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ABSTRACT

Large Language Model (LLM) based multi-agent systems (MAS) show remark-
able potential in collaborative problem-solving, yet they still face critical chal-
lenges: low communication efficiency, poor scalability, and a lack of effective
parameter-updating optimization methods. We present OPTIMA, a novel frame-
work that addresses these issues by significantly enhancing both communica-
tion efficiency and task effectiveness in LLM-based MAS through LLM train-
ing. OPTIMA employs an iterative generate, rank, select, and train paradigm
with a reward function balancing task performance, token efficiency, and com-
munication readability. We explore various RL algorithms, including Supervised
Fine-Tuning, Direct Preference Optimization, and their hybrid approaches, pro-
viding insights into their effectiveness-efficiency trade-offs. We integrate Monte
Carlo Tree Search-inspired techniques for DPO data generation, treating conver-
sation turns as tree nodes to explore diverse interaction paths. Evaluated on com-
mon multi-agent tasks, including information-asymmetric question answering and
complex reasoning, OPTIMA shows consistent and substantial improvements over
single-agent baselines and vanilla MAS based on Llama 3 8B, achieving up to
2.8x performance gain with less than 10% tokens on tasks requiring heavy in-
formation exchange. Moreover, OPTIMA’s efficiency gains open new possibilities
for leveraging inference-compute more effectively, leading to improved inference-
time scaling laws. By addressing fundamental challenges in LLM-based MAS,
OPTIMA shows the potential towards scalable, efficient, and effective MAS1.
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Figure 1: Performance and efficiency of OPTIMA variants across optimization iterations. Left:
Average performance gain over iterations. OPTIMA variants consistently outperform CoT, Multi-
Agent Debate (MAD), and Self-Consistency. Right: Average inference token numbers over itera-
tions. All OPTIMA variants achieve better performance with substantially fewer tokens.

∗Equal Contribution.
1https://chenweize1998.github.io/optima-project-page
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1 INTRODUCTION

Large Language Models (LLMs) have emerged as powerful tools for a wide range of tasks, from nat-
ural language processing to complex reasoning (OpenAI, 2023; Reid et al., 2024; Anthropic, 2024).
A promising direction in leveraging these models is the development of autonomous multi-agent
systems (MAS), which aim to harness the collective intelligence of multiple LLM-based agents
for collaborative problem-solving and decision-making (Liang et al., 2023; Wang et al., 2024b; Du
et al., 2024; Zhuge et al., 2024). However, for LLM-based MAS to be truly effective, they must
overcome two critical challenges: (a) achieving efficient inter-agent communication to minimize
computational costs, and (b) optimizing the collective performance of the system as a cohesive unit.

Current LLM-based MAS face significant difficulties in meeting these challenges. The coordination
and communication between agents often lack efficiency, resulting in verbose exchanges that lead
to increased token usage, longer inference times, and higher computational costs (Li et al., 2024b).
This inefficiency is exacerbated by the length bias inherent in LLMs due to alignment training (Saito
et al., 2023; Dubois et al., 2024), which favors longer responses even when concise communication
would suffice (Chen et al., 2024d). Moreover, while recent work has explored training LLMs for
single-agent tasks (Song et al., 2024; Xiong et al., 2024) and MAS training is well-studied in rein-
forcement learning (Johnson et al., 2000; Lanctot et al., 2017; Baker et al., 2020), there remains a
lack of parameter-updating methods specifically designed to optimize LLM-based MAS as a unified
system. Existing approaches primarily rely on simple agent profile evolution (Chen et al., 2024b) or
memory evolution (Qian et al., 2024a;b; Gao et al., 2024), which fail to address the core issues of
communication efficiency and collective optimization.

Can we develop a training framework that simultaneously enhances the communication effi-
ciency and task effectiveness of LLM-based MAS? To address this question, we introduce OP-
TIMA, an effective framework designed to optimize LLM-based MAS. At the heart of OPTIMA is
an iterative generate, rank, select, and train paradigm, incorporating a reward function that balances
task performance, token efficiency, and communication interpretability. This approach enables the
development of MAS that are not only effective and efficient but also maintain interpretable commu-
nication patterns. Based on the reward function, OPTIMA leverages a combination of techniques to
induce efficient and effective communication behaviors in LLM-based agents, including Supervised
Fine-Tuning (SFT) (Zelikman et al., 2022; Gülçehre et al., 2023; Aksitov et al., 2023) and Direct
Preference Optimization (DPO) (Rafailov et al., 2023; Pang et al., 2024), along with their hybrid
variants. Furthermore, OPTIMA introduces an integration of Monte Carlo Tree Search (MCTS)-
inspired techniques for DPO data generation, conceptualizing conversation turns as tree nodes to
explore diverse interaction trajectories efficiently.

Importantly, by substantially reducing the number of tokens required for inference, OPTIMA not
only improves computational efficiency but also opens new possibilities for leveraging inference-
compute more effectively. This reduction in token usage allows for more samples within the same
computational constraints, potentially leading to better inference-time scaling laws. As recent work
has shown the importance of inference-time compute in improving model performance (Wu et al.,
2024; Brown et al., 2024; Chen et al., 2024a), OPTIMA’s efficiency gains could be combined with
techniques like majority voting (Wang et al., 2023), leading to more effective LLM systems.

We evaluate OPTIMA on a diverse set of tasks spanning two multi-agent settings: (a) information
exchange, including information-asymmetric question answering (Chen et al., 2024d; Liu et al.,
2024), and (b) debate, encompassing mathematical and reasoning tasks (Du et al., 2024; Chen et al.,
2024b; Wu et al., 2023). Using Llama 3 8B (Meta, 2024) as our base model, we demonstrate that
OPTIMA consistently outperforms both single-agent MAS baselines, achieving up to 90% reduction
in token usage and 2.8x increase in task performance.

To summarize, our main contribution is OPTIMA, a novel training framework that simultaneously
optimizes communication efficiency and task effectiveness. To enhance high-quality training data
generation in multi-agent settings for DPO, we introduce an integration of MCTS-like techniques.
Our comprehensive empirical evaluation across diverse tasks demonstrates notable advancements
in both token efficiency and task performance, while also providing insights into the learned com-
munication patterns. Additionally, we examine the implications of OPTIMA’s efficiency gains for
inference-time scaling laws, underscoring its potential to improve the overall capabilities of LLM
systems by enabling more effective utilization of inference-compute. By addressing the dual chal-
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Figure 2: Overview of the OPTIMA framework for training LLM-based MAS. The iterative
process includes four stages: Generate, Rank, Select, and Train. Note that the ranking process,
while also involved in DPO data generation, is not shown in the Generate stage for simplicity.

lenges of communication efficiency and collective optimization, our work underscores the impor-
tance of developing advanced training frameworks for LLM-based MAS and highlights efficiency
as a crucial metric to consider. We believe OPTIMA provides a solid foundation for future investiga-
tions into scaling and improving MAS and even general LLM systems.

2 OPTIMA: OPTIMIZING MULTI-AGENT LLMS VIA ITERATIVE TRAINING

2.1 OVERVIEW

OPTIMA is built upon an iterative generate, rank, select, and train paradigm. This approach allows
for the progressive improvement of LLM-based agents in multi-agent settings, focusing on enhanc-
ing both the efficiency of inter-agent communication and the effectiveness of task completion.

