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Abstract

With the rapid advancement of neural networks, methods for option pricing
have evolved significantly. This study employs the Black-Scholes-Merton (B-
S-M) model, incorporating an additional variable to improve the accuracy
of predictions compared to the traditional Black-Scholes (B-S) model. Fur-
thermore, Convolutional Kolmogorov-Arnold Networks (Conv-KANs) and
Kolmogorov-Arnold Networks (KANs) are introduced to demonstrate that
networks with enhanced non-linear capabilities yield superior fitting perfor-
mance. For comparative analysis, Conv-LSTM and LSTM models, which are
widely used in time series forecasting, are also applied. Additionally, a novel
data selection strategy is proposed to simulate a real trading environment,
thereby enhancing the robustness of the model.

Keywords: Option pricing, Convolutional Kolmogorov-Arnold Networks,
B-S-M model, Neural networks

1. Introduction

Due to the fact that even a small error can lead to significant losses, option
pricing is always accompanied by high risk. Scholars from various fields
have shown interest in option pricing, and as a result, many methods and
theories have been developed. Among these methods, the most influential
and practical guidance comes from the fields of theoretical finance and neural
networks.

In theoretical finance, the Black-Scholes (B-S) model, introduced by Black
and Scholes in 1973 [1], is the most renowned and widely applied model. In
the same year, Merton modified certain assumptions of the B-S model and
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proposed an improved version [2]. This enhanced model not only addresses
the pricing of options in the presence of dividends but also notably influences
subsequent research on implied volatility in financial markets. This model is
alternatively known as the Black-Scholes-Merton (B-S-M) model. However,
in practical applications, both the B-S and B-S-M models exhibit biases and
limitations due to the assumptions underlying these models, such as the No
Arbitrage Principle and the allowance for continuous trading.

Hence, some experts began to focus on the emerging field of neural net-
works, combining them with traditional methods to conduct investigations,
which yielded promising results. In 1994, Hutchinson J.M. et al. pioneered
the exploration of network models in the financial domain [10], incorporat-
ing various methods such as ordinary least squares, radial basis function,
multi-layer perceptrons (MLPs), and projection pursuit. Gençay R. et al.
introduced techniques like hinting and Bayesian regularization, and elabo-
rated on their roles [11][12]. Simultaneously, some scholars sought to apply
genetic algorithms to the field of option pricing [13]. Nonetheless, the break-
through in this field belongs to the development of recurrent neural networks
(RNNs), because the data of options have a relatively strong temporal nature.
One of the most famous of RNNs is the LSTM model, consequently, numer-
ous investigators have concentrated on forecasting option price by leveraging
LSTM [3][14].

A crucial innovation in neural networks is the development of KANs by
Liu Z et al. [7]. The KANs have better interpretability for nonlinear fitting as
well as accuracy, and in some other fields, scholars have carried out relevant
simulations and obtained good results. Bodner A.D. and Drokin I. et al. have
refined and developed the Conv-KANs model [8][9]. Nevertheless, there are
no investigators who have applied these models to the field of option pricing
with neural networks.

In this paper, the following contributions are presented. First, the B-S-M
formula is utilized to achieve greater precision compared to the conventional
B-S model. Although this model has been established in theoretical finance
for many years, it remains insufficiently exploited in the literature by scholars
in this field. Second,a novel data-processing method is also proposed to better
approximate the real financial market environment, where the generalization
capability of neural networks is enhanced by incorporating white noise into
both the training and testing datasets. Finally, the popular KANs model and
its convolutional version, Conv-KANs, are introduced, representing a new
application of neural networks in the domain of option pricing. Experimental
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results show that these models outperform the original MLP-based models.

2. Related Work

2.1. Kolmogorov-Arnold Networks

Before delving into KANs, it is essential to explore their mathemati-
cal theoretical foundations. Kolmogorov-Arnold representation theorem pro-
vides a promising platform to generate frameworks of neural networks, and
many academics have studied that. Yet, this theorem has strict framework
requirements.

