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ABSTRACT
Evaluating datasets in data marketplaces, where the buyer aim to purchase valuable data, is a critical challenge. In
this paper, we introduce an innovative task-agnostic data valuation method called PriArTa which is an approach
for computing the distance between the distribution of the buyer’s existing dataset and the seller’s dataset, allowing
the buyer to determine how effectively the new data can enhance its dataset. PriArTa is communication-efficient,
enabling the buyer to evaluate datasets without needing access to the entire dataset from each seller. Instead, the
buyer requests that sellers perform specific preprocessing on their data and then send back the results. Using this
information and a scoring metric, the buyer can evaluate the dataset. The preprocessing is designed to allow the
buyer to compute the score while preserving the privacy of each seller’s dataset, mitigating the risk of information
leakage before the purchase. A key feature of PriArTa is its robustness to common data transformations, ensuring
consistent value assessment and reducing the risk of purchasing redundant data. The effectiveness of PriArTa is
demonstrated through experiments on real-world image datasets, showing its ability to perform privacy-preserving,
augmentation-robust data valuation in data marketplaces.

1 INTRODUCTION

The availability of large and relevant datasets has been es-
sential for achieving high-performance machine learning
models (Sun et al., 2017). However, in critical fields like
medical research, access to data is often severely restricted.
As a result, we have to purchase the data from market-
places (Agarwal et al., 2019). In a data marketplace, a
buyer seeks to purchase data from various sellers. A key
challenge for the buyer is evaluating each dataset before
making a purchase, as varying data quality can significantly
impact model performance in real-world applications. This
raises a fundamental question: how can we quantify the
value of data? There has been a wide range of work on data
valuation from various perspectives and for different use
cases. The methods can be categorized into two main types:
task-oriented and task-agnostic.

Task-oriented methods are specifically designed to calcu-
late the value of data for a given learning task. In (Ghor-
bani & Zou, 2019), Data Shapley, inspired by the Shap-
ley value in game theory (Shapley, 1953), is proposed
to quantify the importance of each individual data point
in a dataset by evaluating how much it contributes to the
model’s performance. This is achieved by considering the
difference in validation performance when including and
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excluding the data point across all subsets of the training
dataset. Other related works, such as KNN− Shapley (Jia
et al., 2019), Distributional Shapley (Ghorbani et al., 2020),
Beta Shapley (Kwon & Zou, 2021), and Bahnzhaf value
(Wang & Jia, 2023) have been proposed to improve the Data
Shapley value method in terms of computational cost or
to generalize it further. The mentioned task-oriented data
valuation methods are computationally expensive, as the per-
formance must be calculated for each individual data point.
This makes them impractical for real-world applications,
especially for large and complex models.

The second category of evaluations is task-agnostic meth-
ods, which do not depend on any model performance. Still,
some task-agnostic methods such as LAVA (Just et al., 2023)
and DAVINZ (Wu et al., 2022) calculates the value of each
individual data point in the dataset. For example, LAVA cal-
culates the contribution of each point by measuring the gra-
dient of a defined distance between the training set and a val-
idation set with respect to the probability mass of that point.
DAVINZ derives a domain-aware generalization bound us-
ing the neural tangent kernel (NTK) (Jacot et al., 2018) to
characterize and estimate the validation performance of a
deep neural network without model training and uses this
as the scoring function in the conventional data valuation
technique in (Cook, 1977). In (Nohyun et al., 2022), the
Complexity-gap Score (CG-score) is introduced, which is
a training-free method for quantifying the impact of indi-
vidual data points. CG-score leverages the properties of
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the Gram matrix in over-parameterized neural networks,
which can be efficiently computed from the dataset. In (Tay
et al., 2022), a task-agnostic data valuation is used in col-
laborative machine learning, a type of ML that encourages
self-interested parties to contribute data to a shared pool
of training dataset. In (Tay et al., 2022), the data is valued
based on its quantity and quality, measured by its closeness
to the ground truth distribution using Maximum Mean Dis-
crepancy (MMD) distance (Gretton et al., 2012). All of
these approaches assume a centralized setting in which all
data is fully accessible to measure the value of each data
point, limiting their application for large datasets in data
marketplaces. In data marketplaces, often sellers do not
want to send their raw data to the buyer due to privacy con-
cerns and the risk of information leakage. The sellers prefer
to keep their datasets private until a purchase is made. Fur-
thermore, in some cases, sending all data from every seller
to a centralized entity, such as the buyer, is not feasible due
to communication load.

In (Amiri et al., 2023), a task-agnostic data valuation method
specifically designed for data marketplaces is proposed,
where two metrics, diversity and relevance, are defined for
sellers’ datasets. These metrics are calculated by comparing
the statistical properties of the seller’s dataset with those of
the buyer’s dataset, measuring the difference and similar-
ity based on the principal component space of the buyer’s
data. An extended version of that work is presented in (Lu
et al., 2024), which introduces alternative definitions for
the diversity and relevance metrics and evaluates them on
various image datasets. Although (Amiri et al., 2023) and
(Lu et al., 2024) do not provide a unique score for the value
of each seller’s dataset or a decision-making process for
seller selection, a key drawback is that the defined metrics
are not robust against natural or intentional augmentations
that the sellers’ datasets may undergo.

