
Making Contextual Decisions with Low Technical Debt
Alekh Agarwal, Sarah Bird, Markus Cozowicz, Luong Hoang, John Langford, Stephen Lee∗, Jiaji Li∗

Dan Melamed, Gal Oshri∗, Oswaldo Ribas∗, Siddhartha Sen, Alex Slivkins
Microsoft Research, ∗Microsoft

Abstract
Applications and systems are constantly faced with decisions
that require picking from a set of actions based on contextual
information. Reinforcement-based learning algorithms such
as contextual bandits can be very effective in these settings,
but applying them in practice is fraught with technical debt,
and no general system exists that supports them completely.
We address this and create the first general system for con-
textual learning, called the Decision Service.

Existing systems often suffer from technical debt that
arises from issues like incorrect data collection and weak
debuggability, issues we systematically address through our
ML methodology and system abstractions. The Decision
Service enables all aspects of contextual bandit learning us-
ing four system abstractions which connect together in a
loop: explore (the decision space), log, learn, and deploy.
Notably, our new explore and log abstractions ensure the sys-
tem produces correct, unbiased data, which our learner uses
for online learning and to enable real-time safeguards, all in
a fully reproducible manner.

The Decision Service has a simple user interface and
works with a variety of applications: we present two live
production deployments for content recommendation that
achieved click-through improvements of 25-30%, another
with 18% revenue lift in the landing page, and ongoing ap-
plications in tech support and machine failure handling. The
service makes real-time decisions and learns continuously
and scalably, while significantly lowering technical debt.

1 Introduction
Machine learning has well-known high-value applications,
yet effective deployment is fraught with difficulties in prac-
tice [12, 43]. Machine-learned models for recommendation,
ranking, and spam detection all become obsolete unless they
are regularly infused with new data. Using data is actually
quite tricky—thus the growing demand for data scientists.
How do we create a machine learning system that collects
and uses data in a safe and correct manner?

Recently, Sculley et al. [43] used the framework of tech-
nical debt—the long-term costs that accumulate when expe-
dient (but suboptimal) decisions are made in the short run—
to argue that ML systems incur massive hidden costs at the
system level, beyond the basic code complexity issues of tra-
ditional software systems. Thus, traditional mechanisms for
coping with technical debt, such as refactoring code or im-
proving unit tests, are insufficient for ML systems.

In this work, we create a system for contextual decision
making that addresses an important subset of these failure

Explore

LogLearn

Deploy

Figure 1: Complete loop for effective contextual learning,
showing the four system abstractions we define.

modes and technical debts. Prior experiences of deploying
one-off solutions [4, 33, 34, 12], and failures we have ex-
perienced ourselves, call for a systematic approach that ad-
dresses these debts by design. Specifically, we target failure
modes and technical debts incurred by: feedback loops and
bias, distributed data collection, changes in the environment,
and weak monitoring and debugging (§2). Existing systems
neither solve the class of problems we handle, nor address
these debts.

As it turns out, the problem domain we are interested in—
contextual decisions in interactive settings—leads to higher
incidence of failure modes and technical debt than traditional
supervised prediction problems. In a traditional prediction
problem, a context (e.g., image features) is given, a pre-
diction (e.g., dog or cat) is made and the true label is then
revealed. Crucially, the label can be used to measure the
quality of any potential prediction on this context, which
is key in the supervised learning techniques used for this
setting. In our setting, an application repeatedly takes ac-
tions (e.g., which type of news article to show) when faced
with a particular context (e.g., user demographics) to obtain
a desirable outcome quantified as a reward (e.g., a click).
The goal is to find a good policy mapping contexts to ac-
tions, e.g., show politics articles to adults and sports articles
to teenagers. The feedback mode puts the algorithm in a
reinforcement learning setting, which is significantly more
challenging [2] than supervised learning [20]. This paradigm
covers a huge range of applications including virtually every
online service; Table 2 has examples.

Two properties make this setting particularly challenging:

1. The reward is observed only for the chosen action; noth-
ing is learned about unexplored actions, leading to partial
feedback. In supervised learning, the true label determines
the quality of every prediction leading to full feedback.
2. Rewards arrive after a delay, often via a separate data path.

• Partial feedback. Partial feedback settings are prone to
bias, because the decisions made by a system affect the data

ar
X

iv
:1

60
6.

03
96

6v
2

 [
cs

.L
G

]
 9

 M
ay

 2
01

7

collected to train the system [12, 43]. For example, it is not
possible to learn that a news article about sports generates
more clicks than one about politics when shown to a partic-
ular demographic, without showing them both types of arti-
cles at least some of the time. In addition, the demographic’s
preferences may change over time. Hence, there is a need to
explore so as to acquire the right data; a biased dataset, no
matter how large, does not enable good learning.

• Delayed rewards. In most applications, reward informa-
tion (e.g., did the user click the article?) arrives after a con-
siderable delay, ranging from seconds to days. Often, this
data is collected by a separate subsystem and follows a sepa-
rate data path. Since an event is incomplete until the reward
is known, this requires distributed data collection, which is a
common source of data errors. In addition, since rewards for
some actions take longer to arrive than others, there is a real
possibility of delay-related bias entering the dataset.

Addressing these issues requires a synthesis of ML tech-
niques as well as careful system design. On the ML side, ex-
ploration addresses some of the issues caused by partial feed-
back. A common methodology for exploration is A/B testing
[28, 29]: policy A is tested against policy B by running both
live on a percentage of user traffic drawn at random. This re-
quires data scaling linearly with the number of policies to be
tested. On the other hand, contextual bandits [3, 31] is a type
of machine learning that allows testing and optimization over
exponentially more policies for the same amount of data1.
Moreover, the policies being evaluated need not be deployed
or even known ahead of time, saving vast business and en-
gineering effort. We refer to this dramatic improvement in
capability as multiworld testing (MWT), and realize it with
contextual bandits and policy evaluation techniques [33, 34].

Our ML methodology has two important properties: it ad-
dresses the biased feedback loop and enables advanced mon-
itoring/debugging through its policy evaluation capabilities
(§3). It does not, however, fully address a nonstationary en-
vironment nor the data collection issues caused be delayed
rewards. In fact, the ML theory simply assumes correct data
is provided as input, which is hard to ensure in practice.

We argue that well-defined system abstractions are re-
quired for correct data collection. We propose the 4-step
loop shown in Fig. 1: explore to collect the data, log this
data correctly, learn a good model, and deploy it in the ap-
plication. Existing systems typically focus on the learn and
deploy steps, while ignoring or mishandling the data collec-
tion steps (explore and log); further, the steps are managed
by independent processes, resulting in the complete process
being inefficient, expensive, and error-prone. By connecting
these abstractions in the right way, we address the remaining
sources of failures and technical debt (§4.2). The explorer
invokes the logger at the time of decision to record the deci-
sion event, and later to join the reward. To avoid delay bias,

1E.g., 1 billion policies for the data collection cost of 21 A/B tests [38].

the logger imposes a uniform delay before releasing joined
data to the learner. Finally, models are trained and deployed
online to cope with dynamic environments. The abstractions
are modular, and can be implemented, maintained and tested
separately so as to not add new sources of debt resulting from
a monolithic system.