The theorem was established by Arnold V I and Kolmogorov A N. It
is stated as suppose f is a multivariate continuous function on a bounded
domain, then f can be written as a finite composition of continuous functions
of a single variable and the binary operation of addition. More specifically,
for a smooth f : [0, 1]n → R

f(x) = f(x1, · · · , xn) =
2n+1∑
i=1

Φi

(
n∑

p=1

ϕi,p(xp)

)
(1)

where
ϕi,p:[0, 1] → R and Φi:R → R

On the one hand, this theorem seems to be very rigorously argued, but on
the other hand, the framework for functions stuck with depth-2, width-(2n
+ 1) representation is too restrictive. As a result, in the application of this
construction, although there have been previous studies, the structure of the
model is strictly limited to a relatively simple level, and it cannot compete
with other MLPs with complex structures. It is hoped that in paper [7], Liu
Z et al. creatively propose the use of other frameworks to replace the original
fixed framework and the results are promising. Here are their definitions of
KAN:

Φ = {ϕi,p}, p = 1, 2, · · · , nin, i = 1, 2 · · · , nout (2)

Where the parameters of the functions ϕi,p possess trainable properties.
It supposes that every KAN layer which has nin-dimensional inputs and nout-
dimensional outputs. And it is the 1D form.
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When it refers to multi-dimensional situation, it tells

xl+1 =


ϕl,1,1(·) ϕl,1,2(·) · · · ϕl,1,nl

(·)
ϕl,2,1(·) ϕl,2,2(·) · · · ϕl,2,nl

(·)
...

... · · · ...
ϕl,nl+1,1(·) ϕl,nl+1,2(·) · · · ϕl,nl+1,nl

(·)


︸ ︷︷ ︸

Φl

xl (3)

where Φl represents to the lth layer of the whole KAN framework while
xl and xl+1 separately denote input and output, respectively. Based on defi-
nitions (1) and (3), the structural formula for the complete KAN model can
be derived directly. it is

KAN(x) = (ΦL−1 ◦ΦL−2 ◦ · · · ◦Φ0)x (4)

also

f(x) =

nL−1∑
iL−1=1

ϕL−1,iL,iL−1

 nL−2∑
iL−2=1

· · ·

(
n0∑

i0=1

ϕ0,i1,i0(xi0)

)
· · ·

 (5)

Liu Z et al. demonstrate that this seemingly simple modification enables
KANs to surpass MLPs in both accuracy and interpretability on small-scale
AI + Science tasks [7]. See the paper for the proof and detailed reasoning
process.

2.2. Convolutional Kolmogorov-Arnold Networks

In Convolutional Kolmogorov-Arnold Networks, The function ϕ is chosen
as the kernel function, and in the original Kolmogorov-Arnold Networks, it
serves as the activation function

ϕ = w1 · spline(x) + w2 · silu(x) (6)

In paper [8], Convolutional Kolmogorov-Arnold Networks were presented
with 2-dimensions image i as input. Suppose ϕij to the corresponding pixel,
akl and calculates the output pixel as the sum of ϕij(akl). Let K be a KAN
kernel ∈ RN×M , it follows that

(i ∗K)i,j =
N∑
k=1

M∑
l=1

ϕkl(ai+k,j+l) (7)
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and there is an example of kernel of Conv-KAN

KAN Kernel =

ϕ11 ϕ12 ϕ13

ϕ21 ϕ22 ϕ23

ϕ31 ϕ32 ϕ33

 (8)

Equation (7) is a defined Conv-KAN. High dimensional version of Convolu-
tional Kolmogorov-Arnold Networks, see paper [9].

2.3. Conv-LSTM

The convolutional comparison experiment approach is transferred from
KANs to LSTM, thereby introducing its classical variant, the Convolutional
LSTM (Conv-LSTM). Naturally, just like the LSTM model, it excels in deal-
ing with the prediction of time series. It was developed to address the prob-
lem of precipitation forecasting, which involves predicting the precipitation
for the following H hours based on the previous B observations [6]:

X̃t+1, · · · , X̃t+H = arg max
Xt+1,··· ,Xt+H

p(Xt+1, · · · , Xt+H |X̂t−B+1, · · · , X̂t) (9)

The contribution of Conv-LSTM lies in combining the convolution oper-
ation, which extracts spatial features, with the LSTM, which captures tem-
poral features [3].

