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Abstract. In smart manufacturing, scheduling autonomous internal logistic vehicles is cru-
cial for optimizing operational efficiency. This paper proposes a multi-agent deep Q-network
(MADQN) with a layer-based communication channel (LBCC) to address this challenge. The
main goals are to minimize total job tardiness, reduce the number of tardy jobs, and lower
vehicle energy consumption. The method is evaluated against nine well-known scheduling
heuristics, demonstrating its effectiveness in handling dynamic job shop behaviors like job
arrivals and workstation unavailabilities. The approach also proves scalable, maintaining per-
formance across different layouts and larger problem instances, highlighting the robustness
and adaptability of MADQN with LBCC in smart manufacturing.
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1 Introduction

Internal Logistics Vehicles (ILVs) are crucial in enhancing the performance of manufacturing sys-
tems by facilitating the movement of products within manufacturing facilities [1]. With the advent
of Industry 4.0 technologies, the automation of these movements has been driven by multiple fac-
tors, including the improvement of production capacity and the reduction of injuries among human
operators who traditionally moved heavy products. Notable technologies in this domain include Au-
tomated Guided Vehicles (AGVs) and Autonomous Intelligent Vehicles (AIVs), which autonomously
transport products while considering workshop constraints and layouts.

The implementation of these systems presents several challenges that require careful considera-
tion. Key among these challenges is the task of determining the priority for transporting products
and selecting the appropriate vehicle for each transportation task. Moreover, these scheduling ac-
tivities must account for various constraints, including delivery times, vehicle capacity and battery
charging requirements, handling breakdowns of vehicles and machines, addressing urgent jobs, etc.
Effective vehicle management is therefore crucial to align internal logistics with manufacturing
objectives, such as minimizing tardiness of orders, achieving a balanced workload among worksta-
tions and vehicles, and optimizing the energy consumption of vehicles. To address these challenges,
scheduling strategies consist of a set of rules designed to allocate vehicles to transportation requests
while accounting for these complex constraints.

This paper addresses these challenges by introducing a multi-agent deep reinforcement learn-
ing approach along with a layer-based communication channel to dynamically allocate vehicles to
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transportation requests within a dynamically changing environment. Drawing from insights dis-
cussed in prior research by [2], which implemented a deep Q-network technique, this study makes
several notable contributions. In the proposed multi-agent system, each job is instantiated as an
individual agent, operating in a decentralized manner. These agents interact with one another to
optimize their reward policies within a deep Q-network algorithm. By leveraging this multi-agent
framework, the system gains enhanced capabilities to navigate the complexities inherent in a dy-
namic manufacturing environment, characterized by the dynamic arrival of jobs and occurrences of
workstation breakdowns/unavailibilites.

The principal manufacturing objectives targeted by this approach encompass the minimization
of total job tardiness, number of tardy jobs and the reduction of vehicle energy consumption.
To assess the efficacy of our proposed methodology, we conducted a comparative analysis against
various heuristic methods. Results from this evaluation demonstrate the superior performance of
our multi-agent deep reinforcement learning method over traditional heuristics for the considered
objectives.

The paper is structured as follows: Section 2 delves into the literature, exploring related work
regarding scheduling ILVs. Section 3 encompasses the problem description. Section 4 outlines the
proposed multi-agent deep reinforcement learning approach. The subsequent sections are devoted
to the experimental results, conducting analysis, and drawing conclusions.

2 Related work

In this section, the state of the art in shop scheduling with intelligent transporters is first presented.
Following this, the evolution and application of artificial intelligence and machine learning methods
in these problems are reviewed. Finally, the current state of multi-agent systems applied to intelligent
transporter scheduling in manufacturing shops is examined, with emphasis on the importance of
communication between different agents and the integration of multi-agent systems with machine
learning.

2.1 Integrated shop and transporters scheduling

Integrated shop and transporter scheduling is a comprehensive approach aimed at optimizing both
the production schedule within a manufacturing shop and the logistics of material handling and
transport. This approach considers the interdependencies between the resource assignment for pro-
duction tasks to workstations and the transfer of jobs via vehicles such as AGV or AIV.

In the study [3], the authors addressed two-machine flow shop and open shop scheduling problems
where workpieces are transported via a single vehicle. For each problem, they proposed a heuristic
algorithm aimed at minimizing the makespan. Notably, the transporter’s capacity is assumed to be
sufficient to transport any number of jobs, thereby neglecting the potential capacity constraints of
vehicles in real-world scenarios.