Our system abstractions and ML methodology enable
other techniques for reducing technical debt, such as full
reproducibility and real-time safeguards (§4.3). The result-
ing system is called the Decision Service: it is fully func-
tional, publicly available, and open-sourced [16]. It exposes
a simple interface and supports several deployment options
(§5), each of which has been exercised by a real deploy-
ment. We describe three live production deployments for
content recommendation in MSN, Complex, and TrackRev-
enue, and two ongoing applications in assisting tech support
staff and cloud machine failures (§6). Each deployment has
achieved a double-digit lift between 14–25% in their target
metric (e.g., clicks, revenue) relative to strong baselines.

Our evaluation (§7) shows that the Decision Service
makes decisions with low latency, incorporates new data into
deployed models quickly, and scales to the traffic of our cus-
tomers and beyond. More importantly, we show through ex-
periments on production data and anecdotal experiences, that
the service reduces the technical debts we sought to address.

In summary, we make the following contributions:

• We implement an ML methodology that achieves MWT ca-
pability and eliminates important failures by design (§3).

• We define four system abstractions for realizing this
methodology in a robust manner (§4.2). We describe ad-
vanced techniques that further reduce technical debt, such as
full reproducibility and real-time safeguards (§4.3).

• We present the first general-purpose service for contextual
reinforcement learning, with a simple API, several deploy-
ment options, and source code (§5). We describe three live
production deployments and two ongoing applications (§6).

• We evaluate the performance of the service (in production
when possible) using systems as well as learning criteria. We
also evaluate its effectiveness at reducing technical debt (§7).

2 Motivation
Our motivation to create the Decision Service came from
failures and hidden costs both we and others have encoun-
tered2 while deploying contextual learning solutions for pro-
duction applications [4, 33, 34, 12]. Each application re-
quired substantial code and infrastructure, and was subtle
enough that correct implementation eluded most developers.

Below are the sources of failure that we target, at a high
level. If not addressed by design, most of these issues can
cause difficult-to-debug performance degradation later in the
deployment and lead to technical debts.

2Unfortunately, such failures are typically not published.

2

(F1) Partial feedback and bias. Due to partial feedback,
a system that does not explore will reinforce its own biased
decisions. Rewards that arrive after variable delays can in-
troduce bias in favor of actions with faster positive feedback.
These biases create a discrepancy between (predicted) per-
formance at learning time and (actual) performance at de-
cision time. Examples: The baseline systems in our content
recommendation deployments do not explore, and are unable
to evaluate actions they do not pick.3 Fast clicks on “click-
bait" articles can temporarily bias the system in their favor.

(F2) Incorrect data collection. Distributed and delayed
data collection increases inconsistencies between the data
seen at decision time and the data used for learning. With
complex pipelines, it is common to log not the action cho-
sen by the ML algorithm, but the outcome at the end of the
pipeline. The benefits of MWT are lost if the data is incorrect.
Examples: In MSN and TrackRevenue, the context features
(e.g., user browsing history and click statistics) can be up-
dated by independent processes that pre-date our deployment
and are not necessarily designed with ML in mind. MSN
editors periodically lock content on the site (e.g., breaking
news) which may override our decisions and typical systems
record just the editorial override.

(F3) Changes in the environment. Real environments are
non-stationary: the distribution of inputs to the system—
e.g., user requests or input features generated by upstream
components—as well as the processing of outputs by down-
stream components, changes over time. Adapting to these
changes is necessary to maintain performance. Examples:
In our deployments, we have seen breaking news events
sway MSN users’ interests en masse. Downstream business
rules at MSN and Complex also change over time.

(F4) Weak monitoring and debugging. The ability to re-
produce an online run offline is key to debugging a learning
system, but rarely supported in full. Most systems lack the
ability to ask “what if”, or counterfactul questions, making
it hard to implement safeguards or automated responses even
when real-time monitoring is available. Examples: Early in
our MSN deployment, the cause for a buggy ML model was
correctly traced only after full reproducability was achieved.
All product teams we engaged with used expensive A/B tests
to monitor the performance of alternative solutions.

There is a common theme above of ensuring consistency
between learning-time and decision-time performance. This
is not surprising: being able to accurately predict online per-
formance is essential to a learning system.

We discuss related work in §8, but note here that the exist-
ing ML systems fail to address most of these issues. In par-
ticular, the supervised learning systems listed in Table 1 do
not support exploration, and hence do not address contextual

3An illustration of such problems can be found in the blog post: http:
//hunch.net/?s=randomized+experimentation

Category Example ML systems
Supervised Caffe, CNTK, GraphLab, LUIS, Minerva, mldb.ai, MXNet
learning MLlib, NEXT, Param.Server, ScikitLearn, TensorFlow, Torch
Bandit learning Clipper, Google Analytics, LASER, VW, Yelp MOE
Cloud service Amazon ML, AzureML, Google Cloud ML
A/B testing Google Analytics, MixPanel, Optimizely

Table 1: A simplified categorization of ML systems (over-
laps exist, e.g., cloud services support supervised learning).
None of the systems address our main technical debts (§2).

learning settings or the issues in (F1). Several systems sup-
port bandit learning but not contextual bandit learning, which
is significantly more powerful. None of the systems support
data collection to properly address (F2), except LUIS (for a
different setting of active learning) and NEXT, which addi-
tionally handles multi-armed bandits but not general contex-
tual bandits and neither system supports offline evaluation/-
monitoring highlighted in (F4). The cloud services support
retraining and deploying models, but not in an online fash-
ion. Clipper [15] incorporates feedback in real-time and thus
better addresses (F3), but only explores over the predictions
of existing (batch-trained) models. Several systems provide
some debugging functionality, and some (e.g., NEXT) sup-
port reproducible runs, addressing (F4). While A/B testing
platforms can answer counterfactual questions by running a
live experiment for each question, the systems in Table 1
cannot answer new counterfactual questions from already-
collected data, let alone match the sample efficiency of MWT.
The Decision Service fills all these gaps.

The paper addresses the motivating issues as follows. The
ML methodology in §3 partially addresses (F1), (F3) and
(F4), and the system abstractions in §4 aim to address all
issues at once. Our evaluation (§7.2) investigates the specific
examples listed above (among others).

3 Machine learning methodology
From the machine learning perspective, we implement a ca-
pability we call multiworld testing (MWT), which can test and
optimize over K policies using data and computation that
scales as logK, without any prior knowledge of the policies.
We show that MWT addresses (F1) and helps address (F4).

Our methodology synthesizes ideas from contextual ban-
dits (e.g., [3, 31]) and policy evaluation (e.g., [33, 34]). The
methodology is modular: exploration and logging support
offline evaluation and learning over arbitrary policy sets.
This modularity maps to modularity in our system design.
Contextual decisions. Consider an application APP that in-
teracts with its environment, such as a news website with
users or a cloud controller with machines. Each interaction
follows the same broadly applicable protocol:

1. A context x arrives and is observed by APP.
2. APP chooses action a ∈ A to take (A may depend on x).
3. A reward r for a is observed by APP.