In Conv-LSTM, the input, hidden state, and memory cell are represented
as matrices, which distinguishes it from the classical LSTM, where ‘◦’ denotes
the Hadamard product and ‘∗’ represents the convolution operator:

it = σ(Wxi ∗Xt +Whi ∗Ht−1 +Wci ◦ Ct−1 + bi)

ft = σ
(
Wxf ∗Xt +Whf ∗Ht−1 +Wcf ◦ Ct−1 + bf

)
Ct = ft ◦ Ct−1 + it ◦ tanh(Wxc ∗Xt +Whc ∗Ht−1 + bc)

ot = σ(Wxo ∗Xt +Who ∗Ht−1 +Wco ◦ Ct + bo)

Ht = ot ◦ tanh(Ct)

(10)

In paper [3], Ge M., Zhou S., Luo S., et al., propose 1D and 3D convo-
lution variants of Conv-LSTM and conduct investigations, aiming to achieve
improved training results. This is important work, alternatively, for compar-
ison purposes, the basic 1D version is chosen.
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3. Model Structure

In this paper, three parts are employed to conduct the experiment. Part I
discusses classical financial theory formulas. While formula (13) is commonly
used by other researchers, an improvement has been made, and formula (14)
is concurrently applied for comparison. Part II discusses the application
of the Conv-LSTM and LSTM models, which are widely used in capturing
features of time series data. Part III introduces the new models, KANs and
Conv-KANs. Traditional KANs have stronger adaptability and accuracy for
fitting nonlinear functions, they are also a promising alternative to the classic
MLPs model.

3.1. B-S-M Formula

The Black–Scholes–Merton differential equation governs the pricing of
any derivative based on a non-dividend-paying stock [1][2]. The proof for
this part is provided in the appendix.

Assume that f represents the price of a call option or other derivatives
dependent on S. While T is the maturity date, t is the general time at which
the price of derivatives is considered, and r is the associated risk-free interest
rate. It follows that

∂f

∂t
+ rS

∂f

∂S
+

1

2
σ2S2 ∂

2f

∂S2
= rf (11)

Equation (11) represents the Black–Scholes–Merton differential equation.
It admits various solutions corresponding to different derivatives defined in
terms of S. The variable solution of (11) can potentially be determined based
on the specific boundary conditions. The boundary conditions of options were
addressed in the introduction section. When it comes to call option, it is

f = max(S −K, 0) when t = T (12)

Accordingly, the boundary conditions of put option is
f = max(K − S, 0) when t = T

The most well-known solutions of equation (11) are the prices of call and
put options, and the corresponding formulas are as follows

c = S0N(d1)−Ke−rTN(d2)

p = Ke−rTN(−d2)− S0N(−d1)
(13)
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Where

d1 =
ln (S0/K) + (r + σ2/2)T

σ
√
T

d2 =
ln (S0/K) + (r − σ2/2)T

σ
√
T

= d1 − σ
√
T

These formulas are widely used by contributors in the field of option pric-
ing with neural networks to compare their frameworks, as demonstrated in
paper [3]. It is observed that many options in financial markets are subject
to dividends, due to the dividends paid by the underlying assets (stocks).
Consequently, Merton’s research [2] are utilized to replace the original no-
dividends formula (13). A new variable q is introduced, denoting the rate of
dividend interest. They are

c = S0e
−qTN(d1)−Ke−rTN(d2)

p = Ke−rTN(−d2)− S0e
−qTN(−d1)

(14)

Where
ln S0e−qT

K
= ln S0

K
− qT

it follows that d1 and d2 are expressed as follows

d1 =
ln (S0/K) + (r − q + σ2/2)T

σ
√
T

d2 =
ln (S0/K) + (r − q − σ2/2)T

σ
√
T

= d1 − σ
√
T

Experimental results indicate that this formula provides greater accuracy
compared to the classical B-S formula. From the perspective of theoretical
finance, the B-S-M model becomes more accurate with the incorporation of
the variable q, a conclusion further validated by the experimental results in
this paper. From the perspective of network learning, the B-S-M model has
guided us in identifying and introducing the new variable q. This variable
had long been overlooked in prior studies on neural network-based option
pricing, particularly because some stocks pay dividends.

3.2. Conv-LSTM

In this paper, a 1D Conv-LSTM is selected for comparison with Conv-
KANs. However, in the data processing process, a three-dimensional pro-
cessing approach was used, and the data were later converted into a one-
dimensional form. This means that the 1D input form was ultimately chosen,
and the data are arranged as shown in Figure 1.
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Figure 1: Feature representation

From figure1, it can be concluded that the input for a single day’s option
is (C,N,D), where C = 1 and N , representing the numbers of channels and
observations, respectively, while D = 9 denotes the number of data features.

