecasts, but do not capture their uncertainty (or even pos-
sible multi-modality), and cannot be used to assess the ability of a model 
to predict cyclogenesis. We, therefore, also evaluate forecast track 
probability fields from GenCast and ENS—computed as the fraction 
of ensemble members that predict a cyclone centre passing through 
a given 1° grid box at a given time48. Cyclones are typically associated 
with low cost/loss ratios given their potentially severe consequences. 
The track probability forecasts of GenCast outperform those of ENS, 
achieving better REV at all cost/loss ratios, with the only exceptions 
being large cost/loss ratios for which neither model outperforms cli-
matology (Fig. 4c). These improvements are significant (P < 0.05) in 
almost all cases out to 7 day lead times (Supplementary Fig. B11). This 
shows that GenCast can provide substantial value in decisions about 
when and how to prepare for tropical cyclones34. See Methods for the 
evaluation and cyclone tracker details and Supplementary Information 
section C.1 for additional cyclone visualizations.
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Fig. 4 | GenCast outperforms ENS on regional wind power and tropical 
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Conclusion
Our results indicate that probabilistic weather forecasts based on MLWP 
can be more skilful and faster to generate than the top NWP-based 
ensemble forecast, ENS of ECMWF. GenCast succeeds across three 
key desiderata for probabilistic weather models. First, GenCast gener-
ates ensembles of sharp individual weather trajectories with realistic 
power spectra, rather than sets of summary statistics such as condi-
tional means. Second, the marginal forecast distributions of GenCast 
(that is, forecasts for a given place and time) are well-calibrated and 
provide more skilful predictions than those of ENS, including better 
predictions of extreme events. Third, GenCast outperforms ENS across 
several evaluations that require capturing spatial and temporal depend-
encies in the joint distribution: pooled evaluation, regional wind power 
forecasting and tropical cyclone track prediction.

Going forward, GenCast could be further improved for operational 
settings in several ways. GenCast operates at 0.25° resolution, the cur-
rent maximum resolution of global reanalysis data. However, it may be 
useful to scale up to higher resolution to support additional applica-
tions and match the upgraded resolution of ENS (as of mid-2023) of 0.1°. 
As a diffusion model, GenCast is computationally more expensive than 
an equivalent deterministic MLWP architecture, because it requires 
multiple function evaluations to sample each forecast time step. To 
efficiently scale to higher resolution or to move towards computational 
parity with GenCast-Perturbed and similar models, distillation49 and 
other efficiency techniques should be explored. Furthermore, previous 
work has shown that the performance of MLWP models that are trained 
on reanalysis can be further improved by fine-tuning using operational 
data, such as HRES analysis inputs and targets30. This underscores the 
importance for GenCast of traditional NWP-based data assimilation 
for providing training and initialization data.

Together, our results open a new front in weather forecasting, prom-
ising greater accuracy, efficiency and accessibility across a wide range 
of settings. More generally, our work demonstrates that cutting-edge 
generative AI methods can capture very high-dimensional and complex 
distributions over rich temporal dynamics, with sufficient accuracy and 
reliability to support effective decision-making in crucial applications.
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Methods

Task definition and general approach
A general formulation of the task of probabilistic weather forecasting 
from the present time t = 0 into the future is to model the joint prob-
ability distribution X OP( )T0: ≤0∣ , where T is the forecast horizon, 

tX  
denotes the atmospheric state at time t and O≤0 are observations made 
up to the forecast initialization time t = 0. This joint distribution can 
be factored as

X O X O X X∣ ∣ ∣P P P( ) = ( ) ( )T T0: ≤0 0 ≤0

State inference

1: 0

Forecast model
� ����� ����� � ����� �����

Our innovation in this work is an MLWP-based Forecast model, and 
we adopt a traditional NWP-based State inference approach. We make 
several approximations to the above general formulation, as follows.

Full atmospheric states are not directly observed, and so we approx-
imate each Xt

 with a best-estimate NWP-based analysis state Xt, which 
has been generated at finite resolution, using a window of observations 
in a process known as data assimilation. In our case, each Xt is an 
84 × 720 × 1,440 array, which includes six surface variables and six 
atmospheric variables at each of 13 vertical pressure levels (Extended 
Data Table 1), on a 0.25° latitude–longitude grid. We generate 15-day 
forecasts, at 12 h steps, so T = 30.

As a first, standard approximation29, we use analysis X0:T as evalua-
tion targets. This means we are in effect evaluating the forecast of each 
model as a predictive distribution,

X OP( ),T0: ≤0

over sequences of future best-estimate NWP analyses.
Second, we wish to rely on a Markov assumption, but although the 

underlying atmospheric state sequence X T1:
 is Markov, it is only partially 

observed in X1:T. In our models GenCast and GenCast-Perturbed, we 
make a weaker second-order Markov approximation, under which we 
factorize

∏P P P( , ) = ( , ) ( , ).T

t

T
t t t−1 0: ≤0 0 −1 ≤0

=1

−1 −2X X O X X O X X X

We found that conditioning on two previous time steps works bet-
ter than one.