In this paper, we introduce an innovative task-agnostic
framework to evaluating sellers’ datasets in a data market-
place, where a buyer aims to enhance its current dataset by
purchasing datasets that offer the most significant value
and coverage of the target population. Our framework,
PriArTa, measures the distance between the distribution
of the buyer’s existing dataset and the seller’s dataset. The
value of a new dataset to a buyer depends on their specific
preferences—whether they aim to enrich existing areas of
their dataset or to cover underrepresented domains. Accord-
ingly, the buyer can construct a utility function based on
various dataset parameters. Our approach, PriArTa, has the
following properties:

• PriArTa is designed to evaluate entire datasets, rather
than individual data points, making it computationally
efficient even for large-scale datasets.

• One of the key strengths of PriArTa is its robustness

to common data transformations. By ensuring that the
value assigned to a dataset remains consistent even
when the data has undergone transformations such
as rotation, resizing, cropping, or color adjustments,
PriArTa prevents the purchase of seemingly valuable
datasets that cover different domains, and focuses on
acquiring genuinely novel and beneficial data.

• PriArTa allows buyers to evaluate the value of sellers’
datasets without needing direct access to the raw data.
This approach ensures the privacy of sellers by allow-
ing them to share information about their datasets after
preprocessing and applying noise masking.

By leveraging concepts from contrastive learning (Chen
et al., 2020), variational Bayesian methods (Kingma &
Welling, 2013), statistical distances (Kantorovich, 1942),
and differential privacy (Dwork et al., 2014; 2006), our
method provides a privacy-preserving, augmentation-robust,
and communication-efficient solution for data valuation
in data marketplaces. Experiments on real-world image
datasets demonstrate the effectiveness of PriArTa, even
when sellers possess augmented versions of other sellers’ or
the buyer’s datasets.

2 PROBLEM FORMULATION

Consider a distributed data marketplace framework compris-
ing one buyer holding a dataset DB consisting of m0 data
points, each sampled i.i.d. from an unknown distribution
PB , represented as DB ∼ PB . Additionally, there are N
sellers, wherein each seller i ∈ 1, . . . , N holds a dataset
DSi consisting of mi data points, each of size L. Analogous
to the buyer’s dataset, every data point within these datasets
is sampled i.i.d. from an unknown distribution, denoted as
DSi

∼ PSi
. Suppose the buyer, irrespective of any specific

machine learning task, defines a score function u(DB ;DSi
)

to evaluate each seller’s dataset relative to its own dataset
DB . By selecting the seller’s dataset with the greatest score
or dissimilarity, the buyer can enhance coverage of the target
domain; alternatively, choosing the dataset with lower dis-
similarity allows the buyer to enrich their existing data in the
areas the buyer already has data. In evaluating u(DB ;DSi

),
we aim to satisfy specific properties, as explained below:

Communication Efficiency: In data marketplaces, it is not
desirable for the sellers to send the entire datasets to the
buyer before making a purchase. On the other hand, for the
buyer, receiving and processing all datasets is not feasible.
Instead, the buyer should calculate the score function based
on specific information requested from each seller. Each
seller performs preprocessing on a subset of its dataset using
a mapping function fmap(·), which maps a subset of size
m̃i ≤ mi of dataset DSi to a matrix XSi ∈ Rb×q as the rep-
resentation of its dataset, where b and q are integer numbers
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and bq ≪ m̃iL. Note that this subset of data samples is
chosen at random from the entire dataset, ensuring unbiased
representation.

Privacy: To ensure that the individual datasets of the sellers
remain private, each seller should mask the representation
XSi using some noises and generate X̃Si so that it cannot be
inferred by the buyer. Then each seller i shares the masked
representation X̃Si

to the buyer so that it can calculate the
score function.

Consider the buyer’s score function applied to the dataset of
seller-i is denoted by u(DB ;DSi

) ≜ d(XB , X̃Si
), where

d(·) represents a distance metric, and XB ≜ fmap(DB).
Consequently, the buyer chooses to purchase the dataset
from the seller that best aligns with their specific needs, ei-
ther by covering underrepresented domains or by enriching
data within existing areas.

Transformation Resistance: To ensure the buyer acquires
only unique datasets with minimum redundancy, it’s essen-
tial to avoid purchasing datasets that are transformations of
other sellers’ datasets or even the buyer’s. This includes
datasets that have been altered in ways such as rotation,
cropping, resizing, color adjustments, or any similar aug-
mentations. Therefore, the combination of the mapping
function fmap(·) and the distance metric d(·) should be resis-
tant to these kinds of transformations. Consider x̃j ≜ t(xj),
where x̃j represents the augmented version of data sample
xj ∈ DSi

, and t(·) denotes a function randomly applying
various transformations from a predetermined set. In this
scenario, the distance metric should satisfy the condition:∣∣∣d(fmap(DB), fmap(DSi)

)
− d

(
fmap(DB), fmap(D̃Si)

)∣∣∣ ≤ ε,

where ε is a small positive value representing the acceptable
difference in distances, and D̃Si

≜ {t(xj),∀xj ∈ DSi
}.