More recent studies have increased the complexity of interstage transportation by considering
multiple vehicles available in the field. This added complexity aims to better reflect real-world
scenarios where multiple vehicles are used to transport workpieces between machines. The study [4],
tackled the multi-AGV flow shop scheduling problem using Q-learning to optimize makespan and
minimize average job delays. However, this study does not consider the charging consumption of
AGVs, which is a significant limitation in real-world scenarios. In [5], authors explored the impact of
AGV charging constraints on the scheduling of flexible manufacturing units with multiple AGVs. A
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genetic algorithm was employed to minimize the completion time while balancing AGV loads and
reducing charging times. Their model effectively schedules AGVs to complete tasks and reduces
charging wait times. However, this study overlooks the variations in job weights and their effects
on transfer time and AGV charging consumption.

In real-world scenarios, another significant challenge complicating AGV scheduling is their load
capacity, which is often overlooked in most studies. In [6], authors considered transporter capacity
limitations and layout rearrangement, proposing an improved non-dominated sorting genetic algo-
rithm with hybrid local search (INSGA-HLS). Their approach successfully minimized exit time,
labor cost, worker workload, and transportation time.

2.2 Artificial intelligence application in scheduling

In the past few decades, there has been substantial growth in artificial intelligence (AI) applications
within manufacturing, largely attributed to the accessibility of data facilitated by the Internet of
Things (IoT). Supervised learning and reinforcement learning are among the most used methods in
scheduling problems [7]. Supervised learning relies on sample data, requiring data collection through
real-world cases or simulations. A combination of supervised learning and linear programming was
presented by [8]. A mixed-integer linear programming was initially employed to obtain the optimal
solution, which served as the foundation for the supervised learning training. Subsequently, a ran-
dom forest classifier was introduced to predict the priority of jobs. However, the study does not
address the adaptability of the algorithm in dynamic environments with factors like machine break-
downs or stochastic processing times. The authors [9] employed multiple linear regression to predict
the optimal scheduling rule at each decision step in a dynamic job shop with a single AIV trans-
porter. Their proposed method outperformed heuristic approaches in minimizing the makespan. It
is important to note that supervised learning methods require substantial data collection and are
not well-suited for real-time decision-making processes.

Among the array of advancements in machine learning techniques, Deep Q-Networks stand out
for their simplicity in implementation and their capacity to tackle complex problems by amalga-
mating deep learning with Q-learning [10]. Reinforcement learning (RL) is recognized as a broader
framework encompassing decision-making tasks [11]. A key distinction between RL and other AI
algorithms lies in the learning mechanism, where RL learns through interactions with a dynamic
environment, contrasting with supervised and unsupervised learning methods that rely on sample
data for their learning process.

The authors [12], employed a Deep Q Network (DQN) to improve adaptive scheduling in dy-
namic job shops. The DQN algorithm selects actions from a set of ten heuristic dispatching rules.
Their method demonstrated superior performance compared to single dispatching rules and tradi-
tional Q-learning. However, it is important to note that this work focused on a single performance
indicator—total job tardiness—thereby overlooking the complexity of managing multiple objectives,
which is more representative of real-world manufacturing environments.

The study [13], utilized Deep Q-network (DQN) for online scheduling of a job shop, aiming to
optimize multiple objectives including makespan, production cost, and machine utilization. Their
approach effectively handled dynamic system behaviors such as urgent orders and machine failures
and outperformed common scheduling methods such as Shortest Processing Time (SPT) heuristic
and genetic algorithm. However, this study overlooked a significant complexity of real-world pro-
duction systems: the optimization of job transportation. Modern manufacturing sites are equipped
with intelligent vehicles, introducing new challenges for the production system. In study [14], the
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authors addressed transportation optimization on a flexible shop floor. They employed a Deep Q-
Network (DQN) to schedule multiple AGVs in real-time, with the aim of minimizing the delay
ratio and makespan. Two main decisions were handled: dispatching jobs and AGV selection. Their
method outperformed previous approaches like AHP dynamic scheduling and traditional RL meth-
ods such as Q-learning and Sarsa. However, the study did not consider optimizing AGV charging
consumption as an objective, nor did it address realistic limitations related to AGV charging, such
as recharging times and policies, due to their added complexities.

In summary, the literature review highlights the significant advancements and applications of
artificial intelligence, particularly in manufacturing scheduling. Several gaps are identified, including
the optimization of multiple transportation vehicles with specific capacity constraints, considering
their recharging times and policies, addressing multiple objectives, and accounting for unforeseen
events such as machine breakdowns for robust optimization.