For GenCast, the initialization P(X0, X−1|O≤0) is handled by fixing 
(X0, X−1) to their values obtained from two consecutive best-estimate 
analyses from the ERA5 dataset27. For GenCast-Perturbed, additional 
perturbations are added, see Supplementary Information section A.4. 
With initialization dealt with, the problem is reduced to modelling 
P(Xt|Xt−1, Xt−2), and samples of X1:T can be generated autoregressively.

Diffusion model specification
Beyond image and video generation, diffusion models21–23 have also 
been applied in the geophysical domain, to tasks including data assimi-
lation50, NWP ensemble emulation51 and climate downscaling52. In this 
work, we model P(Xt|Xt−1, Xt−2) with a diffusion model, which enables us 
to sample forecast trajectories.

Rather than sampling Xt directly, our approach is to sample a residual 
Zt with respect to the most recent weather state Xt−1, in which the residu-
als have been normalized to unit variance on a per-variable and per-level 
basis as was done for GraphCast2. Xt is then computed as Xt = Xt−1 + SZt, 
where S is a diagonal matrix that inverts the normalization. The one 
exception to this is precipitation, for which we set Xt = SZt without add-
ing the previous state.

We broadly follow the diffusion framework presented in ref. 21, and 
refer the reader to their paper for a more rigorous introduction to diffu-
sion, as well as a detailed treatment of the available modelling decisions. 

We adopt their choices of noise schedule, noise scaling, loss weighting 
by noise level and preconditioning. However, we make changes to the 
noise distribution, the training-time distribution of noise levels and 
add additional loss weightings, all of which are described below. These 
changes improve performance on the task of probabilistic weather 
forecasting.

Sampling process. The sampling process begins by drawing an initial 
sample t

0Z  from a noise distribution on the sphere Pnoise(·|σ0), at a high 
initial noise level σ0. After N steps of transformation, we end up at 

≔Z ZN
t t , our sample from the target distribution at noise level σN = 0. 

To take us from one to the other, we apply an ODE solver to a probabil-
ity flow ODE21,22. Each step of this solver is denoted by rθ (Fig. 1), with

Z Z X Xr σ σ= ( ; , , , )i
t

θ i
t t t

i i+1
−1 −2

+1

taking us from noise level σi to the next (lower) noise level σi+1, condi-
tioned on (Xt−1, Xt−2).

We use the second-order DPMSolver++2S solver53, augmented with 
the stochastic churn (again making use of Pnoise) and noise inflation tech-
niques used in ref. 21 to inject further stochasticity into the sampling 
process. In conditioning on previous time steps, we follow the condi-
tional denoising estimator approach outlined and motivated in ref. 54.

Each step rθ of the solver makes use of a learned denoiser Dθ with 
parameters θ, described in detail below. We take N = 20 solver steps 
per generated forecast time step. As we are using a second-order 
solver, each step rθ requires two function evaluations of the denoiser 
Dθ (except the last step which requires only a single evaluation). This 
results in 39 function evaluations in total. See Supplementary Informa-
tion section A.2.1 for further details, including a full list of sampling 
hyperparameters.

Noise distribution on the sphere. At the core of a diffusion model is the 
addition and removal of noise, drawn from some distribution Pnoise(·|σ) 
parameterized by noise level σ. When using diffusion to generate natu-
ral images55, Pnoise is usually chosen to be independent and identically 
distributed (i.i.d.) Gaussian. However, we have found it beneficial to 
use a noise distribution that better respects the spherical geometry 
of global weather variables. Rather than sampling i.i.d. Gaussian noise 
on the latitude–longitude grid, we instead sample isotropic Gaussian 
white noise on the sphere, which is then projected onto the grid. This 
choice of Pnoise has the consequence that the noise has a flat spherical 
harmonic power spectrum in expectation. For motivation and details 
of these changes, see Supplementary Information section A.2.3.

Denoiser architecture. To recap, our diffusion sampling process invol
ves taking several solver steps rθ, and each solver step calls a denoiser 
Dθ as part of its computation. We parameterize the denoiser Dθ follow-
ing ref. 21 as a preconditioned version of a neural network function fθ.

Z X X Z Z X XD σ c σ c σ f c σ c σ( ; , , ) ( ) ⋅ + ( ) ⋅ ( ( ) ; , , ( )).θ σ
t t t

σ
t

θ σ
t t t−1 −2

skip out in
−1 −2

noise≔

Here σ
tZ  denotes a noise-corrupted version of the target Z t at noise 

level σ, and cin, cout, cskip and cnoise are preconditioning functions taken 
from table 1 in ref. 21, with σdata = 1 because of the normalization of the 
targets.