Table 2 shows examples from our deployments. Contexts
and actions are usually represented as feature vectors. APP

3

http://hunch.net/?s=randomized+experimentation
http://hunch.net/?s=randomized+experimentation

News website (News) Tech support assistance (TechSupp) Cloud controller (Cloud)
Decision to optimize article to display on top response to query wait time before reboot unresponsive machine
Context location, browsing history,... previous dialog elements machine hardware/OS, failure history,...
Feasible actions available news articles pointers to potential solutions minutes in {1,2,...,9}
Reward click/no-click (negative) human intervention request (negative) total downtime

Table 2: Example applications of the Decision Service. Each is representative of a real deployment discussed in §6.

chooses actions by applying a policy π that takes a context as
input and returns an action. The goal is to find a policy that
maximizes average reward over a sequence of interactions.
We assume for now that APP faces a stationary environment.4

Exploration and logging. An exploration policy is used to
randomize each choice of action. The randomization need
not be uniform and for best performance should not be [3, 6].
A simple policy is EpsilonGreedy: with probability ε0 it
chooses an action uniformly, and uses a default policy π0
otherwise. π0 might be the baseline deployed in production
or the current best guess for an optimal policy. ε0 controls an
explore-exploit tradeoff : π0 guarantees a minimum perfor-
mance while randomization explores for better alternatives.
The parameters ε0 and π0 can be changed over time. The
contextual bandit literature provides several exploration poli-
cies including near-optimal schemes.

Each interaction is logged as a tuple (x, a, r, p), where p
is the exploration policy’s probability of choosing a given x.
These datapoints are called exploration data. Recording p
enables unbiased policy learning, which addresses (F1).
Policy learning. Given N exploration datapoints, we can
evaluate any policy π (i.e., estimate its average reward) re-
gardless of how the data was collected. The simplest ap-
proach is to use inverse propensity scoring (ips):

ips(π) = 1
N

∑N
t=1 1{π(xt) = at} rt/pt, (1)

where the indicator is 1 when π’s action matches the explo-
ration data and 0 otherwise. This estimator has three impor-
tant properties. First, it is data-efficient: each interaction can
be used to evaluate any π that has a matching action, regard-
less of the policy collecting the data. In contrast, A/B testing
only uses data collected using π to evaluate π. Second, the
importance weighting by pt makes it statistically unbiased:
it converges to the true reward as N → ∞. Third, the esti-
mator can be computed incrementally as new data arrives.

Thus, using a fixed exploration dataset, we can compute
accurate counterfactual estimates of how arbitrary policies
would have performed without actually running them, in
real-time. We use this in our system design to enable ad-
vanced monitoring and safeguards, addressing (F4). In con-
trast, A/B testing would have to run a live experiment to test
each policy.

The ability to reuse data is what makes this approach ex-
ponentially more efficient than A/B testing, in a manner we
can quantify. Suppose we wish to evaluate K different poli-
cies. Let ε be the minimum probability given to each action

4Stationary here means the context and the reward given the context-
action pair are drawn independently from fixed distributions.

in the exploration data (for EpsilonGreedy, ε = ε0/|A|),
and assume all rewards lie in [0, 1]. Then, with probabil-
ity 1 − δ the ips estimator yields a confidence interval of

size
√

C
εN log K

δ for the values of all K policies simultane-
ously, whereC is a small constant. Crucially, the error scales
O(logK). In contrast, with A/B testing the error could be

as large as C
√

K
N log K

δ , which is exponentially worse. This
also underscores the need to explore over all relevant actions:
if ε = 0, we cannot correctly evaluate arbitrary policies.

Policy evaluation allows us to search a policy class Π
to find the best policy, with accuracy similar to the above
bounds (replace K with |Π|). This is called policy training.
Typically Π is defined by a tunable template, such as linear
vectors, decision trees, or neural nets. Note that we need not
test every policy in Π; instead, we can use a reduction to
cost-sensitive classification [19], for which many practical
algorithms exist.
Non-stationarity. The estimates of policy performance are
only predictive of future performance if the environment is
stationary, but in practice applications exhibit only periods
of (near-)stationarity. To cope with a changing environment,
our system design implements a continuous loop in the vein
of Fig. 1. This has two implications for policy training. First,
an online learning algorithm is (almost) necessary, so that
new datapoints can be incorporated quickly without restart-
ing the training. Second, since most online learning algo-
rithms gradually become less sensitive to new data (via a
shrinking learning rate in the optimization), we periodically
reset the learning rate (e.g., for MSN we reset each day) or
use a constant rate throughout (e.g., for Complex), thereby
partially addressing (F3).
Problem framing. “Framing” the problem—defining the
context/features, action set, and reward metric—is often non-
trivial and is a common difficulty in many applications of
machine learning. The Decision Service does not directly ad-
dress problem framing, but eases the task in two ways: auto-
generating features for content recommendation applications
(§4.3.3), and allowing testing of different framings (includ-
ing changes to the reward metric, with proper logging) with-
out collecting new data (see “Offline Learner", §4.2).

4 System Design
While our ML methodology breaks the biased feedback loop
in (F1) and enables arbitrary policy evaluation, it takes sys-
tems support to fully address changing environment, data
collection issues, and delay-related bias. For example, the
ML methodology simply assumes (x, a, r, p) data is cor-

4

rectly provided as input, but this is nontrivial in practice.
Our system design fills these gaps to operationalize our

ML methodology. We list our design goals (§4.1), define a
set of abstractions and an architecture that implements them
(§4.2), and highlight key techniques to meet our goals (§4.3).

4.1 Design goals
Our goals are addressing the twin concerns of keeping a low
technical debt and having a performant system.
Failures / technical debt. So far we have discussed these
issues at a high-level. We now create concrete design goals
motivated by specific examples.

Logging at the point of decision: MWT relies crucially on
accurate logging of the (x, a, r, p) tuples. The system must
record (x, a, p) at the time of decision and match the appro-
priate reward r to it. There are many ways we have seen this
go wrong in practice. For example, features may be stored as
references to database entries that are updated by a separate
process. Consequently, the feature values available at learn-
ing time might differ from those at decision time, whether
due to updates/additions/removals or access failures. When
optimizing an intermediate decision in a complex system, the
action chosen initially might be overridden by downstream
business logic (like editorial locking), and this is the action
that gets logged. In this case, the probabilities p correspond
to the choice of a, not the recorded action, and are thus in-
correct. Sometimes, probabilities are stashed as part of the
context and included as an action feature by accident.

Experimental unit for joining: Different rate of reward ar-
rivals on different actions can lead to biases as discussed in
§2. This can be avoided by waiting a pre-set duration for
reward arrival before the joining is done, and assigning a de-
fault reward (say 0) if no feedback arrives in that duration.

Continuous learning: A system that does not continuously
learn (or fails to reset the learning rate as specified by our
methodology) does not adapt well in non-stationary environ-
ments where a low-latency learning loop is required.

Reproducibility: Interactive systems which span many
components are challenging to debug. Events may be de-
layed, reordered, or dropped and affect the system in com-
plex ways, making it difficult to reproduce a bug. The diffi-
culty is magnified when the system is continuously learning,
because the system is no longer stationary, and it is difficult
to disentangle issues in the learning algorithms from systems
issues. The ability to fully reproduce an online run offline is
essential to effectively debug learning.
Systems goals. In addition to supporting the technical debt
minimization goals above, the system needs to meet the per-
formance and functionality demands of our customers.