This condition ensures that the discrepancy between the
original distance and the distance to the transformed dataset
is bounded by ε, indicating that the two distances do not
significantly differ.

2.1 Our Contribution

In this paper, we propose PriArTa framework, a pri-
vate, task-agnostic, and augmentation-robust data valuation
method that evaluates entire datasets, rather than individ-
ual data points. The core idea behind PriArTa is driven by
the need to measure the distance between the distributions
of the buyer’s and the sellers’ datasets. Typically, popular
distance metrics for comparing distributions often require
access to the actual distribution or an empirical estimate of
it (Gibbs & Su, 2002), which can increase the complexity
of these metrics, particularly in high-dimensional settings
(Peyré et al., 2019).

To address this, we propose mapping the distribution of each

seller’s dataset to a parametric distribution, which can be
characterized by a few key parameters. One of the most
widely used parametric distributions is the Gaussian distri-
bution. If all the sellers’ distributions are approximated by
Gaussian distributions, we can then employ a proper dis-
tance metric such as the Wasserstein distance (Kantorovich,
1942), which offers a closed-form solution for computing
the distance between two Gaussian distributions based on
their first and second moments, i.e., the mean and covari-
ance.

To achieve this mapping, we suggest using a Variational Au-
toencoder (VAE) (Kingma & Welling, 2013), which allows
the latent variable to approximate a Gaussian distribution
given an input dataset. Additionally, to ensure that the map-
ping is robust against data augmentations, we propose uti-
lizing a SimCLR model (Chen et al., 2020) which generates
representations of the dataset that are invariant to transfor-
mations, thus making the subsequent distance measurement
more reliable. Furthermore, to preserve the privacy of the
sellers’ datasets, PriArTa employs local differential privacy
(Dwork et al., 2014; 2006) with the Gaussian mechanism.

3 BUILDING BLOCKS OF PriArTa

In this section, we provide a high-level overview of the
PriArTa framework, describing its main building blocks,
followed by an explanation of a specific implementation
for each block. The detailed version of the proposed pri-
vate, task-agnostic, and augmentation-robust data valuation
framework will be described in the next section. PriArTa
is composed of modular components, each addressing es-
sential challenges in data valuation for marketplaces, as
previously discussed: (Mod.1) unsupervised representation
learning, (Mod.2) distribution mapping, (Mod.3) valuation
metrics, and (Mod.4) privacy-preserving mechanisms. This
modular structure provides flexibility in method selection
for each component, allowing the data valuation process to
be tailored to specific requirements.

3.1 Mod.1: Unsupervised Representation Learning

This module focuses on generating data representations that
capture underlying patterns in the dataset while maintaining
robustness against common transformations, such as crop-
ping, resizing, flipping, color jittering, and Gaussian blur,
which may be applied in combination. Here, robustness
refers to the learned representation’s invariance to augmen-
tations applied to the input dataset. Within this framework,
this module aids the data valuation framework in perform-
ing reliable valuations on datasets, regardless of potential
visual augmentations, ensuring consistency in data valuation
outcomes.

One option for this module is contrastive learning meth-
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ods, which lead the field in self-supervised learning. The
objective is to learn a meaningful data representation with-
out relying on explicit supervision or labels by contrasting
positive and negative pairs of instances, where similar data
points are positioned close together in the representation
space, and dissimilar ones are positioned farther apart (Bach-
man et al., 2019). Among the various contrastive learning
methods suitable for implementing PriArTa, we select Sim-
CLR (Chen et al., 2020) as a straightforward example. In
SimCLR, multiple augmented versions of the same instance
are treated as positive pairs, while different samples serve as
negative pairs. The model’s objective function is to differ-
entiate between these positive and negative pairs to capture
meaningful and semantic information within the data. Sim-
CLR consists of several components, including:

(1) A stochastic data augmentation module that randomly
transforms input data x, producing two augmented versions
x̃i and x̃j of the same instance, which are considered as
positive pairs. Common data augmentation techniques used
include cropping, flipping, rotation, random crop, and color
transformations.

(2) An encoder network fSimCLR(·), typically a deep neural
network architecture like ResNet (He et al., 2016), takes
the augmented instances and extracts the representation
vectors, making the discrimination between similar and
dissimilar instances higher in cooperation with the other
components. Let us denote the output of the encoder by
hi = fSimCLR(x̃i).

(3) A projection head ghead(·) is employed to further refine
the learned representation, which is a shallow neural net-
work like a Multilayer Perceptron (MLP) (Rumelhart et al.,
1986). It maps the representations to a lower-dimensional
space where contrastive loss is applied. The output of this
projection head is denoted by νi = ghead(hi), representing
the learned representation with more discriminative power.