The architecture used for fθ is related to the GraphCast architec-
ture2. To be precise, the Encoder and Decoder architectures stay the 
same, and those inputs to the encoder corresponding to the previ-
ous two time steps are normalized to zero mean and unit variance 
in the same way. However, unlike in GraphCast, which uses a similar 
message-passing GNN for the Processor architecture as in the Encoder 
and Decoder, in GenCast the Processor is a graph-transformer model 
operating on a spherical mesh that computes neighbourhood-based 
self-attention. Unlike the multimesh used in GraphCast, the mesh in 
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GenCast is a six-times refined icosahedral mesh2, with 41,162 nodes and 
246,960 edges. The Processor consists of 16 consecutive standard trans-
former blocks26,56, with feature dimension equal to 512. The four-head 
self-attention mechanism in each block is such that each node in the 
mesh attends to itself and to all other nodes that are within its 32-hop 
neighbourhood on the mesh.

To condition on previous time steps (Xt−1, Xt−2), we concatenate these 
along the channel dimension with the input to be denoised and feed 
this as input to the model. Conditioning on noise level σ is achieved 
by replacing all layer-norm layers in the architecture with conditional 
layer-norm57 layers. We transform log noise levels into a vector of sine–
cosine Fourier features at 32 frequencies with base period 16 and pass 
them through a two-layer MLP to obtain 16-dimensional noise-level 
encodings. Each of the conditional layer-norm layers applies a further 
linear layer to output replacements for the standard scale and offset 
parameters of layer norm, conditioned on these noise-level encodings.

Training the denoiser. At training time, we apply the denoiser to a 
version of the target Zt, which has been corrupted by adding noise 
ε ~ Pnoise(·|σ) at noise level σ:

D σ= ( + ; , , ).t
θ

t t t−1 −2Y Z ε X X

We train its output, denoted as Yt, to predict the expectation of the 
noise-free target Zt by minimizing the following mean-squared-error 
objective weighted per elevation level and by latitude–longitude cell 
area,

∑ ∑ ∑E λ σ
G J

w a Y Z( )
1

( − ) ,
t D i G j J

j i i j
t

i j
t

∈ ∈ ∈
, ,

2

train













where
•	 t indexes the different time steps in the training set Dtrain;
•	 j ∈ J indexes the variable, and for atmospheric variables the pressure 

level, that is, J = {z1000, z850, …, 2t, msl};
•	 i ∈ G indexes the location (latitude and longitude coordinates) in 

the grid;
•	 wj is the per-variable-level loss weight, set as in GraphCast2 with the 

additional sea surface temperature variable weighted at 0.1;
•	 ai is the area of the latitude–longitude grid cell, which varies with 

latitude and is normalized to unit mean over the grid;
•	 λ(σ) is the per-noise-level loss weight in ref. 21; and
•	 the expectation is taken over σ ~ Ptrain, ε ~ Pnoise(·; σ).

Instead of using the log-normal distribution for Ptrain that is sug-
gested in ref. 21, we construct a distribution whose quantiles match 
the noise-level schedule used for sample generation, assigning a higher 
probability to noise levels that are closer together during sampling. 
Details are in Supplementary Information section A.2.2. As done 
by GraphCast2, we weight the squared error made at each latitude– 
longitude grid cell by a per-variable-level loss weight, as well as the 
normalized area of that grid cell; this is also a departure from ref. 21.

Unlike GraphCast, which is fine-tuned by back-propagating gra-
dients through 12-step trajectories (3 days with 6 h steps) produced 
by feeding the model its own predictions as inputs during training, 
GenCast is only ever trained using targets that consist of the next 12-h 
state, without ever being provided its own predictions on previous 
steps as inputs.

Resolution training schedule. The GenCast results reported in this 
paper were generated by a model that was trained in a two-stage pro-
cess. Stage 1 was a pre-training stage, taking 2 million training steps. 
During this stage, the ground truth dataset was bilinearly downsam-
pled from 0.25° to 1° and the denoiser architecture used a 5-refined 
icosahedral mesh. This training stage takes a little over 3.5 days using 

32 TPUv5 instances. After this training phase was complete, stage 2 
was conducted, fine-tuning the model to 0.25°, taking 64,000 fur-
ther training steps. This takes just under 1.5 days using 32 TPUv5  
instances. During stage 2, the ground truth data is kept at 0.25°, and 
the denoiser architecture is updated to take in 0.25° data and output 
0.25° outputs and to operate on a 6-refined icosahedral mesh. The 
GNN and graph-transformer architectures are such that the same 
model weights can operate on the higher data and mesh resolutions 
without any alterations. We do, however, make a minor modification 
before beginning the fine-tuning stage to decrease the shock to the 
model of operating on higher resolution data. In the Encoder GNN, 
which performs message passing between the grid and mesh nodes, 
when the data resolution increases from 1° to 0.25°, the number of 
messages being received by each mesh node increases by a factor of 16. 
To approximately preserve the scale of the incoming signal to all mesh 
nodes at the start of fine-tuning, we divide the sum of these message 
vectors by 16. The optimization hyperparameters used for both stages 
of training are detailed in Supplementary Information section A.3.

Training data
We trained GenCast on a dataset built from the ERA5 archive of 
ECMWF27, a large corpus of global reanalysis data. Our dataset contains 
the best-estimate analyses of ERA5 for a subset of the available variables, 
on 13 pressure levels (see Extended Data Table 1 for a complete list of 
variables and pressure levels), on a 0.25° equiangular grid. We also 
subsampled the temporal resolution from 1 h to 6 h, corresponding to 
00:00, 06:00, 12:00 and 18:00 UTC times each day. From this dataset, 
we extracted sequences at 12-h temporal resolution (sequences of 00/12 
UTC or 06/18 UTC times) to train GenCast.

Although its temporal resolution is hourly, ERA5 only assimilates 
observations in 12-h windows, from 21 UTC–09 UTC and 09 UTC–21 UTC. 
This means that steps taken within a single 12-h assimilation window 
have a different, less dispersed distribution to those that jump from one 
window into the next. By choosing a 12-h time step, we avoid training on 
this bimodal distribution and ensure that our model always predicts a 
target from the next assimilation window.

For accumulated variables such as precipitation, instead of sub-
sampling the data in time, we accumulated values over the 12-h period 
preceding each time.

Our dataset covers the period 1979–2019. During the development 
phase of GenCast, we used dates from 1979 to 2017 for training and 
validated results in 2018. Before starting the test phase, we froze all 
model and training choices, retrained the model on data from 1979 to 
2018 and evaluated results in 2019.

GenCast-Perturbed training protocol
GenCast-Perturbed is trained by taking the GenCast architecture for fθ 
described above in the section ‘Denoiser architecture’, removing the 
conditioning on noise level and noisy targets, and training it at 0.25° 
resolution as a deterministic forecast model using the same training 
dataset. It takes (Xt−1, Xt−2) as inputs and outputs a single forecast of the 
normalized residual target Zt. It is trained to minimize the mean-squared 
error of its single-step 12-h forecasts. Specifically, we minimize
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where in this case Y t is the deterministic forecast rather than the output 
of a denoising step and t j J i G w a, ∈ , ∈ , ,j i are all defined as above. The 
optimization hyperparameters are detailed in Supplementary Informa-
tion section A.3.

Statistical methods
We compare GenCast with ENS on several verification metrics 
(detailed in Supplementary Information section A.5) computed on 



our 2019 evaluation set. For each relevant metric (and where applica-
ble at each lead time, level, quantile and cost/loss ratio), we test the 
null hypothesis of no difference in the metric between GenCast and 
ENS, against the two-sided alternative. Specifically, we are testing for 
differences in the values of the metrics that would be attained in the 
limit of infinite years of evaluation data, assuming the stationarity 
of the climate.

Most of our metrics are computed from time series of spatially 
aggregated values given at n = 730 12-hourly initialization times from 
2019. For these metrics, we apply a paired-differences significance test 
based on the stationary block bootstrap58, which handles temporal 
dependence by resampling blocks of the time-series data from which 
the metric is computed. We use automatic block length selection59,60.

By contrast, deterministic cyclone position error is only obtained 
for a given cyclone at select times at which pairing criteria are met. 
For this metric, we instead perform a cluster bootstrap61 that assumes 
independence between (but not within) cyclones.

We base all our tests on bias-corrected and accelerated (bca) boot-
strap confidence intervals62. Further details of the statistical tests are 
given in Supplementary Information section A.6.

Local surface extremes evaluation
We evaluate GenCast and ENS on the task of predicting when surface 
weather variables exceed high (99.99th, 99.9th and 99th) and low 
(0.01st, 0.1st and 1st) climatological percentiles. These percentiles 
are computed per latitude–longitude using 7 recent years of 6-hourly 
data from 2016 to 2022, taken from the corresponding ground truth 
dataset for each model (ERA5 for GenCast and HRES-fc0 for ENS). For 
each latitude–longitude, the 99.99th and 0.01st percentiles correspond 
to a return period of approximately 7 years.

Tropical cyclone evaluation
We extract cyclone trajectories from ENS and GenCast forecasts using 
the same cyclone tracker, TempestExtremes, downsampling ENS fore-
casts from a 6-h to 12-h resolution for a fair comparison with GenCast. 
We also apply the same cyclone tracker to chunks of HRES-fc0 and ERA5 
spanning the same time period as the forecast trajectories, generat-
ing ground truth cyclone tracks for each model and initialization. The 
ensemble cyclone forecast skill of each model is then evaluated against 
its own ground truth. We use established deterministic and probabilis-
tic verification methods from the tropical cyclone literature, detailed 
below. See Supplementary Information section A.7 for a comparison 
between our two cyclone evaluations, the motivation behind our choice 
of ground truth and further cyclone tracker details.

Cyclone position error evaluation. We evaluate ensemble mean  
cyclone trajectory forecasts from GenCast and ENS using position 
error48. To be able to compare GenCast and ENS against the same  
cyclones (despite being evaluated against different ground truths), we 
first associate the ERA5 and HRES-fc0 cyclone trajectories with named 
cyclones from the International Best Track Archive for Climate Stew-
ardship (IBTrACS)63,64. Ground truth cyclones that are within 200 km  
(in geodesic distance) of an IBTrACS cyclone at lead time zero are  
retained and any others are removed (TempestExtremes and IBTrACS 
have different definitions of a cyclone, meaning that they do not neces-
sarily identify exactly the same set of cyclones).

Next, for both models, each ensemble member cyclone trajectory is 
paired to a TempestExtremes named ground truth cyclone if it is within 
100 km of that cyclone at lead time zero (otherwise it is removed). We 
then compute the ensemble mean cyclone location for each named 
cyclone as the cyclone progresses until fewer than 50% of the ensem-
ble member cyclones remain active and compute the position error 
between each ensemble mean cyclone centre and its corresponding 
ground truth cyclone centre. To account for the 6-h offsets between 
GenCast and ENS initializations, we estimate the position error of ENS 

at the same 06/18 UTC initializations as GenCast by averaging the two 
position errors on either side of that initialization with the same lead 
time2. For a fair comparison, we evaluate GenCast and ENS against 
exactly the same cyclones and lead times by computing average posi-
tion error over the intersection of named cyclone and lead time pairs 
for which both a GenCast and ENS ensemble mean track position error 
exists (Fig. 4b).

Cyclone track probability evaluation. To evaluate the probabilistic 
skill of ensemble cyclone tracks, we compute 1° resolution track prob-
ability heatmaps for each time step, in which the predicted probability 
in each 1° cell is the fraction of ensemble members predicting a cyclone 
centre within that cell. We choose 1° as it corresponds to 111 km at the 
equator, which is close to 120 km, a common radius used for defin-
ing cyclone track probability48. We convert the ground truth cyclone 
tracks from ERA5 and HRES-fc0 to binary ground truth maps for each 
initialization time and lead time. Finally, we follow ref. 34 in computing 
the REV of the track probability forecast of each model against their 
respective binary ground truth heatmaps.

Unlike the paired position error analysis above, this track probability 
analysis does not restrict the ground truth TempestExtremes tracks to 
IBTrACS-named cyclones, nor does it evaluate GenCast and ENS against 
exactly the same cyclones. Owing to differences between HRES-fc0 
and ERA5, the TempestExtremes cyclone tracker identifies 23% more 
cyclones in HRES-fc0 than in ERA5. However, REV accounts for this 
difference in base rates by virtue of its normalizations with respect 
to climatology and the perfect forecast (Supplementary Information 
section A.5.6), and is thus a fair metric to use when comparing methods 
evaluated against different ground truths. Furthermore, even when 
using HRES-fc0 as the ground truth of GenCast, which puts GenCast at 
a disadvantage, GenCast outperforms ENS beyond one day lead times 
(Supplementary Information Fig. B12).

Cyclone tracker. To extract cyclone trajectories from gridded forecasts 
and analysis datasets, we use the TempestExtremes v2.1 cyclone track-
ing algorithm47. TempestExtremes is open-source on GitHub (https://
github.com/ClimateGlobalChange/tempestextremes) and has been 
used in a wide range of cyclone studies47. The algorithm has two stages. 
The first stage, DetectNodes, finds candidate tropical cyclones where 
minima in mean sea level pressure are co-located with upper-level 
warm cores. The second stage, StitchNodes, stitches these locations 
together to form trajectories. Further details of how the tracker iden-
tifies cyclones and what is involved in each tracker stage are given in 
Supplementary Information section A.7.3, and readers are referred to 
refs. 47,65 for full details.

In their 2017 work, the authors of ref. 66 optimized the hyperparam-
eters of TempestExtremes so that when applied to 6-hourly reanalysis 
datasets the resulting tracks closely match the observed tracks from the 
IBTrACS dataset63,64. We made two changes to the StitchNodes hyperpa-
rameters of the tracker (Supplementary Information section A.7.3) to 
account for the 12-hourly (instead of 6-hourly) temporal resolution of 
our evaluation, but otherwise left all tracker hyperparameters at their 
default values. We then used the same set of tracker hyperparameters 
for each model and each analysis dataset.

As TempestExtremes performs a global optimization when stitch-
ing nodes, the track results at a particular lead time depend on raw 
predictions at nearby lead times. We prepend 10 days of the respective 
ground truth of the model (ERA5 or HRES-fc0) to each forecast before 
running the cyclone tracker. This avoids cyclones being dropped when 
forecasts are initialized close to the end of the lifetime of a cyclone 
because of the short duration of the cyclone within the forecast period 
not passing the criteria of the tracker. Similarly, we report only results 
up to lead times of 9 days despite providing 15 days of predictions to 
the tracker, because the tracker may drop cyclones that begin close to 
the end of the forecast period.

https://github.com/ClimateGlobalChange/tempestextremes
https://github.com/ClimateGlobalChange/tempestextremes
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Spatially pooled CRPS evaluation
To evaluate skill at forecasting spatial structure, we compute spatially 
pooled versions of CRPS. Our approach is an instance of neighbourhood 
verification39, adapted to the surface of a sphere. We define pool centres 
as the nodes of a k-times refined icosahedral mesh. Pooling regions are 
defined within a fixed geodesic distance of each pool centre, with radii 
set to the mean distance between mesh nodes. To capture performance 
at different spatial scales, we do this separately for 6 mesh refinement lev-
els (k = 7, 6, …, 2), resulting in a wide range of pool sizes: 120 km, 241 km, 
481 km, 962 km, 1,922 km and 3,828 km. We evaluate performance on 
two types of pooling aggregation: average pooling and max pooling. 
Forecasts and targets are first aggregated over pooling regions and 
then standard skill scores are computed on these pooled counterparts. 
For average pooling, the grid cells are weighted by their area. Finally, 
to account for slight non-uniformities in the distribution of pooling 
centres when computing the global average-pooled CRPS, we weight 
each pooling region by the area of the Voronoi cell of the pooling centre.

These metrics are computed for 2 m temperature, 10 m wind speed, 
12-h accumulated precipitation and mean sea level pressure at 0.25° 
(Supplementary Figs. B13 and B14).

We also compute pooled CRPS scorecards for wind speed, geopoten-
tial, temperature and specific humidity at all pressure levels (Extended 
Data Figs. 6 and 7 and Supplementary Figs. B15 and B16). To reduce the 
computational cost of these pooled scorecard evaluations that include 
all pressure levels, forecasts and targets were subsampled to 1° before 
pooling. In this case, we skipped the smallest pool size because 120 km 
corresponds to approximately 1° at the equator, making it similar to a 
univariate evaluation of the subsampled forecasts.

Supplementary Information section A.8 provides further motivation 
and details on the pooled metrics evaluation.

Regional wind power evaluation
For the regional wind power forecasting experiment, we use all 5,344 
wind farm locations and their nominal capacities from the Global Power 
Plant Database (GPPD)44, which captures about 40% of all global wind 
farm capacity as of 2020 (ref. 44). We first bilinearly interpolate 10 m 
wind speed forecasts and analysis states at each wind farm location. We 
then map 10 m wind speed to load factor—the ratio between the actual 
wind turbine power output and the maximum power output—using 
an idealized International Electrotechnical Commission Class II 2 MW 
turbine power curve from the WIND Toolkit67. This power curve has a 
cut-in speed of 3 ms−1, maximum output at 14 ms−1 and curtailment at 
25 ms−1 (Supplementary Fig. A1). The load factor is then multiplied by 
the nominal capacity to obtain idealized power generation in mega-
watts at each wind farm.

To generate arbitrary groupings of wind farms across the globe at a 
range of spatial scales, we use a similar procedure to the pooled evalua-
tion. Pooling centres are defined on a 7-times refined icosahedral mesh 
and separate evaluations performed using pool sizes of 120 km, 240 km 
and 480 km. The 120 km scale contains 3,648 groups with a mean capac-
ity of 272 MW, the 240 km scale contains 7,759 groups with a mean 
capacity of 513 MW and the 480 km scale contains 15,913 groups with a 
mean capacity of 996 MW. The power output is summed over wind farm 
sites in each group and CRPS is computed for this derived quantity. We 
then compute the average CRPS across all wind farm groups. By using 
power as the target variable, more weight is applied to pools containing 
more wind farm capacity in the global average CRPS.

Accounting for assimilation windows
During our 2019 test period, ENS was initialized with analyses whose 
assimilation window had between 3 h and 5 h of look-ahead beyond 
the stated initialization time68. The 06/18 UTC ERA5 initializations 
of the ML models afford them only 3 h of look-ahead. The 00/12 UTC 
states of ERA5 have 9 h of look-ahead, which we show in Supplementary 

Fig. B20 translates into improved metrics on 00/12 UTC initializations 
over 06/18 UTC initializations. Overall, the difference in assimilation 
windows used in our evaluation leaves ENS with a small advantage of 
up to 2 h additional look-ahead over the ML models, for all variables 
except sea surface temperature.

ENS initialization and evaluation times
As discussed above, we evaluate GenCast only on forecasts initialized at 
06/18 UTC, as using 00/12-initialized forecasts gives GenCast an addi-
tional advantage because of the longer data-assimilation look-ahead. 
Ideally, we would compare all models at the same 06/18 UTC initializa-
tion times. However, ENS forecasts from 06/18 UTC are archived only 
up to 6-day lead times and are not free for public download. Hence, we 
evaluate ENS on forecasts initialized at 00/12 UTC. For globally averaged 
metrics, this should not matter, and in fact ref. 2 found that 00/12 UTC 
initialization tends to give a small advantage in RMSE to the determinis-
tic HRES forecast over the 06/18 UTC initialization, and we expect a simi-
lar minor advantage to apply to ENS. However, the regional wind power 
evaluation is sensitive to the diurnal cycle because wind power capacity 
is sparsely and non-uniformly distributed around the world. Thus, in 
this case, it is important to compare forecasts by ENS and GenCast at 
the same set of validity times. We, therefore, evaluate ENS (initialized at 
00/12 UTC) at the same 06/18 UTC targets as GenCast. However, GenCast 
produces 06/18 UTC forecasts at lead times of 12 h, 24 h, 36 h and so on, 
whereas for ENS we obtain only 06/18 UTC forecasts at lead times of 6 h, 
18 h, 30 h and so on. To estimate 06/18 UTC regional wind power CRPS of 
ENS at the same lead times as GenCast, we linearly interpolate the CRPS 
curve of ENS. In Supplementary Information section B.8.1, we validate 
this approach on 2018 data in which we did get access to ENS 06/18 UTC 
initializations, showing that this lead time interpolation overestimates 
the performance of ENS, in particular at short lead times.

Data availability
The ERA5 dataset was downloaded and is downloadable from the 
Climate Data Store (CDS) of the Copernicus Climate Change Service 
(https://cds.climate.copernicus.eu). The results contain modified 
Copernicus Climate Change Service information 2020. Neither the 
European Commission nor ECMWF is responsible for any use that may 
be made of the Copernicus information or data it contains. ENS and 
HRES data were downloaded and are downloadable from the ECMWF 
as of April 2024 (https://apps.ecmwf.int/datasets/data/tigge/), and are 
usable according to the license described at https://apps.ecmwf.int/
datasets/licences/tigge/. The data form part of the THORPEX Interac-
tive Grand Global Ensemble (TIGGE) archive (https://confluence.ecmwf.
int/display/TIGGE). TIGGE is an initiative of the World Weather Research 
Programme (WWRP). The Global Power Plant Database v.1.3.0 was and 
can be downloaded from https://datasets.wri.org/dataset/globalpower-
plantdatabase. The idealized wind turbine power curve was and can be 
downloaded from the National Renewable Energy Laboratory https://
github.com/NREL/turbine-models/blob/master/Onshore/ WTK_Valida-
tion_IEC-2_normalized.csv. IBTrACS (International Best Track Archive 
for Climate Stewardship) data usage policy follows the World Data 
Center for Meteorology (WDC), which provides full and open access 
to the data. IBTrACS cyclone tracks are available for download from 
https://www.ncei.noaa.gov/products/international-best-track-archiv
e?name=ib-v4-access. Plots showing coastlines were generated using 
Matplotlib69 with Cartopy70.

Code availability
Code implementing GenCast is available as part of the GitHub (https://
github.com/google-deepmind/graphcast) repository (DOI: 10.5281/
zenodo.14261754), which also provides download links for both ERA5 
and operational versions of the model weights.
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Extended Data Fig. 1 | GenCast displays as good or better ensemble-mean 
RMSE than ENS. A scorecard comparing GenCast to ENS4. Dark blue cells on 
the scorecard indicate a variable, lead time, and level combination where 
GenCast has 20% better (i.e. lower) ensemble-mean RMSE than ENS, while dark 

red cells indicate 20% lower ensemble-mean RMSE for ENS (white means they 
perform equally). Hatched regions indicate where neither model is significantly 
better (P > 0.05). GenCast is as good or better than ENS on 96% of targets, and 
significantly better (P < 0.05) on 78% of targets.



Extended Data Fig. 2 | Rank histograms show that GenCast’s ensembles are 
well calibrated. GenCast generally has very flat rank histograms, in many cases 
flatter than those of ENS4, and in almost all cases substantially flatter than 

GenCast-Perturbed. These plots show rank histograms of GenCast, ENS, and 
GenCast-Perturbed at different lead times for z500, t850, q700, 2t and 10 u.
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Extended Data Fig. 3 | GenCast provides better forecasts of extreme surface 
weather than ENS (Brier skill scores). The plots show Brier skill scores for 
ENS4 and GenCast for forecasts of extreme high temperatures, extreme low 
temperatures, extreme high wind speed, and extreme low mean sea level 
pressure, with each row computing the metric for different percentile threshold. 
A skill score of 1 represents a perfect score; a skill score of 0 represents the skill 
of climatology; and below 0 represents a skill worse than climatology. Regions 

for which GenCast is better than ENS with statistical significance (P < 0.05)  
are shaded in grey. GenCast shows significant improvement over ENS for all 
thresholds, variables, and lead times shown, with the exception of lead times 
longer than 7 days for >0.01 percentile for high 10 m wind speed, and certain 
lead times for <0.01 and <0.1 percentile for low mean sea level pressure where 
the improvement is not significant.



Extended Data Fig. 4 | GenCast provides better forecasts of extreme surface 
weather than ENS (REV panel 1). a,b, These plots compare relative economic 
value achieved by GenCast and ENS4 forecasts of a, extreme high 2 m temperature 
and b, extreme low 2 m temperature, for various extreme thresholds and lead 

times. Regions for which GenCast is better then ENS with statistical significance 
are shaded in grey. GenCast is significantly better than ENS (P < 0.05) for up to  
7 days lead time in many cases, and up to 15 days lead time in some others, while 
in some cases the differences are not statistically significant.
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Extended Data Fig. 5 | GenCast provides better forecasts of extreme surface 
weather than ENS (REV panel 2). a,b, These plots compare relative economic 
value achieved by GenCast and ENS4 forecasts of a, extreme high 10 m wind speed 
and b, extreme low mean sea level pressure, for various extreme thresholds  

and lead times. Regions for which GenCast is better then ENS with statistical 
significance are shaded in grey. GenCast is significantly better than ENS (P < 0.05) 
for up to 7 days lead time in many cases, and up to 15 days lead time in some 
others, while in some cases the differences are not statistically significant.



Extended Data Fig. 6 | GenCast ensembles capture spatial dependency 
structure (average-pooled CRPS). Average-pooled CRPS scorecard comparing 
GenCast and ENS at varying spatial scales, dark blue (resp. red) means GenCast 
is 30% better (resp. worse) than ENS, and white means they perform equally.  
We aggregate the u-component and v-component of wind into wind speed,  

and include 12 hr accumulated precipitation (tp12h) in our surface variables. 
This results in 5,400 pooled verification targets across all variables, lead times,  
and spatial scales. Aggregating over all pooled verification targets, GenCast 
outperforms ENS’s average-pooled CRPS on 98.1% of targets.
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Extended Data Fig. 7 | GenCast ensembles capture spatial dependency 
structure (max-pooled CRPS). Max-pooled CRPS scorecard comparing GenCast 
and ENS4 at varying spatial scales, dark blue (resp. red) means GenCast is  
30% better (resp. worse) than ENS, and white means they perform equally.  
We aggregate the u-component and v-component of wind into wind speed,  

and include 12 hr accumulated precipitation (tp12h) in our surface variables. 
This results in 5,400 pooled verification targets across all variables, lead times, 
and spatial scales. Aggregating over all pooled verification targets, GenCast 
outperforms ENS’s average-pooled CRPS on 97.6% of targets.



Extended Data Fig. 8 | GenCast is more skillful than both ENS and GenCast-Perturbed. Line plots are shown for a set of representative variables, showing absolute 
and relative CRPS on z500, z850, q700, q925, t850, t300, u850, 2t, 10 u and msl. GenCast achieves the best CRPS, and GenCast-Perturbed is competitive with ENS4.
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Extended Data Table 1 | ECMWF variables used in our datasets

The “Type” column indicates whether the variable represents a static property, a time-varying single-level property (e.g. surface variables are included), or a time-varying atmospheric property. 
The “Variable name” and “Short name” columns are ECMWF’s labels. The “ECMWF Parameter ID” column is ECMWF’s numeric label, and can be used to construct the URL for ECMWF’s description 
of the variable, by appending it as suffix to the following prefix, replacing “ID” with the numeric code: https://apps.ecmwf.int/codes/grib/param-db/?id=ID. The “Role” column indicates whether 
the variable is something our model takes as input and predicts, or only uses as input context (the double horizontal line separates predicted from input-only variables, to make the partitioning 
more visible). For atmospheric variables, the 13 atmospheric pressure levels are taken as input and predicted by GenCast are: 50, 100, 150, 200, 250, 300, 400, 500, 600, 700, 850, 925, and 
1000 hPa.
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