For interactive high-value applications, serving latency
tends to be directly linked to user experience and rev-
enue [42]. To optimize these reward metrics, the system
must provide decisions in ∼10ms or less to keep application
response times under ∼100ms. Some applications need to

Client Library
or

Web API

Join
Service

interaction
reward

Online
Learner

Offline
Learner

exploration
data

A
p

p

Store real-time
eval

dashboard
safeguards

etc.

context

action

reward

Feature
Generator

context

Explore

models

Log

Learn

Deploy

models

params
models

models/data
(from Store)

Figure 2: Decision Service architecture

quickly incorporate new data into the machine-learned pol-
icy (e.g., for breaking news stories), so the system needs a
learning loop that can update the policy every few minutes.

As with any service, the system should be scalable and
fault-tolerant. Two issues are unique in our setting. First, de-
layed rewards increase the active state of the system where
the volume of state depends on the size of the outcome ob-
servation, the interaction arrival rate, and the typical delay
until the reward is observed. Second, ensuring reproducibil-
ity requires care when handling reordered events from scale-
out components or failures. The system should not lose data
that was trained on and should recover the previously learned
policies and other valuable state of the learning algorithm.

The system should provide flexible deployment options
and be easy to use and customize. A modular design with
well-defined interfaces admits multiple implementations, al-
lowing us to adapt and evolve the system to applications’
needs. The system should expose the power of our ML
methodology to support offline experimentation, i.e., using
exploration data (instead of live experiments) to tune param-
eters, try other exploration/learning algorithms, etc.. To re-
duce setup complexity, sensible defaults should be provided
for all components.

4.2 Abstractions and architecture
Our system is designed to match the modularity of the ML
methodology including the exploration and logging compo-
nents and the policy evaluation and training steps. Doing so,
we define an abstraction for each step of the loop in Fig. 1:

• Explore: This component interfaces with the APP. It
takes as input context features x and an event key k from
APP, and outputs an action a. Separately, a keyed tuple
〈k, (x, a, p)〉 is sent to the Log component, where p is the
probability of the chosen action according to the exploration
policy. Later, a reward r and key k are input from APP, trig-
gering a transmission of 〈k, (r)〉 to the Log component.

• Log: This component generates exploration data by join-
ing each (x, a, p) tuple with its reward r. It defines a config-
urable parameter, experimental unit, that specifies how long
to wait for a reward to arrive. Thus, the component takes
a stream of keyed observations (k, o)∗ and emits a stream
of joined observations (o1, o2, ...)

∗, where observations are

5

joined if they share the same key k and appear within time
[t, t+ exp_unit], where t is the time k was first observed.

• Learn: This component performs policy training online.
It takes a stream (x, a, r, p)∗ of exploration datapoints from
the Log component and outputs a unique model (id,model).
A new model can be output after each datapoint.

• Deploy: This component stores models via a get/put inter-
face. The Learn component puts (id,model) into the store
and the Explore component gets a model using its id (or
the most recent model if no id is specified).

The abstractions by themselves address several of our
technical debt reduction goals. Fig. 2 shows the architecture
of the Decision Service and the component that implements
each abstraction. Each component is a scalable service.

The Client Library implements the Explore abstraction.
It implements various exploration policies from the contex-
tual bandit literature, addressing (F1), and logs the correct
data to the Log component, addressing (F2). In particular,
this enforces logging at the decision point (§4.1). The Client
Library downloads models from the Deploy component at a
configurable rate; before the first model is available, a user-
provided default policy/action may be used. The Client Li-
brary can be linked to directly for low latency decisions, or
accessed via a portable, scalable web API (see Fig. 3).

The Join Service implements the Log abstraction by join-
ing rewards to decisions, producing correct exploration data
to address (F2). It also enforces a uniform delay (exp_unit)
before releasing data to the Learn component to avoid delay-
related biases, addressing (F1) (as discussed in §4.1 above).
The exploration data is also copied to the Store for offline
experimentation (discussed below).

The Online Learner implements the Learn abstraction us-
ing any ML software that provides online learning from con-
textual bandit exploration data. It incorporates data continu-
ously and checkpoints models to the Deploy component at a
configurable rate, addressing our goal of continuous learning
and handling (F3). The Client Library must use compatible
ML software to invoke these models for prediction. The On-
line Learner uses Eq. 1 to evaluate arbitrary policies in real-
time, realizing MWT capability. These statistics enable ad-
vanced monitoring and safeguards (§4.3.2), addressing (F4).

The Store implements the Deploy abstraction to provide
model and data storage. This data is also used by the Offline
Learner for offline experimentation, such as tuning hyper-
parameters, evaluating other learning algorithms or policy
classes, changing the reward metric, etc. Our ML method-
ology guarantees these experiments are counterfactually ac-
curate [17, 19, 33, 34]. Improvements from offline experi-
mentation can be integrated into the online loop by simply
restarting the Online Learner with the new policy or settings.
This addresses some usability and customizability goals.

The Feature Generator eases usability further by auto-
generating features for certain types of content (§4.3.3).

4.3 Key techniques
We highlight several techniques that build on our abstrac-
tions to further address our design goals.

4.3.1 Full reproducibility
The Decision Service supports full offline reproducibility of
online runs, despite the presence of randomized exploration
and continuously updated policies. This addresses (F4).

The Client Library implements randomization using a
two-layer design: various exploration policies sitting in the
lower layer take as input a context and output a distribution
over actions; then the top layer samples randomly from this
distribution. Thus all randomization logic exists in one place.
Randomization occurs by seeding a pseudorandom number
generator (PRG) with the key k and an application ID; each
PRG is used for exactly one interaction. Including the ap-
plication ID in the seed ensures that the randomization from
multiple uses of the Decision Service are not correlated.

Policies trained by the Online Learner are stored with a
unique ID in the Store. The Client Library records the ID of
the policy used for each decision. This, combined with our
randomization scheme, ensures decisions are reproducible.

The Online Learner may encounter reordered events from
the Join Service due to scale out, so it records the order in
which interactions are processed with the stored policies.
Other learning events, such as periodic resets of the learn-
ing rate to favor recent events (see §3), are also recorded.
Together, this ensures each trained policy is reproducible.

We have not yet evaluated full reproducibility when scal-
ing the Online Learner as not even our largest deployments
have required it. In principle this can be achieved by record-
ing the parallel learning configuration.

4.3.2 Real-time safeguards
Each of our deployments has stressed the need for real-time
monitoring and safeguards against the unexpected. The De-
cision Service supports this, addressing (F4).

The incremental nature of ips (1) ensures we can do pol-
icy evaluation in real-time. The system supports this ability
in the Online Learner, which has a mechanism to specify
candidate evaluation policies, and the resulting estimates are
displayed through a dashboard (Fig. 2). This provides an
accurate estimate of a policy’s performance before it is de-
ployed, and also allows real-time comparisons with default
or “safe” policies. This monitoring is novel and powerful
because it is counterfactually unbiased, enabling automated
responses with confidence. For example, one could roll back
a policy if it deviates too much from how the previous best
policy would have performed, or trigger alerts when the pol-
icy starts losing out to some reasonable baseline. More ad-
vanced controls are possible, depending on the application.