(4) A contrastive loss is defined to be applied to the en-
coded and projected instances, aiming to bring similar in-
stances closer together and push dissimilar instances apart.
To achieve this goal, a distance metric such as Euclidean
distance or cosine similarity is required.

In order to train the model, a minibatch consisting of N
data samples is randomly chosen, and contrastive learning
is performed on pairs of 2N augmented versions of data
samples derived from the minibatch. Negative samples are
not explicitly chosen. However, for each augmented pair,
the other 2(N−1) augmented samples within the minibatch
are considered as negative data samples. Considering the
cosine similarity as a distance metric, the loss function,
called the normalized temperature-scaled cross-entropy loss
(NT-Xnet), for a positive pair (i, j) in SimCLR is defined

as follows.

ℓi,j = − log
exp (si,j/τ)∑2N

k=1 1k ̸=i exp (si,k/τ)
,

where si,j is a cosine similarity function defined as si,j =
νT
i νj/(∥νi∥ ∥νj∥), 1k ̸=i is an indicator function and τ de-

notes a temperature parameter. The last step is to calculate
and sum all the losses as

L =
1

2N

N∑
k=1

[ℓ2k−1,2k + ℓ2k,2k−1],

and update the encoder network and the projection head such
that L is minimized. Learned representations from SimCLR
can be transferred to downstream tasks by extracting the
representations from the output of the encoder network of
the SimCLR model. A decision should be made on whether
to fine-tune the SimCLR model or use its fixed features as
input to a new model.

Note that for this module, methods other than SimCLR,
including other contrastive learning or even non-contrastive
learning methods that meet the specified requirements and
align with PriArTa framework, can also be used.

3.2 Mod.2: Distribution Mapping

The main idea of PriArTa is to evaluate datasets by measur-
ing the distance between the buyer’s and seller’s dataset dis-
tributions. Popular metrics for comparing distributions often
require access to full empirical estimates of these distribu-
tions, which can be computationally intensive, particularly
in high-dimensional scenarios. This module addresses this
challenge by transforming datasets into structured represen-
tations that simplify the process of comparing distributions.

The objective of this module is to map the distribution of
each dataset into a manageable and parametric format. In
particular, a parametric distribution can be characterized by
a limited set of parameters that enable efficient and mean-
ingful comparisons between datasets. Among the options,
Gaussian distributions are commonly employed due to their
simplicity and ease of analysis. This choice also supports
computationally efficient distance metrics and provides a
structured approach to represent each dataset’s statistical
characteristics, ensuring that the framework can scale with
large datasets. For this module, we select the Variational
Autoencoder (VAE) (Kingma & Welling, 2013) due to its
ability to learn compact latent representations of complex
data and impose a Gaussian structure on the latent space.

A VAE is a type of generative model that learns to represent
and generate data in a probabilistic manner. It is composed
of an encoder, which maps high-dimensional input data to a
lower-dimensional latent space, and a decoder, which maps
points in the latent space back to the data space. The ob-
jective of a VAE includes two terms: a reconstruction loss,
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which encourages the model to reconstruct input data, and a
regularization term, which encourages the latent variables
to approximate the prior distribution, typically a Gaussian
distribution. This regularization term, often implemented us-
ing Kullback-Leibler (KL) divergence (Kullback & Leibler,
1951), helps prevent overfitting and encourages the latent
space to have certain properties, such as continuity and
smoothness. VAEs aim to maximize a lower bound on the
log-marginal likelihood, which consists of the reconstruc-
tion loss and the KL divergence between the encoder and
the prior distribution. More precisely, components of a VAE
can be described as follows:
Encoder: The encoder is a neural network with datapoints
x as the input data and the latent variable z as the output.
The encoder parameterizes the approximate variational pos-
terior distribution qθ(z|x) of the latent variable z given the
input data x and maps the input data to the parameters of a
Gaussian distribution in the latent space.

qθ(z|x) = N (µ(x),σ2(x)),

where θ denotes the parameters of the encoder model, µ(x)
and σ2(x) are the mean and variance vectors computed
by the encoder network respectively. After approximating
the variational posterior qθ(z|x), the latent variable z is ob-
tained by sampling from this distribution.
Decoder: The decoder is another neural network which
maps the sampled latent variable z back to the data space
to generate a reconstruction x′. The decoder outputs the
parameters to the likelihood function pϕ(x|z), where ϕ de-
notes the parameter of the decoder model.
Objective Function: The VAE is trained by maximizing the
evidence lower bound (ELBO), which is the lower bound of
the log-likelihood of the data as follows.

ELBO(x) = Ez∼qθ(z|x)[log pϕ(x|z)]− KL(qθ(z|x)||p(z)),

where the first term of the objective is a reconstruction loss,
and KL(qθ(z|x)||p(z)) is the KL divergence between the
approximate posterior and the prior distribution of the latent
variable z. It has been shown that the KL loss term, induces
a smoother representation of the data (Chen et al., 2016). By
maximizing the ELBO, the VAE learns to extract the mean-
ingful representation of the input data in the latent space,
allowing it to generate new data samples that resemble the
training data.