To adress these challenges, DQN offer a robust solution, merging deep learning with Q-learning
to address complex scheduling challenges. Given its simplicity in implementation and proven effec-
tiveness across various scheduling scenarios, our study adopts the DQN approach. The principles
and workings of the Deep Q-Network are elaborated in the subsequent subsection.

2.3 Deep Q-Network

Deep Q-Network (DQN) agent learns through experimenting within an environment [15]. The base
framework for such interaction is the Markov Decision Process which is represented by the tuple
(S,A,R) where:

S: Stands for the state space, st ∈ S represents the state at time t
A: Stands for the action space, at ∈ A represents action taken at time t considering st
R: stands for the reward function, rt ∈ R(st, at) represents the reward received by the agent after
taking action at in the state st

At each time step t, the agent takes the action at and transitions from state st to state st+1.
The agent receives an immediate reward rt = R(st, at, st+1) upon reaching state st+1 which indi-
cates the performance of the agent. The objective of an RL algorithm is to maximize the cumulative
rewards [16]. To achieve this objective, a DQN algorithm aims to approximate an optimal Q func-
tion of a given environment. The optimal Q function Q∗(s, a) represents the maximum expected
cumulative reward that agent can obtain. Formally the Q function can be defined as :

Q(s, a) = E

[ ∞∑
t=0

γtrt+1 | s0 = s, a0 = a

]
(1)

Where E denotes the expected value, γ is the discount factor which lies in range [0,1], determining
the importance of future rewards. And rt+1 is the expected reward at the next time step. The optimal
Q function Q∗(s, a) is formulated as:

Q∗(s, a) = max
π

Qπ(s, a) (2)

To approximate Q∗(s, a), DQN uses a deep neural network parametrized by θ, which is denoted
by Qθ(s, a). The network takes the state st as input and outputs the Q values for all possible actions
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in the space. The Q function is approximated using the temporal difference (TD) loss function [17].
The main idea is to minimize the difference between the predicted Q values and the target Q values,
which are computed using the following equation:

LossDQN (θ) = E(st,at,rt,s
′
t+1)

[y −Qθ−
(st, at)]

2 (3)

Where y = rt + γ ∗maxa′ (Q(s
′

t+1, a
′
; θ−))is the target value , γ is the discount factor and and

θ− represents the parameters of the target network, which are copied periodically from the primary
network to stabilize training.

2.4 Multi agent systems

The review study conducted by [18] investigated the use of multi-agent reinforcement learning in
smart factories, suggesting that multi-agent systems, when combined with AI techniques are the
most appropriate for such environments. Furthermore, [19] provides a general background on single-
agent and multi-agent deep reinforcement learning, highlighting the challenges and advantages of
multi-agent systems over single-agent ones, particularly in wireless communications.

One of the prominent challenges of Multi-Agent Deep Reinforcement Learning is the non-
stationarity of the environment, which refers to the consistent variations in other agents’ parameters.
In the study [20], authors targeted communication efficiency in multi-UAV cooperative trajectory
planning. They applied a Double Stream Attention Multi-Agent Actor-Critic (DSAAC) algorithm.
The study needs to enhance the algorithm’s adaptability to a broader range of dynamic scenarios
and complex operational conditions.

In the study [21], a Multi-Agent Reinforcement Learning algorithm, specifically DQN, was em-
ployed to optimize operations. The agents within this system leverage Internet of Things (IoT)
technology to facilitate inter-agent communication. The primary objectives of the study are to
minimize the makespan and balance the total workload across the system. The results indicate
that the distributed architecture inherent to the proposed approach effectively manages the high
dimensionality characteristic of smart factory environments, outperforming traditional centralized
methods.

The authors [22] introduced a novel decentralized multi-agent system approach incorporating
capacity constraints for AGVs. The agents collaborate in a decentralized manner to assign product
transport tasks to each other and determine their routes. The results demonstrate that te pro-
posed approach yields competitive outcomes compared to the Mixed-Integer Linear Programming
model, highlighting its potential as a promising decentralized approach. However, the study pri-
marily focuses on capacity constraints related to the weight of products, rather than the effects
of transporting multiple products with a single AGV. In the study [23], the authors address a job
scheduling problem in a resource preemption environment using a policy-based Multi-Agent Rein-
forcement Learning approach. In this method, each job is considered an intelligent agent, utilizing a
separate policy network. Additionally, a shared mixed Q-network is proposed to compute the global
loss, fostering cooperation among the agents. Nevertheless, This study need to investigate the inte-
gration of diverse multi-agent scheduling algorithms to tackle a wider range of Job Shop Scheduling
Problems (JSSPs) and to enhance model generalization through advanced representation learning
techniques.