In the original paper [6], Conv-LSTM is intended to capture spatiotempo-
ral correlations. The entire dataset for input has the shape of (T,C,N,D,E),
T is the whole quantities of dataset, E is the second dimension of the image
data. Despite this, the format of the option data is shown in the Figure 1
above, and clearly the data have only one dimension. Taking these factors
into account, the input used in the experiment is (T,C,N,D). The values
for C and D have been mentioned above.

3.3. KANs

In this study, the input data is consistently in the form of (T,C,N,D).
But in the primary work of Liu Z et al., the focus is on simple functions
(usually two dependent variables). Thus, the initial model code can only
hold a maximum of three input variables, such as (C,N,D). The code is
improved to allow the input of four or more variables.

From the Related Work Chapter, it can be concluded that the non-linear
nature of KANs arises from equation (6). In contrast to traditional MLPs,
where nonlinear behavior arises from the linear combination of inputs fol-
lowed by the application of an activation function, the nonlinear behavior in
this model is directly achieved through the combination of nonlinear func-
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Figure 2: The architecture of the Conv-LSTM model

tions. This can also be understood as the combination of all activation
functions.

Figure 3: The structures of MLPs and KANs

In this paper, our aim is to capture the nonlinear nature of the formula
in option pricing, and Nonlinear formulas from theoretical finance, such as
the B-S-M formula (14), are listed, which also hold significant guiding value
for pricing in real markets. Liu Z et al. noted that, for accuracy, smaller
KANs can achieve comparable or even better performance than larger MLPs
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in function fitting tasks [7]. And this conclusion is also proved by our inves-
tigation

3.4. Conv-KANs

In the context of Conv-KANs, it is essential to review the convolutional
variant of the MLPs model.

Figure 4: An example of convolutional neural network

In fact, in convolutional neural networks (CNNs), the indispensable parts
include input, convolutional layer, fully connected layer, and output. In the
preceding section, it was established that one of the key distinctions between
KANs and MLPs lies in the method by which the nonlinear property is
derived. When it comes to convolution operations, the first issue to address is
whether the fully connected layer should be modified, as the fully connected
layer has long been associated with MLPs. This leads to the question of
whether, when building Conv-KANs, the entire architecture should be based
on convolutions as in KANs, or if MLPs should be used for the fully connected
layer.

Ultimately, the choice is made to retain the traditional fully connected
layer, on the one hand, to facilitate comparison with Conv-LSTM. On the
other hand, the study of model architecture that was built entirely by KANs
was insufficient. The use of the fully connected layer may better reflect the
difference between the two models. In the experiment, these architectures
are used as shown in Figure 6.
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Figure 5: Which one to choose

Figure 6: Architectures used in the experiments
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4. Experiment

4.1. Data and Data Processing Method

In our experiment, CSI 300 Index option data collected from Chinese fi-
nancial markets from January 1st, 2020, to December 31st, 2020, are utilized.
The first eight months of the year are engaged as the training dataset, while
the last four months serve as the test dataset. Nine variables were deployed
in the study, namely time to maturity, option type, Delta, strike price, spot
price, theoretical price, monthly dividend rate, risk-free rate, and volatility
calculated using the GARCH model. The training data consist of 42,125
observations, while the test data include 21,263 observations. The data used
in this analysis are obtained from www.resset.com.

It is crucial to emphasize that, to better simulate a real trading environ-
ment, all actual data (except for a small amount of missing data) are utilized,
in contrast to other experts in the field who filter the data to remove noise
based on moneyness (S/K). Investigations conducted by Ivas,cu C F confirm
that Machine Learning models outperformed by a great margin the paramet-
ric models [4]. Nevertheless, from the generalization point of view, too much
data processing will affect the generalization ability of the network model [5].
And although many scholars tend to process data, they also apply similar
processing to the test set data. Therefore, the control of the real environment
is weakened and the problems caused by the reduced generalization ability
of the model are avoided.

Figure 7: The results of the strategies
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To facilitate comparison, a certain amount of noise is intentionally re-
tained in the original data, ensuring that the trained model exhibits stronger
generalization capabilities. Assuming that an option was issued on July 1st
and exercised on September 15th, the investigators would normally include
all the data from the time the option was sold to the time it was exercised in
the training set. In contrast, the option data are divided into two segments:
the information from July 1st to August 31st is allocated to the training set,
and the remaining data are assigned to the test set.