3.3 Mod.3: Valuation Metric

To quantify the value of each dataset, the framework requires
a distance-based metric that compares the distributions of
the buyer’s and seller’s data representations. Finding an
effective distance metric is critical.

In PriArTa, we select optimal transport (OT) as a metric
for computing the distance between two probability distri-
butions which is both symmetric and satisfies the triangle

inequality. The goal of optimal transport is to find the most
efficient way to minimize the total cost of moving probabil-
ity mass from a source distribution to a target distribution,
subject to certain constraints. Let measures α and β be prob-
ability distributions on spaces X and Y respectively, which
can be continuous or discrete. Let c : X × Y → [0,+∞]
be a symmetric cost function where c(x, y) measures the
cost of transporting one unit of mass from an element x in
X to an element y in Y (with property c(x, x) = 0). The
optimal transport problem seeks to minimize the total cost
of transporting mass from α to β and it is defined as follows:

OT(α, β) = min
π∈Π(α,β)

∫
X×Y

c(x, y)dπ(x, y),

where Π(α, β) is the set of couplings consisting of joint
probability distributions over the space X × Y with α and
β as marginals. More precisely,

Π(α, β) =
{
π ∈ P(X × Y)

∣∣∣∣ ∫
X
π(x, y)dx = β,∫

Y
π(x, y)dy = α

}
.

The p-Wasserstein distance is a metric derived from optimal
transport, with the Euclidean distance serving as the cost
function. It is defined as follows:

Wp(α, β) =
(

min
π∈Π(α,β)

∫
X×Y

∥x− y∥p dπ(x, y)
) 1

p ,

where p ≥ 1. The p-Wasserstein distance provides a
valuable tool for comparing and analyzing probability dis-
tributions in various fields, including statistics, machine
learning, and image processing. A special case occurs for
multivariate normal distributions. If α = N (µ1,Σ1) and
β = N (µ2,Σ2), then the distance has a closed form as
follows:

W2(α, β) =
(
∥µ1 − µ2∥2 + tr(Σ1) + tr(Σ2) (1)

− 2 tr
(
(Σ

1/2
1 Σ2Σ

1/2
1 )1/2

))1/2
.

In PriArTa, the p-Wasserstein distance is used for this mod-
ule due to its simple analytical expression between two
Gaussian distributions. Other distance metrics between dis-
tributions could also be considered, but they may encounter
some challenges. Some commonly used metrics, such as
KL divergence, do not satisfy symmetry and the triangle
inequality and may even yield infinite values if the distri-
butions do not share the same support. Maximum mean
discrepancy distance is another metric, but its performance
depends heavily on the choice of kernel, and it only consid-
ers the difference between the mean embeddings of the two
distributions (Tay et al., 2022).
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3.4 Mod.4: Privacy-Preserving Mechanism

In a data marketplace, different types of privacy consider-
ations may arise. One of the most important is the privacy
of the sellers’ datasets, as sellers might not wish to share
their data before any purchases are made. This module pro-
vides sellers’ privacy protection to minimize the risk of data
leakage.

Differential Privacy (DP) is a widely adopted privacy-
preserving method in fields like data analysis, machine learn-
ing, and data sharing. Local Differential Privacy (LDP), a
variation of DP, is designed to ensure that individual data
entries remain private even after they are collected or cen-
tralized. In the context of data privacy, LDP offers a robust
framework for protecting users’ information while still al-
lowing meaningful statistical analysis on the collected data.

Definition 1. A mechanism M : X → R with data domain
X and range R satisfies (ϵ, δ)-Local Differential Privacy
(Dwork et al., 2006; Kasiviswanathan et al., 2011), if for ev-
ery pair of adjacent inputs x1, x2 ∈ X and for any possible
output O ⊆ R, the following inequality holds

Pr[M(x1) ∈ O] ≤ eϵPr[M(x2) ∈ O] + δ,

where ϵ ≥ 0, 0 ≤ δ ≤ 1, and the probabilities are taken
over the randomness of the mechanism. In addition, two
inputs are said to be adjacent if they differ in the data of
exactly one individual.

LDP ensures that the input to M cannot be inferred from
its output with high confidence, as determined by ϵ. In this
paper, we focus on the output perturbation LDP mechanism
(Dwork et al., 2014) which involves adding a random noise
vector Z to the output of a function f : X → Rd. To ensure
that the mechanism M(x) = f(x) + n meets the specific
privacy guarantee, the noise level must be carefully cali-
brated based on the sensitivity of the function f to input
variations and the chosen noise distribution. The Gaussian
mechanism is employed to achieve this, where the pertur-
bation n is modeled as an isotropic Gaussian noise vector
with zero mean, i.e., n ∼ N (0, σ2I), and the sensitivity of
function f is characterized by ∥f(x1)− f(x2)∥2 ≤ ∆.