In summary, the literature review underscores the significant advancements and applications of
AI in manufacturing scheduling, with a particular focus on the efficacy of multi-agent techniques
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and Deep Q-Networks in addressing complex challenges. Given the proven benefits of DQNs, our
approach leverages multi-agent DQN to optimize Internal Logistics Vehicles scheduling.

3 Problem description

For illustrative purposes, a case study is presented of a manufacturing system consisting of four
assembly workstations (WS1, WS2, WS3, and WS4), a storage location, two charging stations, and
two AIVs. These vehicles are utilized to transport raw materials from storage to workstations and
to facilitate the movement of subassemblies and products between workstations.

Four types of products (P1, P2, P3, and P4) are considered, each requiring processing at specific
set of workstations. Each product undergoing processing at a workstation is referred to as an
operation (the term job is also used for a product, which consists of a set of operations). The
manufacturing shop floor is structured as a flexible job shop, where each product follows its own
unique routing through the workstations. Additionally, the flexibility of the job shop allows certain
operations to be handled by any one of several possible workstations rather than a single designated
workstation. Table 1 provides an overview of the different routings and workstation possibilities for
each product operation.

Table 1: Routing of each product
Products Routs of Products

P1 (WS1/WS3) -> (WS3/WS4) -> (WS2/WS3)
P2 (WS1/WS4) -> (WS1/WS4) -> (WS2/WS3)
P3 (WS4/WS5) -> (WS1/WS5) -> (WS2/WS3)
P4 (WS1/WS4) -> (WS1/WS2) -> (WS3/WS4)

In real-world scenarios, manufacturing shops are not static; they must accommodate dynamic
events such as the continuous arrival of jobs and the potential breakdowns of machines at worksta-
tions. These dynamic factors are considered in our problem.

The goal of this study is to avoid tardiness to prevent penalty payments and optimize the use of
AIVs to minimize energy consumption costs. As these orders arrive, each job (product) is scheduled
individually, necessitating two key decisions as illustrated in Fig. 1:

1. For each operation of a product, assign a workstation when multiple options are available.
2. For each product transfer to the designated workstation, assign an AIV

These two decisions must account for several constraints, including the remaining energy of each
AIV, its loading capacity, the urgency of orders, the availability of AIVs, and the need to handle
unexpected events such as the unavailability of workstations. Therefore, taking these two decisions
ensures that products arrive at the workstations in a specific order and can be then processed.
Transportation is influenced by the location and status of the AIVs. Consequently, these decisions
directly impact the tardiness of jobs and the energy consumption of the AIVs. By optimizing these
allocations, job tardiness can be effectively reduced, and energy usage minimized, thereby enhancing
overall operational efficiency.

The job shop scheduling problem is known to be NP-hard [24], and the additional complexity
of allocating AIVs further exacerbates the problem. The challenge lies in determining the optimal
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Fig. 1: Illustration of the two decisions

allocation of AIVs and workstations such that the scheduling of jobs at workstations is optimal, all
while managing the transportation and dynamic constraints. Consequently, advanced strategies are
essential to effectively balance the multiple objectives and constraints inherent in this problem.

4 Multi-agent deep Q-Network (MADQN) approach with layar-based
communication channel (LBCC)

In this section, a decentralized multi-agent Deep Q-Network (MADQN) approach is proposed to
solve the illustrated problem described in section 3 involving AIV transporters. Furthermore, a
layer-based communication channel (LBCC) is introduced and employed to deal with the non-
stationarity of the multi-agent system. The primary objectives are to minimize total job tardiness,
the number of tardy jobs, and AIVs energy consumption. This approach addresses two types of
decisions: workstation-selection and AIV-selection. Each job is considered an agent equipped with
two deep Q-networks, one for each decision type.

All available jobs interact with the workshop environment simultaneously, resulting in the for-
mation of queues for both AIVs and workstations. It is noteworthy that the queues for each AIV
and workstation are managed based on a First-In-FirstOut (FIFO) policy, wherein jobs that are
requested earlier are given priority.

For each job agent, two Deep Q-networks (DQN) are developed: one for workstation-selection
and the other for AIV-selection. Each DQN is designed based on a Partially Observable Markov
Decision Process. Status of each job are illustrated in Fig. 2.