Figure 8: Strategies presentation

This leads to the extreme situation where the option offered on August
31st becomes a point of only one day of data in the training set, that is,
white noise. The effects of increased noise and direct use of raw data are
to sacrifice the accuracy of the model and improve generalization. The ref-
erence parametric model, such as B-S-M model, is unaffected by noise and
time series, and thus irrefutably has relatively better results in this study.
It is pleasing to note that, although the standard network model does not
perform well when compared to the B-S-M model, its convolutional version
outperforms the parametric model.

The option data are recorded sequentially in chronological order to align
with the data characteristics necessary for applying LSTM and Conv-LSTM
models.

In case the model tends to be imbalanced and asymmetric, each variable
in the dataset must be normalized prior to the procedure. Specifically:
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x̃ =
x− µ

σ
(15)

and
µ = 1

n

∑N
i=1 xi, σ

2 = 1
n

∑N
i=1(xi − µ)2

4.2. Empirical analysis

The analysis is performed within the Pytorch environment, utilizing the
B-S model, the B-S-M model, and the models illustrated in Figure 6. The
mean squared error is adopted as the loss function, and the Adam optimizer is
used for learning. KANs and Conv-KANs are trained for 50 epochs, whereas
Conv-LSTM and LSTM are each trained for 200 epochs. The batch size and
the learning rate are selected to 32 and 0.00001.

The results of the experiment are shown in the Figures 9–14. For sim-
plicity, only the options for the first 240 days are recorded.

Figure 9: Forecasting result of B-S model

The results shown by the pictures are similar to other studies [3] in that
the two lines of the figures from the B-S model match very well. The differ-
ence is that in this study, the correspondence of the two curves of the B-S-M
model and LSTM is also excellent. Apart from these, the results of KANs
are close to matching, but there are some slight differences compared to the
former. Conv-KANs and Conv-LSTM show contrasting behavior, with one
tending to forecast overall leveling off and the other predicting prices with
larger peaks at the real price peaks.
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Figure 10: Forecasting result of B-S-M model

Figure 11: Forecasting result of LSTM model
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Figure 12: Forecasting result of Conv-LSTM model

Figure 13: Forecasting result of KANs model
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Figure 14: Forecasting result of Conv-KANs model

To provide a more comprehensive evaluation, four performance metrics
are selected: mean squared error (MSE), root mean squared error (RMSE),
mean absolute error (MAE), and mean absolute percentage error (MAPE).
The following are the calculation formulas:

MSE =
1

N

N∑
i=1

(yi − ŷi)
2 RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2

MAP =
1

N

N∑
i=1

|yi − ŷi| MAPE =
1

N

N∑
i=1

|yi − ŷi
yi

|←
(16)

Table 1 shows the results:

MSE RMSE MAP MAPE
B-S 0.01612 0.12695 0.08449 0.60950

B-S-M 0.01552 0.12457 0.08442 0.61361
LSTM 0.03756 0.19380 0.14574 0.78580

Conv-LSTM 0.01350 0.11620 0.08808 12.36620
KANs 0.02679 0.16369 0.12627 0.67222

Conv-KANs 0.00790 0.08890 0.07098 15.11880

Table 1: The numerical error results of the models
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The experimental results indicate that the data processing method adopted
generates significant challenges for the simulation. The performance of LSTM
and KANs is worse than that of the B-S-M model, nevertheless, despite fewer
training epochs and a simpler model architecture compared to LSTM, KANs
yield relatively good results. Meanwhile, CNNs have also shown very good
results. In addition, three measurements by Conv-KANs are better than
Conv-LSTM, however, in terms of MAPE, both results are worse than those
of the other models, which may be due to the nature of the convolutional
structures.

5. Conclusion

In today’s complex financial derivatives pricing landscape, many researchers
have turned to option pricing with neural networks, utilizing MLP-based
models to achieve promising results. As a promising alternative to MLP
models, the KANs model has demonstrated strong performance in nonlinear
fitting. And this fits in well with nonlinear models in traditional financial
theory. In this paper, the B-S model is improved for comparison, and the
powerful LSTM model for time series data, along with its convolutional ver-
sion, is introduced. For the first time, the KANs model and its convolutional
version are employed, excelling at nonlinear fitting. A new data process-
ing method is also proposed, aimed at better simulating the realities of the
financial market.

In the experiment, KANs once again demonstrated its strength in nonlin-
ear fitting, and we also observed the excellent performance of CNNs, such as
Conv-KANs, in option pricing. This may provide new ideas and inspiration
for future research in the field.