4.3.3 Auto-generated features
Through working with different customers, we ob-
served that a large class of applications—online content

6

recommendation—benefited from the same kinds of featur-
ization. The Feature Generator makes it very easy for such
applications to use the Decision Service (see Fig. 3). Any
publicly accessible content (e.g., articles, videos, etc.) can
be passed to the Feature Generator ahead of time to be auto-
matically featurized and cached—e.g., text sentiment analy-
sis, video content indexing, etc.. These features are inserted
on-the-fly by the Client Library before making a prediction
involving this content.

Our implementation of the Feature Generator (§5) does
not directly reduce the technical debt associated with input
dependencies [43], because it relies on independent cloud
services to featurize the content. However, it shifts and con-
solidates the technical debt from multiple customers to a sin-
gle service (ours), which reduces costs in the long term.

4.3.4 Low-latency learning
The Decision Service enables efficient, low-latency learning
across its components, addressing a key systems goal.

The Client Library supports multi-threaded predictions
over a locally-stored model, which is critical for front-
end applications that serve many concurrent requests
(e.g., MSN). It also avoids sending repeated fragments of
a context (e.g., features of an article that appears in many
decisions) using a simple encoding scheme: the fragments
are sent explicitly only periodically, and are replaced with
references otherwise. Our implementation has further opti-
mizations (§5).

The Join Service adds no fundamental delay on top of the
experimental unit, but due to the above encoding scheme, it
may reorder events in a way that forces the Online Learner to
buffer references to features that have not yet been seen. The
Online Learner and Client Library use ML software support-
ing millisecond training and sub-millisecond prediction.

All components support batching to improve throughput.
Without batching, the end-to-end latency of submitting an
event and receiving a policy that trained on it is∼7 sec (§7).

5 Implementation and Deployment Options
Our implementation of the Decision Service is on Microsoft
Azure [36], but our design is cloud-agnostic and could be mi-
grated to another provider. We describe noteworthy aspects
of our implementation and the deployment options. Our self-
hosted service is open source [16].

The Decision Service presents a simple API, shown in
Fig. 3, implementing the definition of a contextual decision
from §3. The API is implemented by the Client Library or
a web service that proxies requests to it; the latter is built
on Azure Web Apps [10]. The Client Library links to Vow-
pal Wabbit (VW) [52] to predict locally on models trained
by the Online Learner, which also uses VW. It is imple-
mented in C#, C++, and Java. The C# library is about 5K
lines of code: 1.5K for exploration algorithms ranging from
EpsilonGreedy to the theoretically-optimal Cover [3], and
1.5K to handle batched uploads to the Join Service. We have

since migrated the code for exploration algorithms into VW

(∼1K lines), ensuring consistent parameters and logic be-
tween training and prediction.

The Join Service is implemented using Azure Stream An-
alytics (ASA) [9], which allows us to specify a delayed
streaming join using 45 lines of query language.

The Online Learner is implemented in 3.2K lines of C#
as an Azure worker role. It uses VW for online policy train-
ing and evaluation; we modified VW to support real-time
evaluation of arbitrary policies (i.e., MWT capability). VW

reduces policy training to cost-sensitive classification, for
which many base algorithms are supported. We currently
train a linear model (a vector of weights), though decision
trees, neural networks, and other representations are avail-
able (e.g., we are integrating CNTK [14] into VW as a base
learning algorithm).

The Store is implemented using Azure Blob storage. The
Offline Learner schedules jobs for policy training/evaluation
on stored data using a distributed analytics platform (we are
currently migrating to Azure Data Lake/U-SQL [7]).

The Feature Generator may provide additional context for
predictions. It uses Microsoft Cognitive Services to featur-
ize content from a URL and caches the results, such as Text
Analytics, Computer Vision, and Video Breakdown.

Communication between the Client Library, Join Service,
and Online Learner (shown as arrows in Fig. 2) happens via
JSON messages sent on queues called Event Hubs.
Scalability and faults. Except for the Online Learner, all
components can scale out and tolerate faults using the Azure
services they are built on. The Event Hubs connecting the
components are also fault tolerant: they can replay data up to
7 days in the past, which eases recovery. The Online Learner
recovers from failures more coarsely: it loads the last check-
pointed model from the Store and replays the Event Hub data
from that point onwards.

The Online Learner can scale out using VW’s AllReduce
communication primitive [1], which enables parallel learn-
ing across VW instances.
Optimizations for speed. To reduce the memory overhead
of parallel predictions in the Client Library, we modified VW

slightly to support sharing model state across VW instances.
Also, since the same context class (e.g., UserContext in
Fig. 3) is processed repeatedly, we construct and reuse an
abstract syntax tree to speed up serialization of the class
during uploads to the Join Service. On the other side, the
Online Learner supports multi-threaded deserialization of
joined data to keep up with VW’s training (which is very fast).

When using the web API, we leverage Azure FrontDoor’s
(AFD) global edge network, which reduces client latency by
maintaining persistent connections. Additionally, the API al-
lows contextual information to be embedded—either manu-
ally or using the Feature Generator—in a single background
HTTP call (Fig. 3). When called from a browser, this allows
the decision to manifest before the page finishes loading.

7

Sample interaction between APP and web API to choose content:

1. APP sends request to Decision Service: https://ds.microsoft.

com/api/decision/func/APP/a1/a2/.../aN.js

User/content features can be embedded manually (e.g., “/APP!
location=NY.../a1;trending=3.2”) or using Feature Generator.
2. Decision Service responds with action: Action:a2,EventId:X

This is passed via JSONP to the func callback to render a2.
3. APP reports a reward (e.g., click=1) using provided event ID:
https://ds.microsoft.com/api/reward?reward=1&eventId=X Or,
relies on a tracking pixel embedded into each content’s page.

Sample interaction between APP and Client Library choose content:

var serviceConfig = new
DecisionServiceConfiguration(settingsBlobUri: "<from
deployment page>");

var service =
DecisionService.Create<MyContext>(serviceConfig);

int action = service.ChooseAction(uniqueKey, myContext);
service.ReportReward(reward, uniqueKey);

The ChooseAction and ReportReward calls correspond to steps 1
and 3 in the web API. MyContext is any class that has been annotated
with JSON properties to identify features, non-features, etc. [16]).

Figure 3: The Decision Service API, accessible via a cross-platform web API (left) or a low-latency Client Library (right).

Deployment options. The Decision Service supports push-
button deployment (∼6 min.) after a simple registration [39].
Each option below has been used for a real deployment.

• Self-hosted: This deploys a Decision Service loop in your
Azure account. This is ideal for customers like MSN who
wish to control the deployment or limit exposure to data.

• Hosted: This deploys a Decision Service loop in our
Azure account, allowing us to share resources across tenants.
We omit discussion of our multi-tenant design, but the key el-
ements are: distributing model state across the web API fron-
tend servers and using AFD rules to direct each application’s
requests to the right server, creating a multi-tenant Join Ser-
vice, and consolidating Online Learners onto the same phys-
ical machines. The hosted service is being used by Complex.