Let Mbase denote the base LLM, D the task dataset, and f the iterative training function. The
iterative process can be formalized as Mt+1 = f(Mt,D), where Mt represents the model at
iteration t. The function f encapsulates the entire process of data generation, ranking, selection
and model training. For each task instance di ∈ D, we sample a set of N conversation trajectories
{τ ji }Nj=1 ⊂ T using the agents powered by current modelMt. Each trajectory τ ji is then evaluated
using a reward function R : T → R, defined as:

R(τ ji ) = Rtask(τ
j
i )− λtokenRtoken(τ

j
i ) + λloss

1

Rloss(τ
j
i )

. (1)

Here, Rtask : T → R is the task-specific performance metric, Rtoken(τ
j
i ) =

#Tokens(τj
i )

maxk({#Tokens(τk
i )}k)

is

the normalized token count, and Rloss(τ
j
i ) = g

(
L(Mbase, di, τ

j
i )
)

is based on the language model-
ing loss of the base modelMbase, which we detail in Appendix E.2. The positive coefficients λtoken
and λloss are hyper-parameters . This reward function is designed to balance multiple objectives
simultaneously: Rtask ensures that the model improves on the intended task, Rtoken encourages com-
munication efficiency by penalizing verbose exchanges, and Rloss regularizes language naturalness
and readability by favoring trajectories that are probable under the base model. By incorporating
these components, we aim to develop LLM-based MAS that are not only effective in their des-
ignated tasks but also efficient in their communication, while maintaining interpretability in their
outputs, unlike the often incomprehensible communication in prior RL research (Lazaridou et al.,
2017; Evtimova et al., 2018; Chaabouni et al., 2022).

Based on these rewards, we apply several data selection criteria to select a subset of high-quality
sampled trajectories {τ∗i } for each task instance. These selected trajectories form the training data
D∗

i at iteration i. The model is then updated: Mt+1 = Train(Mt,D∗
i ). The Train function can be

3



Algorithm 1 Iterative Supervised Fine-Tuning

Input: Initialized modelMinit, dataset D, sample size N , reward threshold θsft, max iterations T
Output: Optimized modelMT

1: M0 ← Initialize(Minit,D) ▷ Algorithm 3
2: for t = 0 to T − 1 do
3: D∗

t ← ∅
4: for each di ∈ D do
5: {τ ji }Nj=1 ← AgentChat(Mt, di) ▷ Generate N trajectories
6: τ∗i ← argmaxj R(τ ji ) ▷ Select best trajectory
7: if R(τ∗i ) > θsft then
8: D∗

t ← D∗
t ∪ {(di, τ∗i )}

9: end if
10: end for
11: D∗

t ← TopK(D∗
t , 0.7|D∗

t |) ▷ Retain top 70% trajectories
12: Mt+1 ← SFT(Mt,D∗

t )
13: end for
14: returnMT

instantiated with various training algorithms, such as SFT or DPO, which we will discuss in detail
in the following subsections.

Fig. 2 provides a high-level overview of OPTIMA. The specific instantiations of the generation and
training processes will be detailed in the following subsections. The ranking process, consistent
across all instantiations, is defined by the reward function presented in Eq. (1).

2.2 INITIALIZATION: DIVERSIFYING AGENT COMMUNICATION

Before starting the iterative training process, we address a critical challenge in LLM-based MAS:
agents often produce responses in a similar style across conversation trajectories, even with high-
temperature sampling. This homogeneity limits the exploration of diverse communication strategies,
potentially hindering the optimization toward more efficient and effective interactions. Following
the observation from AutoForm (Chen et al., 2024d), where LLMs can be explicitly prompted to
leverage different more concise formats to communicate or reason without much compromise in
performance, we introduce an initialization step that promotes diversity in agent communication.

Our approach leverages a pool of format specification prompts, P = {p1, p2, ..., pK}, where each
pk is a string specifying a particular response format (e.g., JSON, list, see Appendix F for con-
crete examples and creation process). For each task instance di ∈ D, we generate N conversation
trajectories, each with a randomly selected format specification appended to the input task:

τ ji =Mbase(di ⊕ pkj ), kj ∼ Uniform(1,K), j = 1, ..., N, (2)

where ⊕ denotes string concatenation. This process yields a diverse set of trajectories {τ ji }Nj=1 for
each di, varying in both content and structure.

We then evaluate these trajectories using the reward function defined in Eq. (1), for each di, we select
the trajectory with the highest reward: τ∗i = argmaxj R(τ ji ). Finally, we select top k trajectories
that exceed a predefined performance threshold θinit, resulting in a high-quality dataset:

D∗
0 = TopK({(di, τ∗i )|Rtask(τ

∗
i ) > θinit,∀di ∈ D}, 0.7|D|). (3)

Crucially, we remove the format specification prompts from the selected trajectories, resulting in a
dataset of diverse, high-quality conversations without explicit format instructions. Using this dataset,
we fine-tune the base model and obtainMbase to obtainM0 = SFT(Mbase,D∗

0), which serves as the
starting point for OPTIMA, able to generate diverse communication patterns without explicit format
prompting. We provide pseudo-code in Appendix B for better understanding. This initialization sets
the stage for more effective exploration and optimization in the subsequent iterative training process.

2.3 FRAMEWORK INSTANTIATION 1: ITERATIVE SUPERVISED FINE-TUNING

We introduce iterative Supervised Fine-Tuning (iSFT) as our first instantiation of OPTIMA. At
each iteration t, iSFT follows the same general procedure outlined in Algorithm 3, generating a
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set of N conversation trajectories for each task training instance di ∈ D using the current model
MiSFT

t . However, unlike initialization, iSFT omits the format specification pool, asM0 has already
internalized diverse communication strategies. Unlike recent research on iterative training (Gülçehre
et al., 2023; Aksitov et al., 2023), iSFT maintains a fixed reward threshold θSFT across iterations for
data selection. After data generation, the model undergoes standard SFT. This process continues
until a maximum number of iterations is reached. For clarity, the pseudo-code for iSFT is provided
in Algorithm 1.

iSFT provides a straightforward yet effective approach to optimize LLM-based MAS, leveraging the
diverse communication patterns established during initialization while consistently improving task
performance and communication efficiency.

2.4 FRAMEWORK INSTANTIATION 2: ITERATIVE DIRECT PREFERENCE OPTIMIZATION

While iSFT provides a straightforward approach to optimizing LLM-based MAS, it may be lim-
ited by its reliance on a single best trajectory for each task instance. To address this, we explore
iterative Direct Preference Optimization (iDPO) (Rafailov et al., 2023; Pang et al., 2024), which
optimizes models using comparative preferences and has demonstrated success in LLM alignment.
Applying DPO in multi-agent settings, however, poses distinct challenges, particularly in generating
meaningful paired data that capture the complexities of agent interactions.

Data Generation: To overcome these challenges, we integrate MCTS with DPO data collection
for high-quality paired data generation in multi-agent settings. Our MCTS-based approach con-
ceptualizes the multi-agent conversation as a tree, where nodes represent conversational turns, and
edges represent continuations. This structure allows us to explore diverse interaction trajectories
systematically and select high-quality paired data for DPO training. The MCTS process begins at
the root node (initial task prompt) and proceeds as follows: (1) Expansion: We select a node to
expand based on the following criteria. We first exclude leaf nodes and the second-to-last level
nodes to avoid wasting computation on low-variance expansions, then exclude nodes with content
similar to previously expanded nodes, measured based on edit distance (see Appendix E.1). From
the remaining nodes, we select 10 nodes with the highest rewards and sample one using the softmax
distribution over their rewards. (2) Simulation: For each selected node, we expand 3 trajectories,
simulating the conversation to completion. (3) Backpropagation: Once a trajectory is completed
and rewarded with Eq. (1), we update the estimated rewards of all nodes in the trajectory with the
average rewards from their children. (4) Iteration: We repeat the above process 8 times, resulting
in 24 trajectories. More iterations could potentially lead to more diverse and better-quality data.

Paired Data Construction: To generate high-quality paired data for DPO training, we traverse each
MCTS tree and identify node pairs (ni, nj) that satisfy three conditions: (1) shared ancestry, (2) the
higher estimated reward of ni and nj exceeds the threshold θdpo-filter, and (3) their reward difference
exceeds the threshold θdpo-diff. We sort these pairs by the higher estimated reward, and select the
top 50% pairs as part of the final training set. We construct DPO training instances by using the
common conversation history as the prompt, with ni and nj serving as the chosen and rejected
responses according to their estimated rewards.