Nonetheless, several issues remain to be resolved, such as the overfitting
tendency of the KANs model and the potential effects of replacing the fully
connected layer of Conv-KANs with KANs. These questions are left for
future investigators to address.

Overall, the addition of KANs has made the field of options pricing more
dynamic. Moreover, convolutional versions of neural networks may be one of
the answers to option pricing.
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Appendix A. Stochastic process of no-dividend-paying stock

The stochastic process assumed for the price of a no-dividend-paying
stock is examined. It is important to highlight, prior to beginning, that
when analyzing stocks or other financial products, it is crucial to focus on
ratios rather than absolute values. For example, if two different derivatives
are invested in financial markets and a gain of 50 cents is made, but the
amounts invested are not the same—one is $1, the other is $2—the resulting
yields will differ.

When it comes to the drift rate of stocks, it should be assumed that the
form of the drift rate is related to the price of the stock: If S is the stock
price at time t, and the mean drift rate related to S should be uS for certain
constant parameter µ. And This means that in a short interval of time ∆t,
the expected increase in S is S∆t. The parameter µ is the expected rate
of return on the stock [15]. If the coefficient of dz is zero, then this model
implies that

∆S = µS∆t (A.1)

in the limit, as ∆t → 0, so that

dS = µSdt (A.2)

After integrating, this gives
ST = S0e

µT (A.3)

Where S0 and ST respectively represent the price of stock at time 0 and T .
On this basis, the parameter σ is introduced to represent the volatility, and
we have

dS = µSdt+ σSdz (A.4)

or
dS
S

= µdt+ σdz
Equation (A.4) is the most widely used model of stock price behavior.

More information about dz see paper [16].
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Appendix B. Derivation of the Black-Scholes-Merton differential
equation

The price of derivatives at time t is analyzed. If T represents the maturity
date, the time to maturity is given by T − t.

Formula (A.4) is used to characterize the underlying stock in section
Appendix A. That is

dS = µSdt+ σSdz
Suppose f is the call option contingent S. The variable f must be function

of S and t, that is f(S, t). From [17] we obtain Itô lemma

dG =

(
∂G

∂x
a+

∂G

∂t
+

1

2

∂2G

∂x2
b2
)
dt+

∂G

∂x
bdz (B.1)

where
dx = a(x, t)dt+ b(x, t)dz

dx is Itô process and G is a function of x and t, dz is wiener process. Itô
lemma. Then substitute (A.4) into (B.1), and obtain

dG =

(
∂G

∂x
µS +

∂G

∂t
+

1

2

∂2G

∂x2
σ2S2

)
dt+

∂G

∂x
σSdz (B.2)

Substitute f for G, we have

df =

(
∂f

∂S
µS +

∂f

∂t
+

1

2

∂2f

∂S2
σ2S2

)
dt+

∂f

∂S
σSdz (B.3)

The discrete versions of equations (A.4) and (B.3) are respectively

∆S = µS∆t+ σS∆z (B.4)

and

∆f =

(
∂f

∂S
µS +

∂f

∂t
+

1

2

∂2f

∂S2
σ2S2

)
∆t+

∂f

∂S
σS∆z (B.5)

Equations (B.4) and (B.5) have the same ∆z. An appropriate asset port-
folio P can be chosen to eliminate ∆z. That is

-1: derivative
+∂f/∂S: stocks
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The holder of this portfolio is short one derivative and long an amount
∂f/∂S of stocks. Give the definition as the value of the portfolio by

P = −f +
∂f

∂S
S (B.6)

and its discrete form

∆P = −∆f +
∂f

∂S
∆S (B.7)

Substituting equations (B.4) and (B.5) into equation (B.7) yields

∆P =

(
−∂f

∂t
− 1

2

∂2f

∂S2
σ2S2

)
∆t (B.8)

Clearly, equation (B.8) does not have relation to ∆z. Prove that in time
∆t, the portfolio maintains risk-free feature. In the view of this property, It
is proposed to use the risk-free rate f at a given time in the financial markets
to replicate the portfolio through its yields.

∆P = rP∆t (B.9)

Through substitution, calculation and integration, this implies that

∂f

∂t
+ rS

∂f

∂S
+

1

2
σ2S2 ∂

2f

∂S2
= rf (B.10)

Equation (B.10) is the Black-Scholes-Merton differential equation.
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