• Local mode: This deploys a Decision Service loop locally
in your machine using extended functionality in the Client
Library. The Join Service is replaced by an in-memory
buffered join, and models are trained and invoked for pre-
diction by local VW instances. Local mode is particularly
useful for testing in simulated environments (e.g., network/-
cloud simulators). It is being used by Azure Compute.

6 Deployments
We describe five applications of the Decision Service across
diverse domains, as represented in Table 2. We focus on
problem framing and deployment characteristics here; eval-
uations and lessons learned are discussed in §7.
MSN. The Decision Service personalizes news stories dis-
played on the MSN homepage shown in Fig. 4. The deploy-
ment is now the production default, serving 10s of millions
of users who issue thousands of requests per second.

MSN’s problem is essentially the News problem from Ta-
ble 2: a user requests the homepage and MSN’s front-end
servers must decide how to order the articles on the page. If
a user is logged in, there is context: demographics (e.g., age,
location) and the topics of news stories they have clicked
on in the past; otherwise only location is available. The ac-
tion choices are the current set of news articles selected and
ranked by editors (tens of articles, typically). Each article has
features that describe its topic. The reward signal is clicks.

Figure 4: MSN homepage. The Slate (boxed red) and Panel
(boxed green) use the Decision Service in production as of
early 2016. Ads to the right (not optimized) also saw a lift.

The Decision Service optimizes the click-through rate
(CTR) on the article in the most prominent slot of a segment,
unless it is locked by the editors, and uses the resulting policy
to pick articles for all slots.5 The default exploration policy
EpsilonGreedy is used with ε = 33%. The experimental
unit is set to 10 minutes, and a new model is deployed to the
Client Library every 5 minutes. These settings are driven by
the data rate and how non-stationary the news application is.

Before using the Decision Service in production, MSN
used standard A/B testing to compare its performance with
the editorial ordering, the default policy which beat previous
attempts to use machine learning. Experiments on the Slate
segment of the page showed a >25% CTR improvement over
a two-week period; the Panel showed a 5.3% improvement,
which is even more significant as it receives 10x more traffic
than the Slate. These gains were achieved while maintaining
or improving long-term engagement metrics such as sessions
per unique user and average session length, showing that the
CTR metric is aligned with longer-term goals in this case.

The success of the experiments led MSN to make it the de-
fault in production for all logged-in users in early 2016. The
MSN team has since deployed the Decision Service a half
dozen ways. MSN’s deployments are self-hosted and they
have customized some of our components. For example,
they implemented a multi-tenant Join Service using Redis
Cluster [41] that is shared across applications (e.g., differ-
ent page segments). Our modular architecture allowed this
customization, while ensuring correct semantics were pre-
served. MSN uses the C# Client Library in their front-end
servers for low-latency, but clicks are reported directly from
user web browsers via the web API. A single Online Learner
is used for each application to isolate the trained models.

5There are approaches for optimizing all slots simultaneously [30].

8

https://ds.microsoft.com/api/decision/
https://ds.microsoft.com/api/decision/
/APP/a1/a2/.../aN.js
/APP!location=NY.../a1;trending=3.2
/APP!location=NY.../a1;trending=3.2
Action:a2, EventId:X
a2
https://ds.microsoft.com/api/reward?reward=1&eventId=X

Complex. Complex wanted to use the Decision Service in
two ways: to recommend videos to associate with news arti-
cles and to recommend top news articles. These applications
are similar to MSN but with several significant variations:

1. The amount of traffic is much lower, ∼ 35K events/day.
2. Features from Complex are much sparser, but high-
dimensional, derived from keywords or other metadata.
3. Complex uses a content distribution network implying
that all significant computation must be offloaded.

The first two variations make application of the Decision Ser-
vice much more statistically sensitive than with MSN. The
third variation forces the use of a cloud API (Fig. 3, left).
We leveraged our feature generators to enhance Complex’s
features with more informantive ones. The Decision Service
provide a lift of >30% over editorial.
TrackRevenue. TrackRevenue optimizes landing pages for
in-app advertisements so as to maximize revenue with event
rates of around 200k/day. This varies from the previous two
content recommendation applications because the revenue
signal is scalar rather than binary and much sparser. Request
rates also vary enormously depending on the campaign. The
baseline here is an ε-greedy bandit algorithm, that does not
incorporate context. This baseline is structurally similar to
our approach in this deployment besides the use of context,
so the 18% lift provides a measure of the value of context.
Toronto. Toronto wants to reduce technical support load by
automatically providing answers to technical support ques-
tions. There is a large negative reward associated with cus-
tomers requesting human intervention. This problem signifi-
cantly differs from the previous in the context (technical sup-
port queries), the nature of the actions (pointers to solutions),
a low event rate, and privacy concerns. Fortunately, Toronto
has existing systems and expertise winnowing down the set
of actions to a reasonable set and good actions are stable over
time allowing us to handle the low data rate. Thee privacy
concerns are addressed by simply deploying the service into
their own account. Results are too preliminary to report.
Azure Compute. Azure Compute wants to contextually
optimize dealing with nonresponsive virtual machines in a
cloud service. In particular, if you migrate too soon the cost
of migration may exceed the cost of waiting for the VM to
become responsive. Alternatively, waiting for a VM that
never becomes responsive is a pure waste of time. A very
large number of sparse features are available related to the
machine, the VM, and the process on the VM.

Unlike previous applications a large effectively supervised
dataset exists because the current baseline policy in their sys-
tem is to simply wait for 10 minutes, making it possible to
simulate the effect of any action involving migration before
10 minutes. Taking such a dataset collected with this base-
line, we estimated a 19% reduction in wasted time, signif-
icant enough to proceed to production. Note that once the
system is deployed, we can no longer evaluate all possible

options for free, as the system may choose to immediately
migrate, and the MWT capability of the Decision Service is
critical to computing real-world performance estimates.

7 Evaluation and Lessons
We evaluate the Decision Service based on how well it meets
our systems and technical debt minimization goals (§2,§4.1).
We use both live deployments and the exploration data col-
lected from them.

7.1 System evaluation
From a systems perspective, we answer the following:

1. What is the latency and overhead of making decisions?
How quickly is data incorporated into trained policies?
2. Can the system scale to high event rates?
3. Is there adequate support for offline experimentation?

Experimental methodology. We deployed a self-hosted De-
cision Service loop and drove traffic to it using the sample
code distributed with the Client Library [16], running on
several large A4 instances (8 cores, 14GB memory, 1Gbps
NIC). Except the Online Learner, all components including
the Event Hubs connecting them can be scaled by config-
uring the underlying Azure service. The Online Learner is
a stand-alone worker running on a D5 instance (16 cores,
56GB memory).

Some of our experiments use exploration data collected
from the MSN and Complex production deployments dur-
ing April 2016 and April 2017, respectively. This data con-
tains the real (x, a, p, r) tuples generated on those days with
x consisting of ∼1K features per action.