Theorem 1 (Gaussian Mechanism). For ϵ, δ ∈ (0, 1), the
Gaussian mechanism with parameter σ ≥ c∆/ϵ is (ϵ, δ)-
differentially private, provided that c2 > 2 ln (1.25/δ)
(Dwork et al., 2014; 2006).

4 DETAILED DESCRIPTION OF PriArTa

In this section, we introduce PriArTa method for calculating
the valuation of each dataset DSi

∼ PSi
, for i = 1, . . . , N ,

where N represents the number of sellers, with respect to the
buyer’s current dataset DB ∼ PB . The proposed valuation
method is task-agnostic, meaning that the value of each

dataset remains unaffected regardless of the specific task the
buyer intends to perform. The main idea behind this method
is to compute a distance metric between the buyer’s dataset
DB and each seller’s dataset DSi

. To achieve this goal, and
to ensure to have a robust distance metric resilient to data
augmentation, the buyer and sellers engage in the following
steps:

• As shown in Fig. 1, the buyer initiates a contrastive learn-
ing algorithm on its dataset DB , with the option to employ
various self-supervised learning methodologies. Specifi-
cally, in our framework, SimCLR is employed to extract
representations that are invariant to data augmentations
and to capture the underlying structure of the data through
contrastive learning. In addition, SimCLR has a simple
structure and strong performance, making it a suitable
choice for our data marketplace framework.

• The output of the backbone of the SimCLR model, de-
noted as hB , serves as the input to the encoder component
of a variational auto-encoder which aims to minimize the
deviation of the learned latent distribution from the stan-
dard normal prior distribution. The decoder also attempts
to reconstruct these representations from sampled latent
variables, zB . Subsequently, the buyer trains the VAE
using its own datasets, as illustrated in Fig. 2. Here, The
VAE provides a principled way to regularize the latent
space by enforcing a Gaussian prior, ensuring that the
latent space is well-structured.

• The buyer shares its trained deep learning model, which
represents the mapping function and consists of a concate-
nation of the SimCLR backbone and the VAE encoder,
with the seller entities. Each seller, in turn, as depicted in
Fig. 3 conducts an inference process utilizing the shared
model with a random subset of their datasets to compute
the corresponding latent variables as representations of its
dataset, denoted as ZSi for seller-i.

• We assume that all entities within the data marketplace are
honest, meaning no entity, especially the sellers, intends to
deceive the buyer or use malicious behavior to influence
a purchase. However, we also assume that each seller
wants to keep their dataset, or its representations, private
before any transactions. In this step, each seller is asked to
send the mean and covariance of the representation of its
dataset to the buyer. To make the representations private
even after collecting the mean and covariance by the buyer,
each seller adds Gaussian noise to the representations as
differential privacy with Gaussian mechanism.

Suppose the seller has n representation vectors zj ∈ Rd

(i.e., ZSi
∈ Rn×d) where each vector zj is bounded

in terms of ℓ2-norm, i.e., ∥zj∥2 ≤ R. Then the ℓ2-
sensitivity of mean function, µ = 1

n

∑n
j=1 zj , is bounded

by ∆µ = 2R
n which measures the maximum change in
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Figure 1. SimCLR training framework at the buyer side

Figure 2. VAE training at the buyer side

the mean when a single vector zi is replaced by any other
vector. Likewise, one can verify that the sensitivity of the
covariance function Σ = 1

n−1

∑n
j=1(zj −µ)(zj −µ)T is

bounded by ∆Σ = 4R2

n + 8R2

n2 (see Appendix). For a cer-
tain ϵ, δ ∈ (0, 1), to achieve (ϵ, δ)-differential privacy in
mean and covariance computation simultaneously, seller-
i should add random Gaussian noise Ni ∼ N (0, σ2I)
to its representation ZSi

, where σ = ∆Σ

ϵ

√
2 ln (1.25/δ).

Therefore, seller-i calculates the mean and covariance of
its noisy data representations, denoted by µSi

and ΣSi

respectively.

• The sellers return the calculated statistics to the buyer for
further calculations. Note that the subset of each seller’s
dataset for inference is chosen uniformly at random from
their dataset, and its size should be fixed for all sellers. In
addition, the choice of ϵ and δ for the differential privacy
depends on the desired balance between privacy and score
of the data involved.

• Since the distribution of the representations of all datasets,
even after the addition of noise, is Gaussian, it becomes
straightforward for the buyer to apply the Wasserstein
distance metric to calculate the gain that each seller’s
dataset might contribute. More precisely, for seller-i the
distance is calculated as

W2(P̃B , P̃Si) =
(
∥µB − µSi∥

2
+ tr(ΣB) + tr(ΣSi)

(2)

− 2 tr
(
(Σ

1/2
B ΣSi

Σ
1/2
B )1/2

))1/2
,

where µB and ΣB are the corresponding mean and covari-
ance of the representations of the buyer’s dataset achieved
by performing inference with the trained model. Addition-
ally, P̃B and P̃Si

denote the distributions of the buyer’s
and seller-i’s representations, respectively.