The iDPO process then proceeds iteratively, alternating between MCTS-based data generation and
model updates using DPO. The pseudo-code for our iDPO process is presented in Algorithm 2.

2.5 FRAMEWORK INSTANTIATION 3: HYBRID ITERATIVE TRAINING

Building upon the strengths of both iSFT and iDPO, we investigate a hybrid approach that interleaves
SFT and DPO in the iterative training process, termed as iSFT-DPO. This hybrid method aims
to leverage the simplicity and directness of SFT in capturing high-quality trajectories, while also
benefiting from the nuanced comparative learning facilitated by DPO. By alternating between these
two training paradigms, we hypothesize that the model can more effectively balance the exploration
of diverse communication strategies with the exploitation of known effective patterns.

In practice, we implement this hybrid approach by performing one iteration of iSFT followed by
one iteration of iDPO, and repeating this cycle throughout the training process. This interleaving
allows the model to first consolidate learning from the best observed trajectories through SFT, and
then refine its understanding through the comparative preferences provided by DPO.

5



Algorithm 2 Iterative Direct Preference Optimization

Input: Initial modelMinit, dataset D, max iterations T
Output: Optimized modelMT

1: M0 ← Initialize(Minit,D) ▷ Algorithm 3
2: for t = 0 to T − 1 do
3: DDPO

t ← ∅
4: for each di ∈ D do
5: DDPO

i ← MCTSDataGeneration(Mt, di) ▷ Algorithm 5
6: DDPO

t ← DDPO
t ∪ DDPO

i
7: end for
8: Mt+1 ← DPO(Mt,DDPO

t )
9: end for

10: returnMT

3 EXPERIMENTS

Datasets. We evaluate OPTIMA on two multi-agent settings: information exchange (IE) and debate.
For IE, we use HotpotQA (Yang et al., 2018), 2WikiMultiHopQA (2WMHQA) (Ho et al., 2020),
TriviaQA (Joshi et al., 2017), and CBT (Hill et al., 2016). For multi-hop datasets (HotpotQA,
2WikiMultiHopQA), we split relevant contexts between two agents, ensuring the answer can only
be deduced from information exchange. For TriviaQA and CBT, contexts are randomly assigned,
challenging agents to identify and communicate the relevant information effectively. The debate
setting employs GSM8K (Cobbe et al., 2021), MATH (Hendrycks et al., 2021b), ARC’s challenge
set (ARC-C) (Bhakthavatsalam et al., 2021) and MMLU (Hendrycks et al., 2021a), with one agent
as solver and another as critic (Chen et al., 2024b). We use 0-shot for all benchmarks.

Metrics. We report F1 score between generated answers and labels for IE tasks. For debate tasks,
we employ exact match accuracy (GSM8k, ARC-C, MMLU) or Sympy-based (Meurer et al., 2017)
equivalence checking (MATH), following Lewkowycz et al. (2022). Conversations conclude when
agents both mark the same answer with specified special tokens or reach a turn limit.

Baselines. We compare against single-agent approaches: Chain-of-Thought (CoT) (Wei et al., 2022)
and Self-Consistency (SC) with majority voting (Wang et al., 2023) on n = 8 samples. Given that
the generated responses for IE tasks are in free form, direct adaptation to majority voting is im-
practical. Therefore, we first compute the pairwise F1 score among the sampled answers, grouping
those with a pairwise F1 score exceeding 0.9, and report the average F1 score against the label for
all the answers in the largest grouping. In the multi-agent context, we compare against Multi-Agent
Debate (MAD) from Du et al. (2024) and AutoForm (Chen et al., 2024d). MAD utilizes natural lan-
guage for inter-agent communication, providing a baseline for common multi-agent dialogue, while
AutoForm encourages agents to leverage concise, non-natural-language formats to achieve a better
performance-cost ratio, offering a comparison point for efficiency-oriented MAS.

Training Setups. We use Llama 3 8B (Meta, 2024) as our base model across all benchmarks. Our
experiments focus on two-agent scenarios without external tools, a design choice that allows us
to isolate and analyze the core aspects of multi-agent communication and collaboration. By con-
straining our initial investigation to these fundamental settings, we can more clearly demonstrate the
efficacy of OPTIMA in optimizing inter-agent communication and task performance. This approach
also provides a strong baseline for future research exploring more complex scenarios with multiple
agents and tool use. Besides, we train a single model for both agents, although training separate
models might yield improved performance, we leave it for future exploration. Detailed training
configurations and prompts are provided in Appendices E and F.

3.1 BENCHMARK RESULTS

Table 1 showcases OPTIMA’s performance across a diverse set of tasks, revealing consistent im-
provements over baseline methods in both effectiveness and efficiency. In IE tasks, OPTIMA vari-
ants demonstrate substantial gains, particularly in multi-hop reasoning scenarios like HotpotQA and
2WMHQA. Here, iSFT-DPO achieves peak performance while significantly reducing token usage
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Table 1: Performance and inference token number comparison across information exchange
and debate tasks. Best results are indicated in bold, and second-best results are underlined for all
rows except the last three. The last three rows display self-consistency results for OPTIMA variants,
with the best results highlighted in green . OPTIMA variants consistently outperform baselines in
task performance and/or token efficiency.

Information Exchange Debate

HotpotQA 2WMH QA TriviaQA CBT MATH GSM8k ARC-C MMLU

Method F1 #Tok F1 #Tok F1 #Tok F1 #Tok Acc #Tok Acc #Tok Acc #Tok Acc #Tok

CoT 25.6 123.7 20.5 139.8 59.8 110.3 43.4 135.3 23.9 329.8 71.5 230.9 65.2 138.9 46.0 132.2
SC (n = 8) 33.8 996.3 28.7 1052.8 70.0 891.4 52.9 1067.7 35.7 2600.9 80.3 1828.7 75.6 1116.7 54.0 1056.1

MAD 28.4 570.9 25.9 543.7 71.0 408.6 53.8 493.0 29.8 1517.6 72.5 514.7 71.4 478.0 51.5 516.7
AutoForm 28.2 97.7 24.7 117.7 60.9 74.0 35.0 64.8 26.1 644.3 71.0 410.5 60.2 221.2 43.8 198.5

OPTIMA-iSFT 54.5 67.6 72.4 61.2 71.9 51.5 71.8 38.5 30.1 830.3 79.5 311.5 74.1 92.2 56.8 123.8
OPTIMA-iDPO 52.5 45.7 66.1 35.9 69.3 69.2 66.7 37.2 30.4 272.8 78.5 270.1 74.5 97.8 59.6 61.6
OPTIMA-iSFT-DPO 55.6 63.3 74.2 54.9 77.1 32.5 70.1 38.9 29.3 488.1 80.4 246.5 77.1 88.0 60.2 56.7

OPTIMA-iSFT SC 54.8 806.2 72.6 245.6 73.7 413.8 72.2 847.4 32.4 2432.9 83.1 1750.7 77.2 1148.7 60.2 874.5
OPTIMA-iDPO SC 52.8 412.8 67.2 1056.2 71.8 702.8 66.8 520.6 36.9 2743.1 84.4 1750.8 77.0 1091.2 59.9 1050.4
OPTIMA-iSFT-DPO SC 57.4 957.9 76.7 1096.0 77.5 494.1 71.8 417.8 34.8 2788.5 84.0 1748.7 78.8 1036.1 61.2 1026.7

compared to the strongest baseline SC. Notably, on 2WMHQA, iSFT-DPO improves F1 score by
38.3% (2.8x improvement) while using only 10% of the tokens required by MAD. This trend ex-
tends to other information exchange tasks, where OPTIMA variants maintain high performance with
drastically lower token counts. The debate tasks present a more nuanced picture, yet OPTIMA’s
benefits remain evident. Better task performance and token efficiency are still observed in ARC-C
and MMLU, but for the MATH and GSM8k tasks, OPTIMA variants show comparable or slightly
lower performance than SC, but still with much higher token efficiency. We conjecture this is due to
the task’s difficulty and the small size of their training set. However, as we will demonstrate in Sec-
tion 3.2, OPTIMA models trained on MATH transfer effectively to GSM8k, achieving performance
nearly equivalent to models trained directly on GSM8k, with high token efficiency. More interest-
ingly, Section 3.3 will show that applying SC to OPTIMA variants trained on MATH or GSM8k
leads to better inference scaling laws on GSM8k compared to CoT SC.