7.1.1 Latency of decisions and learning
We are interested in both decision latency and learning la-
tency. Decision latency is the time to make a decision in
the Client Library (i.e., the ChooseAction call). Learn-
ing latency is the time from when an interaction is complete
(i.e., ReportReward has been called) to when it affects a
deployed policy in the Client Library.

We measured the decision latency by training a policy on
one hour of MSN data, deploying this policy in the Client
Library, and then repeatedly calling ChooseAction. The
average latency is 0.2ms, well within the needs of our cus-
tomers. Latency is not the only metric that matters, however.
For example, MSN’s front-end servers are CPU limited, so
CPU/req is monitored very carefully. The Decision Service
increased CPU/req by 4.9%, which was deemed acceptable.

In our implementation, we described an optimization that
leverages Azure’s edge network and JSONP calls to our web
API to make fast decisions from a browser. This is enabled
in the hosted Decision Service used by Complex. Using page
load metrics across 20 days, we measured the difference be-
tween page load time and decision time (steps 1 and 2 in
Fig. 3) for Complex. Fig. 5 shows the results: except for
5.9% of requests, all decisions complete before the page fin-

9

0.0

0.2

0.4

0.6

0.8

1.0

-10 0 10 20 30 40 50 60 70 80 90 100 110 120

C
D

F

Page load - Decision Complete (sec)

Figure 5: Decisions complete before page loads in Complex.

ishes loading, and less than 1% take >4 more seconds (the
max is 8.7sec).

To measure learning latency, we first removed any con-
figurable sources of delay, such as batching and caching
(which could cause downstream reordering). We configured
the Client Library to poll for new models every 100ms, we
set the Join Service experimental unit to 1 second, and we
configured the Online Learner to publish an updated policy
after each event. We then replayed one event from the MSN
data and waited for a policy to appear. The average learning
latency is 7.3 sec.

7.1.2 High event rates
Most of our components are built on scalable services man-
aged by Azure. The Feature Generator relies on Microsoft
Cognitive Services APIs, which are also scalable (though
outside our control). Thus we focus on the Online Learner.

The data rates seen in all our production deployments have
been adequately handled by learning on a single core. To
saturate the Online Learner, we preloaded MSN data into
the Join Service’s output Event Hub and processed it at full
speed. MSN uses the Client Library’s encoding scheme
(§4.3.4) to reduce data size. The throughput achieved by
the learner was stable at 2000 events/sec, implying 100 mil-
lion events/day applications are viable. Buffering for events
whose encoded features had not arrived was minimal, re-
maining at 0 most of the time with occasional spikes up to
2250 events.

We observed two different bottlenecks in the Online
Learner. When using encoded contexts (e.g., MSN), the
smaller data makes policy training (VW) the bottleneck. For
example, increasing the number of articles (actions) per de-
cision in MSN from 10, 20, 30—which slows down training
without increasing data size too much—led to a throughput
decline of 2778, 1666, 1149 events/sec. When contexts are
not encoded (e.g., Complex), the bottleneck is the deserial-
ization of data received from the Join Service. We verified
this by changing the VW parameters to slow down training
without seeing any decline in throughput, at event/sec.

Although we have been able to scale the deserialization
overhead near-linearly using multiple Online Learners, we
have not yet incorporated VW’s parallel learning so cannot
comment on model performance. We plan to address this
when the need arises and do not expect new insights over
prior work [1].

0.0

0.1

0.2

0.3

0.4

0.5

0.6

1
2

/5

1
2

/6

1
2

/7

1
2

/8

1
2

/9

1
2/

1
0

1
2/

1
1

1
2/

1
2

1
2/

1
3

1
2/

1
4

1
2/

1
5

1
2/

1
6

1
2/

1
7

1
2/

1
8

1
2/

1
9

1
2/

2
0

1
2/

2
1

1
2/

2
2

1
2/

2
3R
el

at
iv

e
lif

t
(X

YZ
)

Date

0.0

0.2

0.4

0.6

0.8

1.0

1.2

3/25 3/26 3/27 3/28 3/29 3/30 3/31 4/1 4/2

R
el

at
iv

e
lif

t
(D

EF
)

Date

Figure 6: Daily CTR lift for MSN flight (Dec. 2015) and
Complex flight (Mar. 2016).

7.1.3 Offline experimentation
The Offline Learner has enabled us to run hundreds of ex-
periments on exploration data, across our deployments, to
tune parameters, try new learning algorithms, etc.. For ex-
ample, Complex began with a simple EpsilonGreedy pol-
icy to collect initial data. Using this data, we ran parallel
offline experiments and discovered higher CTRs when using
an ensemble exploration algorithm called Bag [3], a differ-
ent learning rate, and certain feature interactions and omitted
features. This was determined without any additional live
experiment, and our ML methodology guaranteed that the
results were counterfactually accurate.

7.2 Technical debt evaluation
From the perspective of technial debt, we ask how well the
Decision Service addresses problems F1-F4. As mentioned
in §2, a common theme across the problems is ensuring that
performance predicted at learning time matches observed
performance at decision time. Thus, most of our experiments
measure the discrepancy between the two caused by failures.
Experimental methodology. To simulate failures on explo-
ration data, we take a day’s data and randomly allocate 80%
of it for training and 20% for testing while preserving time
order, approximating the normal train/test split methodology
of supervised learning. We modify the training data with the
failure and train a policy on both the faulty and correct data;
this yields an estimate of performance via the policy evalu-
ation capability of the Online Learner (based on Eq. 1). We
then evaluate both policies on the test data and obtain another
estimate of performance. We report the discrepancy between
the training and testing estimates, which for the correct data
is always within 5%.

7.2.1 (F1) Partial feedback and bias
By using contextual bandit exploration, the Decision Ser-
vice avoids the bias inherent in approaches like supervised
learning. This is evidenced by the superior performance it

10

Failure Train/test perf. discrepancy
Reward delay bias 1.3x
Incorrect probability 3.0x
Decision as feature 8.7x
Modified feature 1.2x
Deleted feature 2.4x

Table 3: Various data collection errors (§7.2.1,§7.2.2).
achieves compared to the editorial ranking in both MSN and
Complex, shown in Fig. 6. Not only are the per-day improve-
ments high (between 18% and 55% for MSN, between 7%
and 112% for Complex), but the improvement is maintained
over time (see F3 below).

Another form of bias occurs if rewards for some actions
are delayed more than others. We simulated this effect in
the MSN data by moving the click events of certain pop-
ular articles before those of the rest, as if the Join Service
had immediately emitted them instead of enforcing a uni-
form experimental unit. As the Online Learner incorporates
new data, the trained policy may forget the importance of
these articles. Indeed, shifting the clicks of the top 2 arti-
cles yields a training performance that is 1.3x higher than
test performance (Table 3). If a constant learning rate is used
(as in Complex), this increases to 1.7x.
7.2.2 (F2) Incorrect data collection
We evaluated four different data collection failures using
MSN data and our described methodology, all of which we
have experienced in practice. Table 3 summarizes the results.

• Incorrect probability. A common error is when editors
or business logic override the chosen action and record the
override making the recorded probability incorrect. We sim-
ulated this by overriding 10% of the training data actions.