The observations for each DQN are provided as follows:

Workstation-selection DQN observation :

– Queue length of workstations
– Distance of workstations from the job
– Workstations’ busy time percentage
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Fig. 2: Graphical representation of the job’s status

– Job’s next processing time
– Job’s current tardiness
– Job’s remaining processing time
– Current time step

AIV-selection DQN observation :

– Queue length of AIVs
– Distance of AIVs from the job
– AIVs’ battery percentage
– Job’s current tardiness
– Job’s remaining processing time
– Current time step

4.1 DQN characteristics: Actions, Rewards, Neaural Network features

The action of the workstation-selection DQN is to select the appropriate workstation for each
available job. Similarly, the action of the AIV-selection DQN is to select the appropriate AIV
for transferring the job to the selected workstation. It is crucial to manage the variation in the
action space dimension for the workstation-selection DQN at each step, which necessitates the
use of a mask for the current operation. This mask delineates the feasible actions (workstations)
available. For instance, if product/job P1 can only be processed on workstations WS2 or WS4 for
its first operation among all m workstations, other workstations are masked out except WP2 and
WP4. Consequently, the network’s output is adjusted to −∞ where no viable action exists (masked
options). This adjustment to −∞ is advantageous as it allows the objective function, which employs
an argmax, to disregard the masked options.

At each step, two immediate rewards are allocated to the agent, one to the AIV-selection DQN
and another to the workstation-selection DQN. The AIV-selection DQN receives a reward imme-
diately upon completing the transfer of a product to the designated workstation. This reward is
computed based on the energy consumption of the AIV, encompassing the period from when the
AIV commences the job pick-up process until it delivers the product. This reward is assigned a
negative value. The workstation-selection DQN obtains a reward immediately after completing the
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execution of the product’s operation. This reward is calculated based on the current tardiness of
the product upon finishing that operation, which is computed as follows for each product:

CurrentTardinessi = max(0, ki ×RPTi + CT −DueDatei), i = 1, 2, . . . , n; (4)

Where RPTi stands for the Remaining Processing Time of producti, CT is the current time
of the simulation, and k is a coefficient used to account for the transfer times of the job. This
reward, given as a negative value, reflects the deviation from the due date, thereby incentivizing
the minimization of product/job tardiness.

Moreover, a final reward is assigned to each job agent for both DQNs when the product is
executed completely (i.e., all operations of the product are completed). The final reward is calculated
based on the lateness of each product after the product is executed. For each producti lateness is
defined as:

Latenessi = CompletionT imei −DueDatei i = 1, 2, . . . , n; (5)

FinalRewardi = Latenessi × (−1) i = 1, 2, . . . , n; (6)

The structure of all networks is identical. A fully connected deep neural network with five
hidden layers is utilized, with each layer consisting of 10 nodes and employing the Tanh activation
function. It is noteworthy that all inputs for the agents are normalized. Stochastic Gradient Descent
is employed to optimize the Mean Squared Error loss function. The learning rates are uniformly set
to 0.01, and the discount factors are set to 0.9.

4.2 Layer Base Communication Channel (LBCC)

A key advantage of multi-agent systems lies in their capacity for inter-agent communication, which
substantially enhances system performance. In the proposed approach, the uniform structure of
all agents facilitates the creation of a communication channel across corresponding layers. This
communication channel is integrated into the networks of the job agents’ DQNs (workstation-
selection and AIV-selection). Specifically, within each hidden layer of a job agent’s network, the
input to that hidden layer, originating from the output of the preceding layer, is combined with the
output of the same hidden layer from all other job agents. This design ensures that each job agent
is aware of the outputs of other agents at the same level of the hidden layer. Such an integrated
communication mechanism promotes effective information sharing and coordination among agents,
enhancing overall system efficiency. The mathematical representation of the communication channel
is provided below:

h
(l)
out,i = tanh

(
W (l) ·

(
h
(l)
in,i ∪ H(l)

)
+ b(l)

)
i = 1, 2, . . . , n; (7)

Where:

– h
(l)
out,i is the output of l-th layer of the i-th job agent.

– W (l) is the weight matrix for the l-th layer.
– h

(l)
in,i is the input to the l-th layer of the i-th agent.

– H(l) = ∪j ̸=i h
(l)
j represents the union of the outputs from the same hidden layer l of all other

job agents j except i.
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– b(l) is the bias vector for the l-th layer.
– tanh is the Tanh activation function applied to the linear combination of the inputs, weights,

and biases.

As an example, Fig. 3 illustrates the communication mechanism within the workstation-selection
networks of job agents at the third hidden layer. Specifically, for job Jk, the input to its third hidden
layer is integrated with the outputs from the third hidden layer of all other jobs, ranging from J1
to Jn and 1 < k < n.

Fig. 3: Communication channel example for the third layer of workstation-selection network

5 Experimentation and results

5.1 Case study data

The case study described in Section 3, which involves four products and four workstations, is used
to experiment the MADQN approach. In this example, each product can have various numbers of
job arrivals (each job represent one product). It is assumed that the number of jobs for all product
types is equal. For instance, in the case of a total of 60 job arrivals, each of the four product
types has 15 job arrivals. The time between the arrival of jobs is assumed to follow an exponential
distribution with a rate parameter of λ = 5 time units.

Dealing with tardiness as two of the three objectives requires having due dates for each job. In
this case study, a due date generator is used based on the work of [25] for each job. The due date
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of job i is computed as shown in the following equation:

DueDatei = ArrivalT imei + T
∑

MeanProcessingT imei, i = 1, 2, . . . , n; (8)

Essentially, the due date is equal to the arrival time of the job plus the total required pro-
cessing time for that job. T is a coefficient to take into account the transfer time of jobs between
workstations. This coefficient follows a normal distribution with parameters defined as follows :

µ =
Nb_Jobs

4
, σ = 4

As the problem is a flexible job shop, jobs have the flexibility to be processed on different work-
stations for their various operations. Therefore, the processing time for each operation of the job
is determined by the mean of the processing times of that operation on the possible workstations.
For example, if one operation can be processed on either workstation WS1 with a processing time
of 8 or on workstation WS2 with a processing time of 4 minutes, MeanProcssingT ime for that
operation will be 6 minutes.

To enhance the dynamic behavior of the job shop, machine breakdowns or in this case work-
station unavailibilities are also considered. An exponential distribution is applied for both the time
interval between two unavailabilities (TBI) and the time required for fixing the problem (worksta-
tion to be available) (TRF) [26]. The parameters for TBI (time between two inspections) and TRF
(time required for fixing) are set to λTIB = 200 and λTRF = 50.

Another important aspect is the layout of the job shop, which is defined by the distances between
workstations, the raw material storage location, and the charging stations. To generate different
layouts, a uniform random variable between 10 and 50 is used for each transfer time, reflecting
various possible distances and assuming that both AIVs have the same speed.

Each of the two AIVs is set with a loading capacity of two, and each job/product occupies one out
of the two capacity units of the AIVs. In other words, AIVs are capable of transferring two products
simultaneously. The transfer policy is that AIVs fill their capacity if there are enough requests;
otherwise, they collect the available requests, carry all picked-up products to their destinations,
and then become idle at the last destination, ready for the next transfer.

There are two charging stations each with a capacity of one AIV at the same time. AIVs are
sent to the charging station when their battery level falls below 40%. The location of the charging
stations can vary across different layout setups. The charging consumption of the AIVs is assumed
to correlate with their status (moving or stopped) and the number of product they are carrying.
The energy consumption percentage pattern of AIVs is provided in Table 2.

Table 2: AIV Consumption Based on Carrying Load
Condition Consumption

Not moving 0.01%
Moving, carrying 0 product 0.02%
Moving, carrying 1 product 0.05%
Moving, carrying 2 products 0.10%
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5.2 Results

The proposed case study is unique and novel due to the added complexities, constraints, and
dynamic events. Since there is no existing solution in the literature to compare our approach with,
nine heuristics are provided to evaluate the performance of the proposed MADQN method. These
heuristics are generated by mixing three dispatching rules for workstation-selection and three rules
for AIV-selection. The three dispatching heuristics for workstation-selection are as follows:

– SPT (Shortest Processing Time): Workstation with the Shortest Processing Time is se-
lected for each product. It is worth noting that the processing time of each operation varies
depending on the workstation performing the process.

– SQL (Shortest Queue Length) : Workstation with the shortest queue length has priority.
– SWLW (Shortest Workload): Workstation with the Shortest Workload or shortest percent-

age of busy time has priority.

The three dispatching rules for AIV-selection are:

– MC (Most Charge): Select the AIV with the most remaining charge.
– STT (Shortest Transfer Time): Select the AIV with the Shortest Transfer Time (from its

current location to the location of the first product to pick up).
– SWLA (Shortest Workload): Choose the AIV with the Shortest Workload or shortest per-

centage of busy time.

The effectiveness of the proposed approach is evaluated based on jobs scalability. Scalability
is typically assessed by evaluating the method across different ranges of arriving products. As the
number of products increases, the complexity of the scheduling problem also arises, making it more
challenging to optimize the three objectives. A set of simulations with an increasing number of jobs
(20, 40, 60, 80, and 100) is conducted. For each job count, a unique layout is considered, which is
based on the transfer times between workstations and process times of operations on workstations.
This layout remains consistent for each specific job count but varies between different job counts.
The simulation is executed 100 times (each time with different values of processing times and time
arrivals of products/jobs).

The objectives of the problems are set to the total tardiness of all products, the number of
tardy products, and the total AIVs’ charging consumption. For each objective, the mean results of
all 100 simulations are collected for each job count. Based on Table 3, 4, and 5, where best results
are highlighted in bold, the proposed MADQN method outperforms all nine heuristic combinations
across all three objectives. Importantly, the results remain stable as the number of jobs increases,
even when the job shop layouts change and different processing times are used. This stability
demonstrates the scalability of the proposed approach.

Table 3: Mean of total tardiness for each 100 simulation of n jobs
Jobs STT.SPT STT.SQL STT.SWLW SWLA.SPT SWLA.SQL SWLA.SWLW MC.SPT MC.SQL MC.SWLW MADQN

20 4084.7 3755.9 5382.5 4537.6 3626.2 5134.3 7385.0 4068.2 5148.8 2586.7
40 33520.4 30683.9 31601.8 21104.5 34829.9 30927.5 28467.1 37616.1 38026.5 7917.2
60 46410.3 57723.2 74085.8 26591.7 13932.4 43301.0 32431.8 28510.7 57797.8 10229.2
80 96602.7 146211.9 198746.6 35938.4 58552.9 83505.9 41344.1 48923.0 75331.7 14546.6
100 45686.28 110800.91 134116.17 32336.17 80030.2 80112.83 38905.59 77558.05 91913.11 19363.87
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Table 4: Mean of number of tardy jobs for each 100 simulation of n jobs
Jobs STT.SPT STT.SQL STT.SWLW SWLA.SPT SWLA.SQL SWLA.SWLW MC.SPT MC.SQL MC.SWLW MADQN

20 14.76 14.32 16.20 16.53 14.45 17.49 17.95 15.63 17.01 12.40
40 32.99 37.91 38.44 34.52 38.20 37.28 34.28 36.81 36.46 19.32
60 42.75 42.54 47.77 42.41 30.94 48.54 42.64 36.98 48.46 24.39
80 58.10 71.99 74.80 47.61 58.32 64.85 47.10 50.78 56.51 36.74
100 62.56 70.96 74.64 57.4 74.13 74.16 56 66.15 67.67 43.61

Table 5: Mean of total energy consumptions for AIVs for each 100 simulation of n jobs
Jobs STT.SPT STT.SQL STT.SWLW SWLA.SPT SWLA.SQL SWLA.SWLW MC.SPT MC.SQL MC.SWLW MADQN

20 95.77 92.37 102.12 98.15 91.19 105.33 103.71 88.80 101.64 76.86
40 235.24 262.89 261.62 236.13 283.86 270.66 241.24 270.53 273.47 166.76
60 320.55 341.63 393.10 320.58 281.60 370.85 319.18 291.34 392.81 240.97
80 444.40 457.23 562.18 395.93 444.85 508.96 399.52 417.69 476.92 323.53
100 410.69 508.54 537.94 401.46 498.74 511.77 403.18 488.30 518.54 348.04

To provide a comprehensive comparison between the distribution of results obtained by MADQN
and other heuristics, box plots for all three objectives are presented for a product count of 40. Due
to space constraints, plots for other product counts are not included. Fig. 4, 5, and 6 demonstrate
the notable disparity in the distribution of results between MADQN and other heuristics. Regarding
total tardiness, a comparison of the median values reveals that MADQN is centered around 5000
time-units, while the best-performing heuristic, SWLA.SPT , is centered around 20000 time-units.
This approximate 15000 time-unit gap in tardiness, can have a significant impact on manufacturing
delay costs. Furthermore, the small variations in values for MADQN are reflected in the box plot,
which shows that quartiles are close together. This minimal variation underscores the reliability
and stability of the results across the 100 experiments.

For the second objective as shown in Fig. 5, the number of tardy jobs, MADQN values are
clustered around 18, while the best performing heuristic in this regard, STT.SPT , centers around
33. With 40 jobs, employing MADQN enables the timely delivery of approximately 15 more jobs
compared to the best heuristic, which can have a substantial impact on the costs associated with
tardy jobs.

In the case of the third objective, total AIV energy consumption, MADQN results center around
163% of battery percentage consumption, whereas heuristics, STT.SPT and SWLA.SPT , centers
around 235% (Fig. 6). This difference not only indicates energy savings but also translates into time
savings within the job shop.
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Fig. 4: Total tardiness of 40 product counts

Fig. 6: AIVs total energy consumption
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Fig. 5: Number of tardy jobs of 40 product counts

According to the recharging policy assumption, AIVs are sent to the charging station when
their battery level falls below 40%. In other words, each 60% battery consumption necessitates a
recharge. With the SWLA.SPT heuristic, approximately 4 recharging instances are required, while
with MADQN, only around 2 recharges occur. Considering that each recharge takes approximately
30 time units and temporarily suspends transfers between workstations, the reduced number of
recharges with MADQN contributes to lower job tardiness.

5.3 Discussion

The proposed approach effectively addresses several key challenges in real-world production systems,
particularly in flexible job shop scheduling where multiple routing options and dynamic events,
such as machine breakdowns, stochastic job arrivals, and variable processing times, complicate
decision-making. The integration of Autonomous Intelligent Vehicles (AIVs) for material handling,
while enhancing efficiency, introduces constraints like energy management and battery recharging.
Notably, our study incorporates the often-overlooked capability of AIVs to handle multiple jobs
simultaneously, which significantly improves both energy efficiency and job tardiness.

Our application of reinforcement learning, specifically the Multi-Agent Deep Q-Network (MADQN),
demonstrates the method’s suitability for real-time scheduling, offering a rapid response to dynamic
changes. While it may not match the precision of exact optimization methods, it provides a favorable
balance between speed and accuracy, particularly in large-scale problems.
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However, this study has limitations. The uniqueness of the case study, with its complex con-
straints, meant there was no established benchmark, such as linear programming or metaheuristics,
for direct comparison. We only tested one reinforcement learning method, DQN, though other meth-
ods like policy-based approaches could be worth exploring. Additionally, we employed a layer-based
communication structure between agents, but other communication methods, such as Graph Neural
Networks (GNN) or attention mechanisms, which are increasingly applied in the literature, could
also be considered.

While we accounted for AIVs with a capacity of two jobs, higher-capacity AIVs could intro-
duce further complexities, particularly in determining the most efficient policies for loading and
unloading—whether to pick up all jobs first and then unload, or to handle them one by one. Fur-
thermore, our study assumed a recharging policy where AIVs recharge when their battery level
drops below 40%. Exploring different charging strategies could provide insights into their effects
on production objectives. Finally, while the proposed approach succeeded across different problem
scales and scenarios with varying numbers of job arrivals, it was not tested under differing shop
configurations. Shop configurations, defined by the number of job types, machines, and AIVs, could
provide valuable proof of the method’s ability to generalize to various circumstances.

6 Conclusion

This study presents a solution for scheduling autonomous internal logistic vehicles in smart man-
ufacturing environments using multi-agent deep Q-network (MADQN) with a layer-based com-
munication channel (LBCC). The proposed approach effectively addresses three key objectives:
minimizing the total tardiness of jobs, reducing the number of tardy jobs, and decreasing the total
energy consumption of vehicles. Our comprehensive analysis, comparing the method against nine
well-known heuristics, highlights the superior performance and adaptability of the MADQN with
LBCC.

The method’s compatibility with flexible job shops exhibiting dynamic behaviors, such as dy-
namic job arrivals and workstation unavailabilities, underscores its practical applicability. Further-
more, the proposed approach ensures consistent results across various job shop layouts and larger
problem instances, making it an adaptable tool for real-world applications. For practical applica-
tions, it is recommended to integrate the proposed method into fleet management software. This
integration allows the algorithm to offer decision recommendations each time a new order is received.
These recommendations can be reviewed by experts to finalize vehicle and machine selection deci-
sions, thereby improving both the efficiency and reliability of the decision-making process.

Despite the promising results of this study, several avenues for future research are evident.
Future work should explore a broader range of reinforcement learning methods, including policy-
based approaches, to enhance the robustness of the proposed solution. Additionally, investigating
alternative communication methods for multi-agent systems, such as attention mechanisms, could
provide new insights and improve performance.The study focused on AIVs with a capacity of two
jobs, but exploring higher-capacity AIVs could address new challenges in optimizing loading and
unloading strategies. Different recharging policeies for AIVs should also be evaluated to assess
their impact on production efficiency. Lastly, testing the proposed approach across various shop
configurations, defined by different numbers of job types, machines, and AIVs, could validate its
generalizability and effectiveness in diverse settings.
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