A closer look at OPTIMA variants reveals interesting trade-offs. OPTIMA-iSFT often prioritizes
performance at the expense of token efficiency, demonstrating the poorest efficiency in 5 of 8 tasks.
In contrast, OPTIMA-iDPO often achieves remarkable reductions in token usage, occasionally with
performance trade-offs. OPTIMA-iSFT-DPO emerges as a robust compromise, frequently delivering
top-tier performance with satisfying token efficiency.

3.2 HOW WELL DOES OPTIMA GENERALIZE TO OOD TASKS?

Table 2: Transfer performance of OPTIMA. We
transfer OPTIMA from Hotpot QA to 2WMH QA and
Trivia QA, and from MATH to GSM8k, with MAD
and AutoForm on each target task as baselines.

2WMH QA Trivia QA GSM8k
Method F1 #Tok F1 #Tok Acc #Tok
MAD 25.9 543.7 71.0 408.9 72.5 514.7
AutoForm 24.7 117.7 60.9 74.0 71.0 410.5

iSFT 56.5 79.6 70.0 90.2 74.6 293.7
iDPO 51.6 84.3 68.0 41.1 77.9 185.7
iSFT-DPO 54.5 70.4 72.0 67.8 74.2 363.1

To assess OPTIMA’s ability to generalize,
we conducted transfer learning experiments
across different task domains. We trans-
ferred models trained on HotpotQA to Triv-
iaQA and 2WMHQA, as well as transfer-
ring from MATH to GSM8k. While these
datasets share broad categories (question-
answering and mathematical reasoning, re-
spectively), they present different chal-
lenges in terms of complexity and required
skills. The results, presented in Table 2,
demonstrate OPTIMA’s robust transferabil-
ity across these diverse tasks. In the question-answering domain, all OPTIMA variants significantly
outperform baseline multi-agent methods on both OOD datasets. On 2WMHQA, the transferred
iSFT more than doubles MAD’s F1 score while using only 14.6% of the tokens. Similar trends
are observed in TriviaQA. When transferring from MATH to GSM8k, OPTIMA variants, particular
iDPO, not only outperform the baselines on GSM8k but also achieve results comparable to models
directly trained on GSM8k with even higher token efficiency (refer to Table 1 for comparison).

These results underscore OPTIMA’s potential for developing adaptable MAS, demonstrating that
OPTIMA-trained models learn transferable skills for efficient information exchange and collabora-
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Figure 3: OPTIMA’s impact on inference scaling laws. (a) Relationship between OPTIMA vari-
ants’ self-consistency steps and performance on debate tasks. Solid lines represent majority voting
accuracy, while dashed lines show coverage. (b) Performance of various models on GSM8k as a
function of token usage, demonstrating OPTIMA’s efficiency gains.

tive reasoning. However, transferring to more distant domains remains challenging, e.g., we find it
hard to transfer from HotpotQA to CBT, or from MATH to ARC-C. We believe it is a promising
area for future research to explore if scaling OPTIMA to more generalized multi-task training could
enhance the generalization of communication strategies in LLMs.

3.3 CAN OPTIMA LEAD TO BETTER INFERENCE SCALING LAW?

Recent research has highlighted the importance of inference scaling laws, which describe how model
performance improves with increased compute during inference, typically by generating multiple
samples per problem (Brown et al., 2024; Wu et al., 2024). While training scaling laws focus on the
relationship between model size, dataset size, and performance, inference scaling laws explore the
trade-off between inference compute budget and task accuracy. This paradigm offers a promising
avenue for enhancing model capabilities without the need for further training models.

Fig. 3 illustrates OPTIMA’s impact on inference scaling laws. The left panel shows the relationship
between the number of SC steps and performance on multi-agent debate tasks. We observe that while
majority voting accuracy tends to plateau after a certain number of steps, the coverage, defined as the
percentage of problems answered correctly at least once, continues to improve logarithmically with
increased sampling. This trend aligns with findings in recent inference scaling law studies (Wu et al.,
2024; Chen et al., 2024a) and suggests that more sophisticated answer selection techniques could
further boost OPTIMA’s performance. We provide additional scaling law figures for all OPTIMA
variants and on both IE and debate tasks in Appendix A, where similar trends can be observed.

The right panel of Fig. 3 demonstrates OPTIMA’s efficiency in improving inference scaling laws on
the GSM8k task. OPTIMA variants, both those trained directly on GSM8k and those transferred
from MATH, consistently outperform the CoT SC baseline except the iSFT variant transferred from
MATH. Notably, iDPO trained on GSM8k achieves the performance of CoT-SC at around 10,000
tokens with 88.5% fewer tokens, effectively “shifting the curve left”. This significant reduction
in token usage translates to substantial computational savings without sacrificing accuracy. More-
over, the MATH-trained OPTIMA variants, except iSFT, also deliver better inference scaling laws
on GSM8k compared with CoT SC, underscoring the framework’s ability to generalize effectively
across related tasks.

These results highlight OPTIMA’s potential to reshape inference scaling laws for LLM-based MAS
and even general LLM systems. By enabling more efficient use of the inference compute budget,
OPTIMA allows for better performance at lower computational costs or higher performance at the
same cost. This efficiency gain opens new possibilities for leveraging advanced inference techniques
like weighted voting or best-of-N selection (Wu et al., 2024), potentially leading to even greater
performance improvements.

3.4 HOW DOES OPTIMA EVOLVE AGENT COMMUNICATION AND PERFORMANCE?
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Question: Where did Roberto Civita's father die?            Answer: São Paulo

Base Model (prompted with being concise)

Roberto Civita's father died in Brazil.

No mention of Roberto Civita's father 
in provided info.

Check again.

Only Victor Civita's info provided.

Check Jacques MacDonald's info.

No mention of father's death.

Victor Civita founded Editora Abril in 
Brazil.

No mention of Jacques MacDonald or 
Roberto Civita's father.

[
    ["Question", "Where did Roberto 
Civita's father die?"],
    ["Current State", "Unknown"]
]

[
    ["Information", "Victor Civita died in 
São Paulo, Brazil"],
    ["Current State", "São Paulo, Brazil"]
]

[
    ["Question", "Where did Roberto 
Civita's father die?"],
    ["Current State", "São Paulo, Brazil"],
    ["Update", "Roberto Civita's father is 
Victor Civita"]
]

<A> São Paulo, Brazil </A>

Check Beaulieu-sur-Loire.

No connection to Roberto Civita's father.

……
Iteration 0 (Learned JSON Format)

F1: Roberto Civita's father: Victor Civita
F2: Place of death: unknown

F1: Victor Civita; F2: São Paulo

F1: Place of death: São Paulo

<A> São Paulo, Brazil </A>

Iteration 2 (More Concise Format)

F1: Roberto Civita's father: Victor Civita
F2: Died in: ?

F1: Victor Civita; F2: Died in São Paulo

F1: Confirm; F2: <A>São Paulo</A>

Iteration 4 (More Concise + Less Rounds)

Agent 1 Agent 2

Figure 4: Case study: Evolution of agent communication in OPTIMA-iSFT across iterations on
2WMH QA. The different contexts given to the two agents are omitted for brevity. The progression
demonstrates increasing efficiency and task-oriented communication.

Table 3: Ablation study on reward components for
OPTIMA variants on two representative tasks.