• Decision as feature. Another common error is when the
identity or probability of the chosen action is used as a fea-
ture for downstream learning. We simulated this by adding a
new feature to the training data that is 1 for the chosen action
and 0 for all other actions. Note that this feature would not
appear in test data because it is only available after decision.

• Modified feature. Features such as the user browsing his-
tory in MSN are often modified by separate processes, and
hence may change between decision and learning time. We
simulated this by replacing the browsing history in 20% of
the training data with default values, e.g., as if they were still
being computed for a new user.

• Deleted feature. A deleted feature (e.g., due to a database
failure) may be present at learning but not at decision time.
We simulated this by removing user demographic features.

In all of the above cases, the estimate of the policy’s per-
formance during training deviated from its performance dur-
ing testing, by a factor ranging from 1.2x to 8.7x. This under-
mines the entire value of a counterfactually accurate system.
By correctly logging at the point of decision, the Decision
Service avoids these failures.

7.2.3 (F3) Changes in the environment
We observed significant non-stationarity in the MSN and
Complex data, which is likely due to the continuous arrival of
new content and user interests swaying to breaking news or
events. The Decision Service is able to sustain its improve-
ment in Fig. 6 by continuously learning and periodically ad-
justing its learning rate to favor recent data, as prescribed
by our ML methodology. Without this, performance would
degrade over time.

Periodic resets of the learning rate—e.g., in all MSN de-
ployments the learning rate is reset each day—may affect
the Online Learner’s ability to converge to a good policy
quickly. To investigate this, we played a full day of MSN
data and tracked the performance of the trained policy rela-
tive to the editorial policy (Editorial 1 in Fig. 7). Both the
trained and editorial policies exhibit high variance initially,
but the estimates become statistically significant with more
data. The trained policy starts outperforming editorial after
just 65K interactions—for a request rate of 1000/sec, this is
about 1 minute—and eventually achieves a 42% improve-
ment by end of day.

To demonstrate the cost of not continuously training, we
took three days of MSN data, trained a policy on day 1 and
tested it on days 2 and 3 (without updates). The performance
relative to a policy trained on the corresponding day is low:

Policy from: Day 1 Day 2 Day 3
Same day 1.0 1.0 1.0
Day 1 1.0 0.73 0.46

In other words, day 1’s policy achieves 73% of the CTR of
day 2’s policy when tested on day 2, and 46% of day 3’s pol-
icy on day 3. This suggests that the environment and articles
have changed, and day 1’s policy is stale.

Some of the data collection errors in the previous sec-
tion are caused by changes in how features are generated.
For example, the baseline policy in TrackRevenue uses click
statistics that are aggregated with a certain decay. When we
tried to use VW’s built-in marginal statistics to match this fea-
ture, it took several weeks to obtain consistent results. This
was partly because TrackRevenue’s method of collecting the
statistics changed over time, and different details were con-
veyed to us at different points. Continuous learning can help
cope with such uncertainties.
7.2.4 (F4) Weak monitoring and debugging
The Decision Service supports real-time evaluation of arbi-
trary policies, an extremely powerful capability. To demon-
strate this, we took 3 simple policies which always choose
the first, second and third article respectively from the ed-
itorial ranking in MSN. The first policy corresponds to the
editorial baseline, while others are reasonable alternatives.
Fig. 7 shows a real-time comparison of policy performance
generated by a running instance of the Decision Service that
we replayed MSN data through. Each datapoint was cap-
tured within an average of 10 sec from when the correspond-
ing interaction completed. Although not in production yet,

11

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

0 500000 1000000 1500000 2000000R
el

at
iv

e
p

e
rf

o
rm

an
ce

Trained policy Editorial 1 Editorial 2 Editorial 3

Figure 7: Real-time comparison of trained policy against ed-
itorial policies, normalized to Editorial 1’s performance.

several of our deployments have plans to install alerts based
on these estimates.

The Decision Service supports full offline reproducibil-
ity of online runs by design. We cannot over-emphasize
the value of this property, as it has helped us diagnose nu-
merous failures and performance issues in the course of our
deployments. Several of these failures were diagnosed by
simply detecting the point at which the offline run deviated
from the online run, e.g., revealing that data was dropped.
However, the real value came in diagnosing problems in the
ML software (VW). Typically such bugs are difficult to diag-
nose because the ML software is treated as black-box, but
with full reproducibility we can quickly rule out any of our
components as being the culprit. For example, this helped
us debug a poorly performing MSN model that was initial-
ized from another model trained with an insufficient range of
data. This triggered a bug in VW that inadvertently reset the
min/max prediction range in a way that was incompatible
with the actual rewards of {−1, 0}.

8 Related work
Here we discuss other machine learning approaches related
to MWT, including other experimentation and ML systems.

8.1 Machine learning with exploration
There are hundreds of papers related to exploration which
broadly fall into 3 categories. In active learning [11, 26,
27, 44], the algorithm helps select examples to label for
a supervised learner. A maximally general setting is rein-
forcement learning [46, 47] where an algorithm repeatedly
chooses among actions and optimizes long-term reward. A
simpler setting is multi-armed bandits (MAB) where actions
are chosen without contextual information [13, 22]. We build
on contextual bandits with policy sets [2, 3, 6, 18, 31], as
well as offline policy evaluation [17, 19, 33, 34]. The MWT

capability enabled in this approach is typically absent from
alternatives such as Thompson Sampling [50].

8.2 Systems for ML and experimentation
We previously discussed these systems with regards to tech-
nical debt (§2). A more general discussion follows.
A/B testing. A/B testing refers to randomized experiments
with subjects randomly partitioned amongst treatments. It is
routinely used in medicine and social science, and has be-

come standard in many Internet services [29, 28], as well
supported by statistical theory [21]. A more advanced ver-
sion, “multi-variate testing", runs many A/B tests in paral-
lel. Several commercialized systems provide A/B testing in
web services (Google Analytics [23], Optimizely [40], Mix-
Panel [37], etc.). The Decision Service instead builds on
MWT, a paradigm exponentially more efficient in data usage
than A/B testing.
Bandit learning systems. Several platforms support bandit
learning for web services. Google Analytics [23] supports
Thompson Sampling [50]. Yelp MOE [54] is an open-source
software package which implements optimization over a
large parameter space via sequential A/B tests. Bayesian
optimization is used to compute parameters for the “next"
A/B test.6 Clipper [15] uses bandit algorithms to adapt over
supervised ML systems. However, these systems do not sup-
port contextual bandit learning, and they do not instrument
automatic deployment of learned policies (and hence do not
“close the loop" in Figure 1).
Contextual bandits deployments. There have been several
applications of contextual bandit learning in web services
(e.g., news recommendation [4, 33, 34] and advertising [12]).
However, they have all been one-offs rather than a general-
purpose system like the Decision Service.
Systems for supervised learning. There are many sys-
tems designed for supervised machine learning such as
CNTK [14], GraphLab [25], Parameter Server [35], ML-
lib [45], TensorFlow [48, 49], Torch [51], Minerva [53]
and Vowpal Wabbit [52] to name a few. These princi-
pally support Machine Learning model development. A few
more, such as Google Cloud ML [24], