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Abstract

Although pair trading is the simplest hedging strategy for an
investor to eliminate market risk, it is still a great challenge
for reinforcement learning (RL) methods to perform pair trad-
ing as human expertise. It requires RL methods to make thou-
sands of correct actions that nevertheless have no obvious re-
lations to the overall trading profit, and to reason over infinite
states of the time-varying market most of which have never
appeared in history. However, existing RL methods ignore the
temporal connections between asset price movements and the
risk of the performed tradings. These lead to frequent tradings
with high transaction costs and potential losses, which barely
reach the human expertise level of trading. Therefore, we in-
troduce CREDIT, a risk-aware agent capable of learning to
exploit long-term trading opportunities in pair trading similar
to a human expert. CREDIT is the first to apply bidirectional
GRU along with the temporal attention mechanism to fully
consider the temporal correlations embedded in the states,
which allows CREDIT to capture long-term patterns of the
price movements of two assets to earn higher profit. We also
design the risk-aware reward inspired by the economic theory,
that models both the profit and risk of the tradings during the
trading period. It helps our agent to master pair trading with a
robust trading preference that avoids risky trading with possi-
ble high returns and losses. Experiments show that it outper-
forms existing reinforcement learning methods in pair trading
and achieves a significant profit over five years of U.S. stock
data.

Introduction
Pair trading is the simplest hedging method when an in-
vestor seeks to eliminate the market risk and has been widely
adopted in the application by hedge funds. The task con-
sists of two steps: 1) find two correlated assets such as two
stocks; and 2) trade them according to the spread refers to
the difference between their prices in a subsequent period.
Therefore, it requires the strategy to precisely capture the
trading opportunities when the spread of two assets abnor-
mally widens, and earn a profit when the spread returns to
its historical mean (Suzuki 2018), as shown in Fig.1.

It is still a challenge for reinforcement learning (RL)
methods to perform pair trading as human expertise, al-
though RL methods have been proven to be effective in
many other areas. The interface to employ RL in pair trad-
ing is straightforward: given two assets {X,Y }, states are

2016-04-02

2016-04-05

2016-04-08

2016-04-11

2016-04-14

2016-04-17

2016-04-20

2016-04-23

2016-04-26

2016-04-29

2016-05-02

2016-05-05

2016-05-08

2016-05-11

2016-05-14

2016-05-17

2016-05-20

2016-05-23

2016-05-26

2016-05-29

2016-06-01

2016-06-04

2016-06-07

2016-06-10

2016-06-13

2016-06-16

2016-06-19

2016-06-22

2016-06-25

2016-06-28

2016-07-01

25.0

27.5

30.0

32.5

35.0

37.5

40.0

42.5

pr
ice

38.3
38.9

40.6

31.6

26.9

30.2
29.4

23.5

AER
AL
long
short
close

Figure 1: Pairs trading example for a pair of correlated
stocks as AER and AL which shows similar co-movements.
The strategy would sell the winner AER and buy the loser
AL when the spread between two assets abnormally widens
at first.

the price features of two assets and trading information of
the agent such as historical actions, cash, and present asset
value; actions including long (buy X to resale it later and
sell Y to buy it later), clear (no assets but cash), and short
(buy Y to resale it later and sell X to buy it later), can de-
termine the status of the assets during the trading; and re-
wards are the overall trading performance of the agent on a
monitoring market environment. It is important for the agent
to perform precise actions at correct trading points when
there are abnormal movements of two assets. From this per-
spective, pair trading provides two major challenges for RL.
Firstly, the overall profit relies on a series of decisions to
perform correct action over hundreds and thousands of trad-
ing points, i.e, days, during the trading period. The action on
each trading point nevertheless has no direct connections to
the overall profit and could have different effects consider-
ing its contextual actions. For example, the effect of a clear
action would be different depending on whether it resides
between two tradings or at the end of a long/short trading.
Secondly, acting in pair trading means to reason over infi-
nite states due to the time-varying market, most of which
have never appeared in history. It would be difficult to detect
and predict abnormal movements of two assets from all pos-
sible states, which can attribute to a number of reasons such
as the breaking news of one asset, even though the fluctua-
tions of the market are mitigated by hedging.

For these reasons, although there were previous efforts
adopting RL methods to automatically perform pair trad-
ing (Fallahpour et al. 2016; Kim and Kim 2019; Brim 2020;
Xu and Tan 2020; Wang, Sandås, and Beling 2021; Kuo,
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Dai, and Chang 2021; Kim, Park, and Lee 2022; Lu et al.
2022; Han et al. 2023), it is observed that they have the
tendency to perform frequent tradings with high costs and
losses, resulting in a limited performance at the level of
a human amateur investor. On the one hand, they gener-
ally ignore the sequential information of asset prices in his-
tory, which makes it impossible to detect long-distance cor-
relations between two actions such as opening and closing
on two trading points between a series of holding actions.
Therefore, their agent can only consider the short-term pat-
tern and perform frequent tradings for ignoring the long-
term trading chances. On the other hand, their agent is
guided by maximizing the overall profit of the trading pe-
riod. According to the economic theory: Expected Utility
theory (Fishburn 1970) which models the decision process
under uncertainty, maximizing the cumulative profit can be
deemed as directly maximizing the expected utility. How-
ever, it is reported in previous economic research that di-
rectly maximizing the expected utility can lead to irrational
investment preference (Briggs 2014). Their agents have the
tendency to perform risky tradings with potentially high re-
turns and losses rather than consistently profitable opportu-
nities.

In this paper, we propose CREDIT, a reCurrent Reinforce-
ment lEarning methoD for paIrs Trading which learns to
trade like a human expert. The first distinguishing feature of
CREDIT is our employment of the bidirectional GRU (Cho
et al. 2014) and a temporal attention mechanism (Desimone
and Duncan 1995), which means our method can focus on
similar temporal patterns with multiple time points in history
when generating actions at each point of the trading period.
It allows our method to fully exploit long-distance correla-
tions between actions in two trading points which can indi-
cate an abnormal spread widen.

Although this is sufficient for our agent to trade infre-
quently, our agent would still have the preference for risky
long-term tradings which although have higher returns but
also have higher losses than short-term tradings, if guided
by maximizing the overall profit. This would a major issue,
especially in the time-varying future market where our agent
would have potentially high risks and losses than previous
methods. To address it, we further design a risk-aware re-
ward inspired by the Expected Utility theory, to guide the
agent which considers both the profit and the risk of the
whole trading period. It forces the agent to avoid actions
leading to risky tradings, i.e, losing 100% money with one
trading but earning back 150% money with another trading,
which would be deemed as the optimal actions if only the
maximum profit is considered. Experimental results on the
real-world dataset over five years of U.S stock data demon-
strate that our method can achieve the best performance.
Compared with previous methods, the agent in our method
trades less frequently but yields a higher return.

In summary, our contributions can be listed as:

1. We develop a reCurrent Reinforcement lEarning methoD
for paIrs Trading (CREDIT), which can trade similar to a
human expert rather than frequently tradings as a human
amateur investor.

2. To the best of our knowledge, this is the first attempt
at pairs trading that guides the RL by a risk-aware re-
ward based on the fully exploited temporal information
from historical price features of two assets via Bi-GRU
along with the temporal attention mechanism. It allows
our method to capture the long-term profitable trading
opportunities rather than short-term tradings with poten-
tial great loss and high transaction costs.

3. Empirical experimental results conducted on stock pairs
from U.S. markets demonstrate the effectiveness and su-
perior performance of our method compared with previ-
ous RL-based pairs trading methods, which is compatible
with human experts.

Related Work
Traditional Pair Trading Methods
According to how they measure the historical correlations of
two assets, traditional pairs trading methods can be divided
into three different categories, including the distance met-
ric(Gatev, Goetzmann, and Rouwenhorst 2006), the coin-
tegration test(Vidyamurthy 2004), and the time-series met-
ric(Elliott, Van Der Hoek*, and Malcolm 2005). With n as-
sets and all possible C2

n = n(n−1)
2 combinations of assets,

they would first select the optimal pair with the lowest mea-
surement for a subsequent trading period. Then they would
perform tradings when the price spread diverges more than a
predefined open threshold, and closed upon mean-reversion,
at the end of a trading period, or a predefined stop-loss
threshold (Krauss 2017). The fixed trading strategy with pre-
defined thresholds is model-free and easy to implement, but
it would be difficult for human experts to set optimal thresh-
olds considering the time-varying market.

Reinforcement Learning in Pairs Trading
Inspired by the success of applying reinforcement learn-
ing(RL) in financial trading problems (Fischer 2018;
Almahdi and Yang 2019; Katongo and Bhattacharyya 2021;
Lucarelli and Borrotti 2019), there were also attempts in
pairs trading which introduced RL methods to develop flex-
ible trading agents which can learn from historical data to
determine when to trade. The first attempt was (Fallahpour
et al. 2016), which used the cointegration method to select
trading pairs, and adopted Q-learning (Watkins and Dayan
1992) to select optimal trading parameters. Following it,
there were researches (Kim and Kim 2019; Kuo, Dai, and
Chang 2021; Lu et al. 2022) further introducing stop-loss
and structural break risks for better boundaries selection.

Different from their methods, Brim directly utilized the
RL methods to train an agent for trading (Brim 2020). Xu
and Tan considered multiple asset pairs for pair trading as a
portfolio and perform trading actions along with weight as-
signment simultaneously (Xu and Tan 2020). Wang, Sandås,
and Beling proposed to improve the trading performance
with reward shaping (Wang, Sandås, and Beling 2021). Kim,
Park, and Lee combined two RL networks to conduct trading
actions and stop boundaries simultaneously. However, they
failed to fully exploit temporal information in the states and



consider the risk of performed tradings, leading to frequent
trading with potential great losses and transaction costs.

CREDIT
In this section, we present the detail of our proposed method
CREDIT, as shown in Fig.2.

Formulation of Pair Trading
Preliminaries In this study, we mainly focus on how to
trade the selected asset pair to earn market-neutral profit.
Following previous methods (Fallahpour et al. 2016; Kim
and Kim 2019; Wang, Sandås, and Beling 2021), we first
adopt cointegration tests (Engle and Granger 1987) to per-
form pair selection and simplify the trading from reality
by requiring tradings to be performed on discrete-time, i.e,
days. Therefore, given a subsequent trading period with T
time points consisting of {0, 1, . . . , T − 1}, there are two
price series {pX0 , pX1 , . . . , pXT−1} and {pY0 , pY1 , . . . , pYT−1}
of asset pair {X,Y } that is associated with each time point.
For each asset such asX , the return of the time point twould
be:

rXt =
pXt
pXt−1

− 1 (1)

Partially Observable MDP Formally, we formulate
the decision process of the trading for pair trad-
ing as a Partially Observable Markov Decision Pro-
cess (POMDP) (Hausknecht and Stone 2015) M =
(S,A, T,R,Ω, O), where S refers to the state space, A is
the action space, T is the transitions among states, R is the
designed reward, Ω is the partial observation state which is
generated from the current state s ∈ S and action a ∈ A
according to the probability distribution O(s, a). At each
time point, the agent would perform an action at ∈ A un-
der the current state st, resulting in the transition from st
to st+1 with the probability T (st+1|st, at). Unfortunately,
in the time-varying market, the actual market states are par-
tially observed, since the prices of assets are driven by mil-
lions of investors and macroeconomic events. Only the his-
torical prices and volumes of assets, along with the historical
account information of the agent such as actions, cashes, and
returns can be leveraged, while other information such as
news, investor sentiments, and macroeconomic variables are
ignored. In detail, the agent can only receive the observation
ot+1 ∈ Ω with probability as O(st+1, at), which requires
the agent to fully exploit the historical observations up to
present time point. Notice that there exists a gap between
the observation o and the market state s, which is ignored by
previous methods assuming that o is reflective of s.

Observation The observation ot ∈ Ω consists of two dif-
ferent feature sets, including: (1) the account features oat ∈
Ωa as previous action at−1, present cash Ct, present asset
value Vt, and cumulative profit as the net valueNt; (2) the
price features opt ∈ Ωp as the open price poi,t, the close price
pci,t, and the volume voli,t of for each asset i ∈ {X,Y }.
We also adopt a liquidity assumption (Lesmond, Schill, and
Zhou 2003) that simplified the impact of individual tradings

on the market state by appending a constant loss to each trad-
ing, since the market friction caused by individual tradings
is not the main focus of our method. Thus the action of our
agent would not affect the market state and the price features
of assets in our observation, which instead is embedded by
the account features.

Action Different from single asset trading and portfolio
management, the actions in pair trading are associated with
two assets and are limited to a pair of contradictory trad-
ing actions. For instance, for a single asset, the trading ac-
tion space can be modeled as a set with three discrete ac-
tions A = {1, 0,−1}, which refers to long (Buy the asset
for sale it later), clear (Clear the asset if longed or shorted
any before), and short (Sell the asset for buying it later)
respectively. By performing action, the profit of the agent
could be calculated as Rt = at−1rt − c|at − at−1|, where
at−1 ∈ A is the previous action, at ∈ A is the present
action, rt is the profit of the asset, and c is the transaction
cost that considers both the fee and tax paid to the broker-
age company and the impact to the market when a trading
performed (at−1 6= at). This is further extended to multi-
ple assets in portfolio management with no limitations on
trading, where each action consists of a series of individual
trading action on each asset {ai,t|i ∈ S} and S is the se-
lected asset sets. The profit of the agent would be the sum as
Rt =

∑
i∈S(ai,t−1ri,t−c|ai,t−ai,t−1|). Different from sin-

gle asset trading and portfolio management, to eliminate the
market risk, pair trading only considers two correlated assets
and requires the agent to perform contrast trading actions si-
multaneously for hedging. The trading action space can be
modeled as a set A = {long, clear, short} = {1, 0,−1}
with three discrete actions each of which involves two trad-
ing actions for two assets {X,Y } respectively. In detail, the
long action means to long asset X and short asset Y at the
same time, the clear action to clear two assets if longed or
shorted any before, and the short action to short asset X and
long asset Y . The profit of the agent is:

Rt = at−1rX,t − at−1rY,t − c|at − at−1|
= at−1(rX,t − rY,t)− c|at − at−1|

(2)

The profit is market-neutral for hedging the return of two
assets as rX,t − rY,t, which is required to be precisely es-
timated by the agent with only historical observations up to
t− 1.

Reward Previous methods generally maximize the cumu-
lative profit over a trading period with T time points:

R =
∏
t∈T

(1 +Rt) (3)

However, the agent guided by maximizing the overall profit
has the tendency to risky tradings with potentially high re-
turns and losses, which is similar to human amateur in-
vestors. There exists a gap between the agent and human
expertise especially on which action they choose with par-
tially observations and uncertain returns.

To illustrate it, we model the process based on Expect
Utility (EU) theory (Fishburn 1970), which is an economic
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Figure 2: The structure of CREDIT.

theory that describes how an individual as a rational person
should decide under uncertainty. Apart from the probability
of all possible returns, it introduces the utility of each return
that measures the risk preference of the return to the investor.
Giving all possible returns γ ∈ Γ, the expected utility can be
represented as:

E[U(γ)] =
∑
γ∈Γ

P (γ)U(γ) (4)

where P (γ) is the probability of γ and U(γ) is the utility of
γ. From this perspective, maximizing the cumulative profit
can be deemed as directly maximizing the expected utility.
Given all returns in the trading period rt|t ∈ T and utility
function as U(r) = ln(1 + r), the expected utility would be∏
t∈T (1 + rt) which is the same as the cumulative profit.
Nevertheless, maximizing the expected utility which aims

to perform rational decisions can lead to irrational invest-
ment preference, as reported in previous research (Briggs
2014). For example, given two agents A and B both per-
forming two tradings in the same period, A first earns 100%
and loses 30% while B earns 10% for each trading. Ac-
cording to the expected utility, our method would prefer A
over B since E[U(A)] = 2.0 × 0.7 = 1.4 is greater than
E[U(B)] = 1.1 ∗ 1.1 = 1.21. As a matter of fact, A has
the tendency to perform risky tradings whose potential risk
is ignored in the expected utility.

The irrational investment preference can be an important
issue for pair trading since the agent would be misguided to
capture the fluctuations of the market rather than the price
spread between two assets. However, the market informa-
tion is generally ignored in pair trading, the agent would fail
to predict future market fluctuations and yield poor trading
performance.

Recurrent State Representation Learning
Instead of vanilla Deep Q-learning Networks (DQN) in pre-
vious methods, we propose to introduce the Deep Recur-
rent Q-learning Networks (DRQN) (Hausknecht and Stone

2015) into pair trading, which fully considers the sequential
information of asset price features in history for market state
estimation. We first model the pair trading with the POMDP
framework rather than MDP, in which an observation ot is
provided for the agent consisting of the account features oat
and the price features opt at each time point. Therefore, the
agent is required to estimate the latent market state st ac-
cording to the history Ht = {o1, a1, o2, · · · , at−1, ot}. Al-
though the market state cannot be directly observed, the his-
torical information embedded in Ht, especially the sequen-
tial dependencies can help the agent to generate better esti-
mation.

In detail, CREDIT is a Double Deep Q-learning Net-
works (DDQN) (Van Hasselt, Guez, and Silver 2016) based
method with the optimal action-value function Q∗(o, a),
which is the maximum expected return in the future. In
DDQN, we approximate Q with a neural network Q(o, a|θ)
with parameters θ, and update Q via optimizing the differ-
entiable loss:

L(θ) = E(ot,at,rt,ot+1)∼D[(yt −Q(ot, at; θ))
2] (5)

where yt = rt+1 + γQ(ot+1, arg maxaQ(ot+1, a; θt); θ
−)

and θ− is the parameter of a fixed and separate target net-
work. However, directly taking the history as the input of Q
network would fail to capture the sequential connections be-
tween two trading points, leading to a limited approximation
of Q.

Therefore, we introduce Bidirectional Gated Recurrent
Units (Bi-GRU) (Hochreiter and Schmidhuber 1997) along
with the temporal attention mechanism to encode the his-
tory before theQ network. The previous state representation
ht−1 is deemed as the previous hidden state of the forward
GRU at t − 1, and the next state representation ht+1 as the
previous hidden state of the backward GRU at t + 1. Con-
sequently, the present state representation ht can be repre-
sented as:
−→
ht = GRU(ot,

−−→
ht−1),

←−
ht = GRU(ot,

←−−
ht+1), ht = [

−→
ht ,
←−
ht ]

(6)



where ht is the concatenation of the forward hidden state
and backward hidden state, which allows our method to
capture the temporal correlations from both directions, and
ot = [oat , o

p
t ] is the concatenation of essential price and ac-

count information at each trading point. For discrete vari-
ables such as previous action at−1 in oat , we design an em-
bedding layer Ea ∈ R3×da respectively, where da is the
corresponding embedding size. We also normalize the price
features of assets X,Y in opt by logarithm. Our method can
embed salient temporal information in Ht into the state rep-
resentations ht based on the observations, which provides an
effective approximation of the state. ht is further fed into Q-
network, which helps the agent to recognize long-term op-
portunities between two distant trading points and perform
precise actions to earn the profit.

However, Bi-GRU could suffer from the long-distance
forgetting problem (Bahdanau, Cho, and Bengio 2014), es-
pecially for pair trading whose histories consist of thousands
of trading points. Besides, similar to human expertise, our
agent should pay different attention to the previous history
and focus on the most relevant sub-periods. We further de-
vise a temporal attention mechanism to address this issue as:

sti =
h>t hi√
dh
, at = softmax(st·), ct =

t−1∑
i=1

atihi (7)

where i ∈ [1, t − 1] and at ∈ Rt−1. The final state repre-
sentation is ĥt = [ht, ct] which is fed into the Q-network to
generate the present action and value.

Risk-aware Reward
Although CREDIT can leverage RNNs in state representa-
tion learning to fully exploit the temporal correlations em-
bedded in history, the agent in CREDIT would pursue risky
trading opportunities with potentially great loss in the future
which is similar to human amateur investors, if it is guided to
maximize the overall profit as previous methods. To address
this issue, inspired by previous economic research in portfo-
lio management (Markowitz 2014), in CREDIT, we design
a risk-aware reward that incorporates the risk of trading by
approximating the utility function U(r) = ln (1 + r) with a
quadratic:

UQ(r) = U(0) + U ′(0)r + 0.5U ′′(0)r2 = r − 1

2
r2 (8)

As shown in Fig.3, there is insignificant difference between
ln (1 + r) and r − 1

2r
2 when −0.30 ≤ r ≤ 0.40, which

indicates that the quadratic approximation can be a good al-
ternative. Consequently, the expected value of the approxi-
mation quadratic as the reward would include the mean and
variance of the returns:

R = E[UQ(r)] = E(r)− αV (r) (9)

where E is the mean value, V is the variance, and we in-
troduce a parameter α. Different from maximizing the cu-
mulative profit, the reward considers both the profit (mean
value) and the risk (variance) of the returns during the trad-
ing. Recalling the example mentioned before in Subsection
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Figure 3: The utility value of the utility function ln (1 + r)
and the quadratic approximation r− 1

2r
2 under different re-

turn r.

Risk-aware Reward, for two agents A and B (A first earns
100% and loses 30% while B earns 10% for each trading),
the expected utility ofAwould be 0.3−0.49α andB be 0.1.
Therefore, when α ≥ 0.41, our method would prefer B over
A which is opposite from the preference of reward without
considering risk, which means our reward concerns the risk
of tradings more. This leads the agent to perform less risky
tradings and more consistent performance in the future.

Experiments
Data
We select daily real-world stock data which is obtained
from Tiingo End-Of-Day API1. We consider all stocks from
the U.S. stock market without any missing data during the
sample period, which starts on January 2, 2015, and ends
on December 31, 2018. This limits our sample to 7284
firms. The prices of stocks are adjusted considering any
corporate actions within the sample period, which is fur-
ther normalized by logarithm. Finally, as in previous meth-
ods (Brim 2020; Wang, Sandås, and Beling 2021; Kim, Park,
and Lee 2022), we perform pair selection using the aug-
mented Engle-Granger two-step cointegration test (Engle
and Granger 1987) and select AerCap (AER)-Air Lease Cor-
poration (AL) as the trading pair which have the lowest p-
value. The final sample consists of 1006 daily observations
of the price features of two stocks.

Experiment Settings
Different from previous research, we not only split the sam-
ple period into 11 rollings, but also divide each 18-month
rolling into three non-overlapping subperiods, including 12-
month training, 3-month validation, and 3-month testing,
as shown in Fig. 4. It allows our method to select hyper-
parameters for our methods and baselines according to their
performance in the validation set that is unseen. This is im-
portant since the testing data is also unseen in the applica-
tion.

1Tiingo. Tiingo stock market tools.
https://api.tiingo.com/documentation/iex



Model SR⇑ AR(%)⇑ MDD(%)⇓ AV(%)⇓ AHD TT ABD

BAH-Long 0.11 ± 1.07 6.06 ± 10.31 3.75 ± 0.80 8.22 ± 1.12 62 1 0

BAH-Short 0.08 ± 0.99 4.20 ± 8.91 3.82 ± 0.99 8.97 ± 1.54 62 1 0

CPM -2.02 ± 0.62 -9.80 ± 3.59 3.84 ± 0.76 5.82 ± 0.80 13.22 ± 3.47 3.00 ± 0.50 9.11 ± 2.64

MLP-RL 0.54 ± 1.12 7.60 ± 10.17 2.75 ± 1.00 7.46 ± 1.14 3.26 ± 0.31 14.82 ± 1.61 1.84 ± 0.28

CREDIT 0.87 ± 0.74 9.66 ± 7.45 3.08 ± 0.92 7.90 ± 1.70 22.61 ± 14.24 10.73 ± 8.18 4.40 ± 5.13

w/o risk 0.70 ± 0.65 9.15 ± 6.47 3.20 ± 0.65 8.47 ± 1.42 25.10 ± 11.60 4.82 ± 2.83 1.60 ± 1.80

w/o Bi-GRU-0.43 ± 1.06 0.17 ± 7.18 3.38 ± 1.05 7.42 ± 1.83 29.97 ± 15.24 7.27 ± 6.64 7.52 ± 8.75

Table 1: Results on the AER-AL stock pair. The metric is reported as the average value of 11 rollings which is rounded to
two decimals. Except for our method and baselines, we also report two ablations of our method: (1) w/o risk which doesn’t
consider the risky and only maximizes the overall profit, and (2)w/o Bi-GRU & temporal attention that removes Bi-GRU with
temporal attention and use the feedforward neural network to encode the history of two assets.

Training Validation Testing

Rolling 1

Rolling 2

Rolling 3

Rolling 11

… …

Date

Figure 4: The rolling and split of our experimental data.

We compare our method CREDIT with the following
baselines: (1) Buy and hold (BAH): a strong baseline that
starts trading from the beginning and ends trading in the
end. (2) Constant parameters method (CPM) (Fallah-
pour et al. 2016): pre-defined fixed trading strategy whose
trading and stop-loss threshold is set to 1.0 and 2.0 respec-
tively. (3) MLP-RL (Wang, Sandås, and Beling 2021):
reinforcement-learning-based pair trading method which
maximizes the overall profit with feed-forward networks.

As in previous methods, we first evaluate the performance
via return and risk metrics, including (1) Sharpe ratio
(SR): the ratio of the profit to the risk (Sharpe 1994), which
is calculated as (E(Rt) − Rf )/V (Rt), where Rt is the
daily return and Rf is a risk-free daily return that is set
to 0.000085 as previous methods. (2) Annualized return
(AR): the expected profit of the agent when trading for a
year. (3) Maximum drawdown (MDD): measuring the risk
as the maximum potential loss from a peak to a trough dur-
ing the trading period. (4) Annualized Volatility (AV): mea-
suring the risk as the volatility of return over the course of a
year.

Different from previous methods, we are the first to em-
ploy several trading activity metrics to reveal the trading
preference of the agent, including: Average holding days
(AHD): average days of holding between opening and end-
ing trading, or average length of trading. (2) Trade times
(TT): the number of tradings during the trading period. (3)
Average empty days (ABD): average days between two
tradings. We report the mean value of these metrics over all
rollings.

Results Analysis
As shown in Tab. 1, our method achieves the best perfor-
mance over other baselines, demonstrating the effectiveness
of our method. On one hand, from the perspective of profit
and risk, CREDIT achieves the highest profit with relatively
low risk. Among all methods, CREDIT can yield the highest
AR and SR, which reveals that our method can effectively
exploit profitable trading opportunities. As for risk, CREDIT
has the second lowest MDD which proves that our method
can avoid risky tradings with large potential losses. Our
method has a relatively high annualized volatility since the
metric considers the fluctuations when the return rises. This
is also proved by the significant improvement in SR of our
method when compared with the RL-based method MLP-
RL, since MLP-RL ignores the sequential relationships in
state representation learning and the risk of each trading
in reward. Our method has a much higher AR than MLP-
RL with similar MDD and AV, indicating that our method
achieves remarkable profit with controlled risk.

RL-based methods such as our method and MLP-RL both
outperform traditional pair trading method CPM with pre-
calculated trading thresholds, which shows the essence of
learning a flexible agent from history. With wrong estima-
tion and fixed trading rules, CPM presents the worst perfor-
mance whose SR and AR are even negative. It has inferior
performance compared with BAH which performs only one
trading, which means most tradings in CPM present negative
returns. In contrast, our method and MLP-RL both yields a
significant profit compared with BAH.

On the other hand, from the perspective of trading pref-
erence, the agent in our method can perform infrequent
trading with long-term holding, which is similar to a hu-
man expert. Among all methods, CREDIT has a relatively
low TT and second longest AHD and ABD, which means
our agent prefers long-term trading opportunities to short-
term. In contrast, although MLP-RL can also yield a pos-
itive return, their agent has the highest TT, shortest AHD,
and second shortest ABD. This indicates that their agent
performs frequent tradings during the trading most of which
only holds for one day, due to their inhabit in capturing long-
term correlations between historical features and the risk of
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Figure 5: Agent’s trading actions on the 4th rolling of our method and MLP-RL. The above one is CREDIT and the below one
is MLP-RL.

the trading. The frequent trading preference of their agent
can also be observed during the trading of a human amateur
investor which generally yields a limited performance.

Similar to our method, CPM has a relatively low TT and
high AHD and ABD. However, this is due to the wrong es-
timation of the mean and variance of the price spread which
makes it hard to trigger the trading. Without flexible agent
learning from history, the few tradings in CPM tend to cause
losses rather than profit, resulting in a worse performance
than BAH which only performs one trading over 62 days
during the trading period.

Ablation Study
As illustrated by the comparisons between our method and
two ablations in Tab. 1, the improvement of our method
compared with MLP-RL attributes to both the Bi-GRU with
temporal attention and the risk-aware reward. Our method
of maximizing the overall profit (w/o risk) presents a higher
MDD and AV but lower AR, which proves the essence of
considering the risk of the trading in reward design. Our
method with a feed-forward neural network (w/o Bi-GRU)
has a similar trading preference as our method. However,
since it cannot capture the temporal connections between
two trading points, it fails to recognize profitable patterns
and most tradings struggle to yield a profit, resulting in poor
performance. It clearly demonstrates the importance of in-

tegrating Bi-GRU along with the temporal attention in our
method.

Case Study
To further demonstrate the trading preference of our agent,
we also visualize the detailed tradings performed by our
method and MLP-RL in the testing period of the 4-th rolling.
As shown in Fig 5, the price spread continues to rise in the
latter 40 days of the period. While the agent of CREDIT
can effectively capture the long-term trading opportunity,
the agent of MLP-RL performs a series of short-term trading
which only significantly increases losses and trading costs.

Conclusion
In this paper, we present CREDIT, a reCurrent Reinforce-
ment lEarning methoD for paIrs Trading, using recurrent
reinforcement learning to dynamically learn a risk-aware
agent that can exploit long-term trading opportunities as hu-
man experts. It integrates Bi-GRU along with temporal at-
tention mechanism to explicitly model the sequential infor-
mation for state representation learning, and a risk-aware
reward to guide the agent to avoid risky tradings. Experi-
mental results demonstrated that our method can perform
long-term tradings and achieve a promising profit in the
real-world stock dataset. In the future, we will further pre-
train the time series model with trading tasks and introduce



trajectory-based risk indicators into the learning of the agent.
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