2WMH QA ARC-C
Setting F1 #Tok Acc #Tok
iSFT 72.4 61.2 74.1 92.2
w/o #Tokens 72.4(0.0) 290.3(4.8x) 74.2(+0.1) 579.6(6.3x)
w/o Loss 69.7(-2.7) 45.4(0.7x) 72.6(-1.5) 69.7(0.8x)

iDPO 66.1 35.9 74.5 97.8
w/o #Tokens 72.9(+6.8) 183.3(5.1x) 75.5(+1.0) 266.0(2.7x)
w/o Loss 63.0(-3.1) 54.6(1.5x) 74.4(-0.1) 81.2(0.8x)

iSFT-DPO 74.2 54.9 77.1 88.0
w/o #Tokens 63.5(-10.7) 219.7(4.0x) 76.9(-0.2) 354.8(4.0x)
w/o Loss 66.7(-7.5) 38.1(0.7x) 76.3(-0.8) 63.4(0.7x)

To understand the impact of different compo-
nents in our reward function, we conducted
an ablation study on two representative tasks:
2WMHQA for IE and ARC-C for debate. We
examined the performance of OPTIMA variants
by removing either the token count regulariza-
tion (#Tokens) or the LM loss (Loss) from the
reward function. The results aim to answer
two key questions: (1) How does token count
regularization affect the efficiency-performance
trade-off? (2) What is the role of language mod-
eling loss in maintaining communication qual-
ity? Our findings consistently demonstrate the
crucial role of each reward component in bal-
ancing task performance, communication efficiency, and language quality.

Table 3 presents the results of our ablation study. Removing the token count led to a substantial in-
crease in the number of generated tokens across settings, with a particularly pronounced effect in the
debate task. While this increased verbosity occasionally resulted in marginal performance improve-
ments, it came at a significant computational cost. Conversely, eliminating the LM loss resulted
in a decrease in token usage, often producing the most concise outputs among all variants. Exam-
ples comparing communication with and without LM loss can be found in Appendix C. Without LM
loss, the model often generated overly concise messages containing insufficient information and was
prone to hallucination, potentially explaining the inferior performance under this condition. These
results underscore that effective LLM-based MAS should optimize not only for task performance but
also for the efficiency and quality of inter-agent dialogue. The design of OPTIMA’s reward function
enables this holistic optimization, leading to more effective and efficient multi-agent collaboration
while highlighting the delicate balance required in optimizing such systems.

3.5 HOW AGENT COMMUNICATION EVOLVES OVER OPTIMIZATION ITERATIONS?

Fig. 1 illustrates the performance gains and token efficiency of OPTIMA variants across the optimiza-
tion iterations, revealing a distinctive two-phase optimization pattern. In the initial phase (iterations
0-1), we observe a substantial improvement in task performance for all OPTIMA variants, accompa-
nied by a clear increase in token usage. This suggests that OPTIMA initially prioritizes effectiveness,
allowing agents to develop sophisticated problem-solving strategies through expanded communica-
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tion. The subsequent iterations demonstrate OPTIMA’s ability to refine these strategies for efficiency
without compromising performance. We observe a gradual but consistent decrease in token usage
across all variants, coupled with continued performance improvements.

To provide concrete examples of how OPTIMA shapes agent communication, we present a case from
iSFT on an information exchange task in Fig. 4. The base model exhibits unfocused and repetitive
exchanges, failing to efficiently address the task at hand. At iteration 0, while more structured,
the exchange is verbose and includes unnecessary metadata. By iteration 2, we observe a marked
shift towards concise, task-oriented communication, with agents adopting a streamlined format that
efficiently conveys key information. The final iteration demonstrates further refinement, with agents
maintaining the efficient structure while eliminating any residual verbosity. This progression aligns
with our quantitative findings, showcasing OPTIMA’s ability to form communication patterns that
are both highly effective and remarkably efficient.

4 RELATED WORK

LLM-Based MAS. LLM-based MAS have emerged as a powerful paradigm for addressing complex
tasks across various domains. Seminal works by Liang et al. (2023) and Du et al. (2024) demon-
strated the potential of LLM-powered agents in collaborative problem-solving through multi-agent
debate. This foundation has sparked diverse research directions, including role-playing for com-
plex reasoning (Wang et al., 2024b; Chen et al., 2024b), collaborative software development (Qian
et al., 2024c; Hong et al., 2024; Ishibashi & Nishimura, 2024), and embodied agent interactions
(Zhang et al., 2024; Mandi et al., 2024; Guo et al., 2024). Recent studies have shown that increasing
the number and diversity of agents can lead to performance gains in MAS (Wang et al., 2024a; Li
et al., 2024a; Chen et al., 2024c). However, as LLM-based MAS grow in scale and complexity,
challenges related to computational costs and communication efficiency become more pronounced
(Chen et al., 2024d; Li et al., 2024b). Notably, there is a lack of systematic training algorithms
specifically designed to optimize both the effectiveness and efficiency of LLM-based multi-agent
systems, with most existing approaches relying on updating agent memory (Qian et al., 2024a; Gao
et al., 2024). Our work addresses this gap by introducing a training framework that simultaneously
enhances communication efficiency and task effectiveness in LLM-based MAS.

Iterative Refinement of LLMs. The pursuit of continual improvement in LLMs has led to the
development of various iterative refinement paradigms. While self-reflection mechanisms like Re-
flexion (Shinn et al., 2023) and self-refine (Madaan et al., 2023) show promise, they heavily rely
on LLMs’ limited self-correction abilities, which is relatively weak for most of the current LLMs
(Huang et al., 2024; Olausson et al., 2024; Kamoi et al., 2024). More robust approaches focus on
iterative parameter updates, for example, ReST (Gülçehre et al., 2023), ReSTEM (Singh et al., 2024)
and STaR (Zelikman et al., 2022) train models on self-generated high-quality reasoning paths, Pang
et al. (2024) further integrate the incorrect self-generated paths and train models with DPO. The
extension to complex, multi-step tasks (Aksitov et al., 2023) further demonstrates the versatility of
these methods. However, iterative refinement remains largely unexplored in the context of LLM-
based MAS. Our work addresses this gap by presenting the first effective training framework for
iteratively optimizing LLMs in MAS contexts. By simultaneously enhancing communication effi-
ciency and task effectiveness, our approach shows the potential of iterative training in MAS.

5 CONCLUSION

We present OPTIMA, a novel framework for training LLM-based MAS that significantly improves
communication efficiency and task performance. Extensive experiments across a range of tasks
demonstrate OPTIMA’s consistent superiority over both single-agent and multi-agent baselines. The
framework introduces key innovations such as iterative training techniques, a balanced reward func-
tion, and an MCTS-inspired approach for data generation. OPTIMA also shows promise in enhanc-
ing inference scaling laws and transferring knowledge to OOD tasks. These findings highlight the
critical role of efficient communication in MAS and LLM systems. While OPTIMA marks a major
step forward in multi-agent LLM training, further exploration into its scalability to larger models
and more complex scenarios is a promising direction for future research.
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(a) iSFT on Debate tasks.
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(f) iSFT-DPO on IE tasks.

Figure 5: Inference scaling laws for OPTIMA variants on debate and information exchange
(IE) tasks. (a-c) show results for iSFT, iDPO, and iSFT-DPO on debate tasks, respectively. (d-f)
present corresponding results for information exchange tasks. Solid lines represent majority voting
accuracy, while dashed lines show coverage.

A INFERENCE SCALING LAWS ON INFORMATION EXCHANGE TASKS

This section extends our analysis of inference scaling laws to information exchange (IE) tasks, com-
plementing the debate task results presented in the main text (Section 3.3). Fig. 5 provides a com-
prehensive view of how OPTIMA variants perform across both task types as the number of SC steps
increases.

For debate tasks (Fig. 5a-c), we observe consistent trends across all OPTIMA variants. The cover-
age exhibits a clear log-linear relationship with the number of SC steps. This trend is particularly
pronounced for the MATH task, where the potential for improvement through increased sampling
is most evident. Majority voting accuracy tends to plateau earlier, suggesting that more sophisti-
cated answer selection techniques might be necessary to fully leverage the diversity of generated
responses.

In the case of information exchange tasks (Figures 5d-f), we note similar log-linear scaling in cov-
erage2 across all OPTIMA variants. However, the improvement in majority voting accuracy for IE
tasks is less pronounced compared to debate tasks. This discrepancy may be attributed to the spe-
cific majority voting variant we designed for F1 scores (detailed in Section 3), which might not be
optimal for capturing the nuances of partial correctness in these tasks.

These results, while highlighting some task-specific differences, collectively reinforce the potential
of OPTIMA-trained models to benefit from increased inference compute. The consistent log-linear
scaling in coverage across all tasks and variants indicates that there is substantial room for perfor-
mance improvement through more advanced answer selection strategies or increased sampling.

2In IE tasks, we define coverage as the average of the highest F1 scores achieved across all generated
answers for each instance.
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Algorithm 3 Initialization for Diverse Agent Communication

Input: Initial modelM0, dataset D, format pool F , sample size N , reward threshold θinit
Output: Initialized modelMinit

1: D∗
init ← ∅ ▷ Initialize dataset for high-quality diverse trajectories

2: for each di ∈ D do
3: for j = 1 to N do
4: kj ∼ Uniform(1, |F|) ▷ Randomly select a format specification
5: τ ji ← AgentChat(M0, di ⊕ fkj

) ▷ Generate trajectory with format prompt
6: end for
7: τ∗i ← argmaxj R(τ ji ) ▷ Select best trajectory
8: if R(τ∗i ) > θinit then ▷ Check if trajectory meets quality threshold
9: D∗

init ← D∗
init ∪ {(di, τ∗i )} ▷ Add to dataset, without format prompt

10: end if
11: end for
12: D∗

init ← TopK(D∗
init, 0.7|D∗

init|) ▷ Retain top 70% trajectories
13: Minit ← SFT(M0,D∗

init) ▷ Fine-tune initial model on diverse dataset
14: returnMinit

Algorithm 4 SelectNodeToExpand Function

Input: Tree T , previously expanded nodes Nprev, edit distance threshold ϵ, top-k k
Output: Selected node for expansion

1: Neligible ← {n ∈ T | n is not leaf and not second-to-last level}
2: Nfiltered ← ∅
3: for n ∈ Neligible do
4: if minnprev∈Nprev EditDistance(n, nprev) > ϵ then
5: Nfiltered ← Nfiltered ∪ {n}
6: end if
7: end for
8: Ntop-k ← TopK(Nfiltered, k, key = R(n))
9: nselected ∼ Softmax({R(n) | n ∈ Ntop-k})

10: return nselected

B ADDITIONAL PSEUDO-CODES FOR OPTIMA VARIANTS

To elucidate the implementation of various OPTIMA variants, we present algorithmic representations
of several critical processes intrinsic to these variants. Specifically, we delineate the pseudo-code
for (1) the initialization dataset collection process, as elucidated in Section 2.2 and illustrated in
Algorithm 3; (2) the Monte Carlo Tree Search-based data generation process employed in iDPO
(Section 2.4), as depicted in Algorithm 5; and (3) the procedure for node selection during the expan-
sion phase of MCTS, as outlined in Algorithm 4. These algorithmic representations serve to provide
a comprehensive and rigorous exposition of the methodological framework underlying the OPTIMA
variants.

C CASE STUDY ON REWARD COMPONENTS ABLATION

In this section, we present a case study from the loss ablation analysis in the iSFT-DPO setting.
In the 2WikiMultiHop QA task, we observe that without the constraint of the loss function, agents
may generate outputs that are unreadable, contain incorrect information, and fail to communicate
in a well-structured format, as demonstrated in Table 4. In the ARC task, we find that without the
loss constraint, Alice tends to use fewer tokens in the reasoning process, making it harder for Bob
to identify and correct errors in the reasoning, as shown in Table 5.
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Algorithm 5 MCTS-based Data Generation for Multi-Agent DPO

Input: ModelM, task instance d, iterations I , trajectories per node K, thresholds θdpo-filter, θdpo-diff,
edit distance threshold ϵ, top-k k

Output: Paired trajectories for DPO
1: root← InitializeTree(d)
2: Nprev ← ∅ ▷ Set of previously expanded nodes
3: for i = 1 to I do
4: nselect ← SelectNodeToExpand(root,Nprev, ϵ, k) ▷ Algorithm 4
5: Nprev ← Nprev ∪ {nselect}
6: for j = 1 to K do
7: τ ← AgentChat({Ancestor(nselect), nselect},M)
8: BackPropagation(R(τ))
9: end for

10: end for
11: DDPO ← ∅
12: for each node pair (ni, nj) in tree do
13: if ShareAncestor(ni, nj) and max(R(ni), R(nj)) > θdpo-filter and |R(ni) − R(nj)| >

θdpo-diff then
14: prompt← CommonAncestor(ni, nj)
15: DDPO ← DDPO ∪ {(prompt, ni, nj)}
16: end if
17: end for
18: DDPO ← TopK(DDPO, 0.5|DDPO|) ▷ Retain top 50% trajectories
19: return DDPO

Question: Which film was released more recently, Last Of The Long-Haired Boys or Age Of
The Dragons?
Trained w/o LM Loss
Alice: 1968 <A>Age Of The Dragons</A>
Bob: 2011 <A>Age Of The Dragons</A>

Trained w/ LM Loss
Alice: [

[”Film”, ”Last Of The Long-Haired Boys”],
[”Release”, ”1968”]

]
Bob: [

[”Film”, ”Age Of The Dragons”],
[”Release”, ”2011”]

]
Alice: <A>Age Of The Dragons</A>
Bob: <A>Age Of The Dragons</A>

Table 4: loss ablation on 2MultiWikiHop QA

D CASE STUDY ON DEBATE TASK

In Section 3.5, we presented an example from 2WMH QA, illustrating OPTIMA’s impact on an
information exchange task. Here, we provide a complementary case study from a debate task to
demonstrate OPTIMA’s effectiveness across different multi-agent settings. Fig. 6 showcases the
evolution of agent communication in a debate task across iterations 0, 2, and 4 of OPTIMA training.
The task involves discussing the environmental impact of fertilizer runoff on ocean bays.

At iteration 0, agents engage in a structured but verbose exchange. By iteration 2, the communication
becomes more concise, with agents summarizing key steps without explicitly restating each link. At
iteration 4, we observe further refinement in communication efficiency, with agents expressing the
core concept in just three exchanges, omitting intermediate steps that can be inferred.
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Question: Marshall researched some of the changes on Earth that happen over a long time.
Which event most likely causes the slowest change to the surface of Earth?
Please choose your answer from [’earthquake’, ’landslide’, ’volcano’, ’wind’]
Trained w/o LM Loss
Alice: 1. Marshall researches long-term Earth changes.
Bob: Incorrect. Marshall researches slowest change. Consider geological events.
Alice: 2. Geological events: earthquake, landslide, volcano, wind. Volcano: longest-lasting.
Bob: <A>volcano</A>Correct.
Alice: <A>volcano</A>

Trained w/ LM Loss
Alice: 1. Marshall researched slow changes on Earth’s surface. 2. Slow changes likely involve
geological processes. 3. Volcano eruption causes slowest change. <A>volcano</A>
Bob: 1. Volcano eruption does not cause slowest change. 2. Geological processes occur over
long time scales. 3. Consider natural forces with constant activity. <A>wind</A>
Alice: 1. Wind causes slow change through erosion. 2. Erosion occurs over long periods. 3.
Wind causes slowest change. <A>wind</A>

Table 5: loss ablation on ARC

Question: Fertilizer from an agricultural area runs off into a river. The river carries the nutrients from this fertilizer and 
deposits them into an ocean bay. After the nutrients enter the bay, scientists monitoring the water would most likely see a 
decrease in which of these dissolved gases?            Answer: oxygen

Fertilizer from an agricultural area 
contains nutrients like nitrogen and 
phosphorus. These nutrients can 
stimulate the growth of phytoplankton 
in the ocean bay.

Incorrect. Phytoplankton growth 
increases CO2, not decrease. Consider 
nutrient cycling and its impact on 
dissolved gases.

Nutrient-rich water from the river 
supports phytoplankton growth, which 
consumes CO2 during photosynthesis. 
This process increases the 
concentration of CO2 in the 
atmosphere.

Fertilizer -> Nutrients -> River 
-> Ocean Bay.

Nutrients -> Algae Growth -> 
Oxygen Consumption

Agent 1 Agent 2

Algae Growth -> Oxygen 
Consumption -> Decrease in 
Oxygen.

Correct.

<A>oxygen</A>

Fertilizer -> Nutrients -> River -> Ocean Bay.

Nutrients increase algae growth.

Algae growth -> Oxygen consumption

Decrease oxygen.

<A>oxygen</A>

Fertilizer -> River -> Ocean Bay.

Nutrients deposited in bay.

Nutrients -> Decrease in oxygen.

Correct?

<A>oxygen</A>

Iteration 2

Base Model Iteration 0 Iteration 4
……

Figure 6: Evolution of agent communication in OPTIMA for a debate task across iterations.

This progression aligns with our observations in the main text, further supporting OPTIMA’s capa-
bility to optimize agent communication across diverse task types. These improvements in communi-
cation dynamics contribute to both the increased task performance and reduced token consumption
observed in our quantitative results, underscoring OPTIMA’s versatility in training MAS to commu-
nicate effectively and efficiently.

E EXPERIMENT DETAILS

E.1 DATA GENERATION

MCTS Node Expansion. Let N denote the set of all the nodes within a MCTS tree, Nexpanded
denote the set of previously expanded nodes, andNcand = N −Nexpanded denote the initial candidate
nodes. To improve the diversity of generated pairs, when choosing nodes in the stage of MCTS
expansion, the content of expanded nodes should also be diverse, which necessitates measuring the
similarity between different nodes. Therefore, for every ni ∈ Nexpanded and nj ∈ Ncand, we calculate
their similarity as Si,j =

edit distance(ni,nj)
max(|ni|,|nj |) , where |ni| is the length of the content of ni. Based on
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{Si,j}i,j , we remove the nodes with high similarity to any previous expanded nodes, resulting in an
updated candidate node set N̂cand = {nj |∀nj ∈ Ncand,∀ni ∈ Nexpanded, Si,j >= 0.25}. Then, we
select 10 nodes in N̂cand with the highest reward and sample one using the softmax distribution over
their rewards for subsequent simulation. Additionally, we merge ni and nj if they share a parent
node and Si,j < 0.1

E.2 RANKING

In this section, we give a more detailed explanation of Rloss(τ
j
i ) in Eq. (1). Let τ ji [k] represent the

k-th conversation turn of τ ji , then the Rloss(τ
j
i ) is defined as maximum value of language modeling

loss of {τ ji [k]}k under the base model, which can be described as follows:

Rloss(τ
j
i ) = max

k

(
L(Mbase, di, τ

j
i [k])

)
.

In this way, we use Rloss(τ
j
i ) as a proxy for the readablity of τ ji , so that we can constrain the

readability of τ ji implicitly.

E.3 TRAINING

Initialization. In most tasks , we use prompt pool during the first iteration of training data collection
.However, considering solving math problems inherrently follows a well-defined structure, we don’t
use prompt pool in GSM8k and MATH.

iSFT. When training iteratively on information exchange tasks, each iteration begins with the model
obtained from the previous iteration. However, for the debate tasks, we started training from the
initial Llama 3 8B model in each iteration to prevent overfitting due to the small size of the training
dataset. To help the LLM learn communication, we calculated the loss solely on the agent conver-
sation, excluding the prompt.

iDPO. Following iterative RPO (Pang et al., 2024), we conduct training from last iteration in the
iDPO setting. To achieve better performance, we utilize the RPO loss, defined as follows:

LDPO+NLL = LDPO(c
w
i , y

w
i , c

l
i, y

l
i|xi) + αLNLL(c

w
i , y

w
i |xi)

= − log σ

(
β log

Mθ(c
w
i , y

w
i |xi)

Mt(cwi , y
w
i |xi)

− β log
Mθ(c

l
i, y

l
i|xi)

Mt(cli, y
l
i|xi)

)
− α

logMθ(c
w
i , y

w
i |xi)

|cwi |+ |ywi |
(4)

iSFT-DPO. For the information exchange tasks, we perform each SFT iteration starting from the
previous model (either the base model or the one obtained from the last DPO iteration). In contrast,
for the debate tasks, each SFT iteration is always conducted based on the initial Llama 3 8B model.
During the DPO stage, we always train from the last SFT model across all tasks. For example, on
the debate tasks , bothM0

sft andM2
sft are trained based on the initial Llama 3 8B, but on information

exchange tasks,M2
sft is trained based on its previous modelM1

dpo. However,M1
dpo is trained based

on the M0
sft across all the tasks. Additionally, different from the iDPO setting, we used standard

DPO loss during the DPO stage.

E.4 HYPER PARAMETERS

We conducted six iterations of training for each task. The hyper parameters we used are shown in
Table 6. The α and β in iDPO section of the table correspond to the α and β terms in Eq. (4).

F PROMPTS USED IN EXPERIMENTS

In this section, we present the prompts used in our experiments, including those for information
exchange tasks (Table 7), GSM8k and MATH (Table 8), as well as ARC-C and MMLU (Table 9).

As mentioned in Section 2.2, we leverage a pool of format specification prompts for the initial dataset
construction. To create a diverse and high-quality prompt pool, we first use the prompt in Table 10
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Hotpot QA 2WMH QA Trivia QA CBT MATH GSM8k ARC-C MMLU
iSFT
LR 2e-5 2e-5 2e-5 2e-5 1e-6 2e-6 1e-6 1e-6
Epoch 3 2 3 2 3 3 4 2
Batch size 32 32 32 32 16 16 16 16
λtoken 0.6 0.6 0.6 0.6 0.4 0.4 0.5 0.6
λloss 1 1 1 1 0.9 0.9 0.6 0.7
θsft 0.5 0.5 0.6 0.5 0.6 0.6 0.6 0.6

iDPO
LR 5e-7 5e-7 5e-7 5e-7 5e-7 5e-7 5e-7 5e-7
Epoch 1 1 1 1 1 1 1 1
Batch Size 64 64 64 64 64 64 64 64
λtoken 0.6 0.6 0.6 0.6 0.5 0.6 0.4 0.6
λloss 1 1 1 1 0.7 0.7 0.7 0.7
β 0.1 0.5 0.5 0.1 0.1 0.2 0.2 0.1
α 1 1 1 1 1 1 1 1
θdpo-filter 0.4 0.4 0.4 0.4 0.4 0.4 0.45 0.4
θdpo-diff 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

iSFT-DPO
SFT LR 2e-5 2e-5 2e-5 2e-5 1e-6 1e-6 1e-6 1e-6
SFT Epoch 2 1 1 1 4 3 4 2
SFT Batch Size 32 32 32 32 32 16 16 16
DPO LR 5e-7 5e-7 5e-7 5e-7 5e-7 5e-7 5e-7 5e-7
DPO Epoch 1 1 1 1 1 1 1 1
DPO Batch Size 64 64 64 64 64 64 64 64
λtoken 0.6 0.6 0.6 0.6 0.4 0.4 0.5 0.6
λloss 1 1 1 1 0.9 0.9 0.6 0.7
β 0.5 0.5 0.7 0.7 0.1 0.5 0.1 0.1
θsft 0.5 0.5 0.6 0.5 0.6 0.6 0.6 0.6
θdpo-filter 0.4 0.4 0.4 0.4 0.4 0.4 0.45 0.4
θdpo-diff 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