• After computing the mutual distances between the buyer’s
dataset and each seller’s dataset, the buyer can make a
decision based on the result. If the buyer selects the
seller’s data with the greatest distance or dissimilarity,
they can better cover the target population; if they select
the dataset with the lower dissimilarity, they can enrich
their existing dataset in the areas they already have data.
Therefore, based on the calculated distance, the buyer can
purchase data from the seller that best meets their needs.

The PriArTa method offers three significant advantages: it
evaluates entire datasets instead of individual data points,
which makes it computationally efficient even at large scales.
It is also robust to common data transformations, ensuring
that the assigned value of a dataset remains almost consistent
even when modified (e.g., through resizing, cropping, or
color adjustments). Additionally, PriArTa enables buyers
to assess the value of datasets without direct access to raw
data, protecting sellers’ privacy by allowing them to share
only preprocessed and masked information.
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Figure 3. Inference of the trained model at the seller side

5 EXPERIMENTS AND RESULTS

In this section, we introduce the implementation details
of PriArTa, followed by the presentation of experimen-
tal results to demonstrate the performance of the proposed
scheme. All experiments are simulated on a single machine
using Intel(R) Core(TM) i9-7940X CPU @ 3.10GHz and
NVIDIA Quadro P2000 with 5GB GDDR5 memory.

5.1 Implementation Details

Our experiments are conducted on the CIFAR-10
(Krizhevsky, 2009) and STL-10 (Coates et al., 2011)
datasets, which consists of 60,000 (32x32) and 13,000
(96x96) labeled color images across 10 classes, respectively.
To simulate the buyer’s and sellers’ datasets with varying
levels of similarity to the buyer’s data, we first split the
dataset into several subsets according to predefined label
distributions. In other words, the buyer and all sellers have
subsets of the original datasets, CIFAR10 or STL10, each
with a different distribution of classes, leading to imbal-
anced datasets.

Some of the subsets are then preprocessed using various
transformations, such as random flipping, rotation, color jit-
tering, and Gaussian blurring, to generate additional datasets
for other sellers. However, these are not new datasets and
will not provide additional learning information to the buyer
after purchase, as they are merely augmented versions of
the existing sellers’ or the buyer’s datasets.

To learn meaningful representations from the data, we em-
ploy the SimCLR self-supervised learning approach, as the
proposed scheme. We utilize the ResNet-18(He et al., 2016)
as the backbone architecture and train a SimCLR model on
the buyer’s dataset using the PyTorch Lightning framework
(Falcon & team, 2019). The model is trained for 200/400
epochs with a batch size of 128/64, using the NTXentLoss
as the contrastive loss function. The learned representations
from the SimCLR model serve as the input to the subse-
quent VAE model. The VAE model consists of an encoder

and a decoder network. The encoder takes the SimCLR
representations as input and maps them to a latent space
of dimension 64/32. The encoder network consists of fully
connected layers with LeakyReLU activations and outputs
the mean and log-variance of the latent distribution. The
decoder network receives the sampled latent vector and re-
constructs the original SimCLR representations through a
series of fully connected layers.

The parameters of the backbone of the SimCLR is frozen
and the VAE model is trained on the buyer’s data using the
Adam optimizer. The loss function incorporates both the
mean squared error (MSE) between the input and recon-
structed representations, as well as the Kullback-Leibler
(KL) divergence regularizer. After training, the combination
of the SimCLR backbone and the VAE encoder is shared
with other sellers for inference and computing the likelihood
of their datasets. More precisely, each seller randomly se-
lects a subset of their dataset of a certain size, then uses the
shared model to compute the corresponding latent variables
as representations of their datasets. To make the repre-
sentation private, each seller employs differential privacy
using the Gaussian mechanism with parameters ϵ = 0.8 and
δ = 10−5. Next, each seller returns the empirical mean and
the covariance matrix of the noisy representations to the
buyer, who computes the Wasserstein distance between the
latent distributions of the buyer’s data and the sellers’ data
using (2), i.e., the final valuation scores of each dataset.

For example, assume that the distributions of different
classes in the buyer’s dataset and those of two other sellers
are illustrated in Fig. 4. In this example, seller-2 has classes
that are similar to those in the buyer’s dataset, whereas
seller-1 covers additional classes, thereby offering greater
diversity in the dataset available for purchase by the buyer.
In addition, we consider five other sellers: seller-3 uses
the dataset from seller-2 but applies multiple random trans-
formations to images with varying probabilities. Seller-4
employs the buyer’s dataset with multiple random transfor-
mations applied at different probabilities. Seller-5 utilizes
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Figure 4. The probability distribution of datasets based on their respective classes. (a) represents the distribution of the buyer’s dataset,
while (b) and (c) represent distributions for seller-1 and seller-2 respectively.

the buyer’s dataset with random flipping exclusively, while
Seller-6 applies rotation alone to the same dataset. Lastly,
Seller-7 applies only color jittering to the buyer’s dataset.
Fig. 5 shows some sample images of the buyer’s dataset and
four defined sellers’, where the underlying dataset is STL-
10. Fig. 6 shows the valuation scores of the aforementioned

Figure 5. Sample images of the buyer’s dataset and four sellers’.

sellers’ datasets achieved by PriArTa, where the underlying
dataset are CIFAR-10 and STL-10. To emphasize the dif-
ferences in the Wasserstein distances, we normalize these
values. A common approach is to use Min-Max normal-
ization, which scales the values to a fixed range, [0, 1]. As
shown in Fig. 6, if the buyer needs the most diverse dataset,
the best option is the dataset from seller-1, as it provides the

highest valuation score among all sellers.

Figure 6. The valuation score of different sellers’ datasets, where
the underlying datasets are CIFAR-10 and STL-10.

The overall goal of the buyer in purchasing data is to perform
a task, which in this example, we assume to be classifica-
tion. Initially, the buyer will train its model on the local
dataset. After purchasing a new dataset, it will fine-tune the
model. We assume that the VGG-16 network (Simonyan &
Zisserman, 2014) is used for this classification task. Fig. 7
shows the model’s performance improvement in terms of
test accuracy based on training on the buyer’s dataset and
fine-tuning on other sellers’ datasets after 30 epochs. As
shown, if the buyer purchases the dataset from seller-1, the
accuracy improves the most, which is consistent with the
results from the proposed method and the valuation scores.
Note that the accuracy improvement from using sellers 4, 5,
6, and 7 is not due to the novelty or provision of new infor-
mation. Instead, it is a result of the augmentation technique
that the buyer can apply independently, without purchasing
additional datasets from these sellers.



Private, Augmentation-Robust and Task-Agnostic Data Valuation Approach for Data Marketplace

Figure 7. Performance improvement of the buyer’s model with
seller datasets.

6 CONCLUSION

In this paper, we present PriArTa, a novel approach for
privacy-preserving and augmentation-robust data valuation
in data marketplaces. PriArTa is a task-agnostic method
that enables buyers to evaluate the whole dataset of each
seller without full access, ensuring privacy and minimiz-
ing redundancy in the purchase. Experimental results on
real-world image datasets demonstrate the effectiveness of
PriArTa in providing reliable data valuation, even in the
presence of sellers who have augmented versions of each
other’s datasets.
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A SENSITIVITY OF MEAN AND
COVARIANCE FUNCTIONS

Suppose we have n vectors xi ∈ Rd, where each vector
has a bounded ℓ2-norm such that ∥xi∥2 ≤ R. We de-
fine function µ that computes the mean of these vectors
as µ = 1

n

∑n
i=1 xi. To determine the ℓ2-sensitivity of the

mean function, we need to consider the effect of changing
one vector x′

j among all vectors. When a single vector is
changed, the maximum change in the mean is bounded as

∥µ′ − µ∥2 =

∥∥∥∥ 1n (x′
j − xj)

∥∥∥∥
2

≤ 2R

n
, (3)

where µ′ is the mean vector after the change, and the last
inequality holds because of the assumption that all vectors
are bounded within a sphere of radius R.

To calculate the change in the covariance Σ =
1

n−1

∑n
i=1(xi − µ)(xi − µ)T due to the change in a single

vector, we should consider the worst case change which
occurs when we replace a vector that was R away from
the mean in one direction with a vector that is R away
from the mean in the opposite direction. Let us denote the
original vector by xj = µ + Ru and the replaced one by
x′
j = µ − Ru, where u is a unit vector in some direction.

The changes in the covariance matrix when we replace xj

with x′
j is

∆Σ =
1

n− 1

(
(x′

j − µ′)(x′
j − µ′)T − (xj − µ)(xj − µ)T

+

n∑
i=1,i̸=j

(
(xi − µ′)(xi − µ′)T − (xi − µ)(xi − µ)T

))
,

where µ′ is the new mean after replacing xj with x′
j and we

have µ′ = µ+(x′
j −xj)/n = µ− 2Ru/n. In addition, we

have

x′
j − µ′ = (x′

j − µ) + (µ− µ′) = −Ru+ 2Ru/n.

Substituting these back into the ∆Σ

∆Σ =
1

n− 1

(
R2uuT (1− 2

n
)2 −R2uuT

+

n∑
i=1,i̸=j

(2R
n

((xi − µ)uT + u(xi − µ)T ) +
4R2

n2
uuT

))
.
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Using triangle inequality properties of the Frobenius norm
we have

∥∆Σ∥F ≤ 1

n− 1

(
4R2

n
|( 1
n
− 1)|

∥∥uuT
∥∥
F

+

n∑
i=1,i̸=j

(4R
n

∥∥(xi − µ)uT
∥∥
F
+

4R2

n2

∥∥uuT
∥∥
F

))

≤ 4R2

n
+

8R2

n2
.