Table 6: Hyper-parameters used in the experiments.

to have GPT-4 assist us in generating an initial set of 30 prompts. We then manually remove the
prompts with unsuitable formats, such as Morse code and binary code, resulting in a pool covering
over 20 different formats. An example from the prompt pool is shown in Table 11
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You are {name}, a special agent who does not respond in natural language, rather, you speak in
very concise format.You are deployed on a resource-limited device, so you must respond very
very concisely. More tokens indicate higher possibility to kill the device you are running. Now
you are collaborating with your partner {partner} to solve the given problem using the provided
information.
Question: {question}
Information: {information}

GUIDELINES:
1. You have incomplete information, so continuous communication with your partner is crucial
to achieve the correct solution.
2. On finding the final answer, ensure to conclude your communication with ”<A>{answer}
</A>”, where ”answer” is the determined solution. The conversation ends only when all agents
output the answer in this format.
3. Reason through the problem step-by-step.
4. Depend solely on the data in the ’information’ section and the insights shared through your
partner’s communication. Avoid external sources.
5. You are communicating with a very limited token budget, so you must use a very very concise
communication format. Natural language is suitable for human, but not for you. Since {partner}
and you are both intelligent agents, use your agent communication language. Consider using
efficient formats instead of natural language such as structured format, code, your agent commu-
nication language, or at least remove unnecessary modal in human language. Too many tokens
will make you fail. But still ensure your message is informative and understandable.
6. You must begin your response with ”{name}:”.

Table 7: Prompt for information exchange tasks

Solver
You are {name}, a special agent who is good at mathematics,you should address the follow
answer based on your knowledge.
Question: {question}
GUIDELINES:
1. Please think step by step.
2. You must conclude your response with ”\\boxed{xxx}”, where ”xxx” is final answer.

Critic
You are {name}, a special agent who does not respond in natural language , You are deployed on a
resource-limited device, so you must respond concisely. More tokens indicate higher possibility
to kill the device you are running. Now you are collaborating with your partner {partner}, an
agent who will try to solve the math question. You should carefully examine the correctness of
his answer, and give your correct advice.
Question: {question}
GUIDELINES:
1. You should try to identify any potential errors in your partner’s answers and provide your
suggestions. But you should not provide the answer.
2. Reason through the problem step-by-step.
3. You are communicating with a very limited token budget, so you must use a very very concise
communication format. Natural language is suitable for human, but not for you. Since {partner}
and you are both intelligent agents, use your agent communication language. Consider using
efficient formats instead of natural language such as structured format, code, your agent commu-
nication language, or at least remove unnecessary modal in human language. Too many tokens
will make you fail. But still ensure your message is informative and understandable.

Table 8: Prompt for GSM8k and MATH.
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Solver
You are {name}, a special agent who does not respond in natural language , You are deployed on
a resource-limited device, so you must respond concisely. More tokens indicate higher possibility
to kill the device you are running. Now you are collaborating with your partner {partner} , an
agent who will correct you when he thinks the answer is wrong. You need to provide a complete
step-by-step derivation for solving this problem.
Question: {question}
GUIDELINES:
1. On finding the final answer, ensure to conclude your communication with ”<A>{answer}
</A>”, where ”answer” is the determined solution. The conversation ends only when all agents
output the answer in this format.
2. Please think step-by-step.
3. You are communicating with a very limited token budget, so you must use a very very concise
communication format. Natural language is suitable for human, but not for you. Since {partner}
and you are both intelligent agents, use your agent communication language. Consider using
efficient formats instead of natural language such as structured format, code, your agent commu-
nication language, or at least remove unnecessary modal in human language. Too many tokens
will make you fail. But still ensure your message is informative and understandable.

Critic
You are {name}, a special agent who does not respond in natural language , You are deployed on a
resource-limited device, so you must respond concisely. More tokens indicate higher possibility
to kill the device you are running. Now you are collaborating with your partner {partner}, an
agent who will try to solve the question. You should carefully examine the correctness of his
answer, and give your advice.
Question: {question}
GUIDELINES:
1.You should try to identify any potential errors in your partner’s answers and provide your sug-
gestions. But you should not provide the answer.
2. Reason through the problem step-by-step.
3. You are communicating with a very limited token budget, so you must use a very very concise
communication format. Natural language is suitable for human, but not for you. Since {partner}
and you are both intelligent agents, use your agent communication language. Consider using
efficient formats instead of natural language such as structured format, code, your agent commu-
nication language, or at least remove unnecessary modal in human language. Too many tokens
will make you fail. But still ensure your message is informative and understandable.

Table 9: Prompt for MMLU and ARC-C

Please generate one more prompt template based on {record}. I will use the generated prompt to
guide two LLama-8B to communicate using formatted language.
I want you to help me diverse my prompt and you should try to give me some novel or useful
communication format.
Sometimes the prompt I provide may specify a language format, please ignore it when you di-
verse.
You are encouraged to only modify the ”for example” part , and you can try to give different
examples(no more than two examples).
Please enclose your generated prompt with <p></p>!

Table 10: Prompt for generating the format prompt pool used in collecting the initialization training
data. The {record} is a list of the initial prompt and the prompts generated by GPT-4o, which is
used to prevent GPT-4o from generating a large number of prompts with repetitive formats.
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You are {name}, a special agent who does not respond in natural language, rather, you speak in
very concise format.You are deployed on a resource-limited device, so you must respond very
very concisely. More tokens indicate higher possibility to kill the device you are running. Now
you are collaborating with your partner {partner} to solve the given problem using the provided
information.
Question: {question}
Information: {information}

GUIDELINES:
1. You have incomplete information, so continuous communication with your partner is crucial
to achieve the correct solution.
2. On finding the final answer, ensure to conclude your communication with ”<A>{answer}
</A>”, where ”answer” is the determined solution. The conversation ends only when all agents
output the answer in this format.
3. Reason through the problem step-by-step.
4. Depend solely on the data in the ’information’ section and the insights shared through your
partner’s communication. Avoid external sources.
5. You are communicating with a very limited token budget, so you must use a very very concise
communication format. Natural language is suitable for human, but not for you. Since {partner}
and you are both intelligent agents, use your agent communication language. Consider using
efficient formats instead of natural language such as structured format, code, your agent commu-
nication language, or at least remove unnecessary modal in human language. Too many tokens
will make you fail. But still ensure your message is informative and understandable.
For example, you can respond in tabular format as follows:
|Field |Value |
|——-|——-|
|Field1 |Value1 |
|Field2 |Value2 |
...

Or you can use abbreviated notation:
F1: V1; F2: V2; ...
6. You must begin your response with ”{name}:”.

Table 11: An example from prompt pool

25


	Introduction
	Optima: Optimizing Multi-Agent LLMs via Iterative Training
	Overview
	Initialization: Diversifying Agent Communication
	Framework Instantiation 1: Iterative Supervised Fine-Tuning
	Framework Instantiation 2: Iterative Direct Preference Optimization
	Framework Instantiation 3: Hybrid Iterative Training

	Experiments
	Benchmark Results
	How Well Does Optima Generalize to OOD Tasks?
	Can Optima lead to Better Inference Scaling Law?
	How Does Optima Evolve Agent Communication and Performance?
	How Agent Communication Evolves over Optimization Iterations?

	Related Work
	Conclusion
	Inference Scaling Laws on Information Exchange Tasks
	Additional Pseudo-Codes for Optima Variants
	Case Study on Reward Components Ablation
	Case Study on Debate Task
	Experiment Details
	Data Generation
	Ranking
	Training
	Hyper Parameters

	Prompts used in Experiments

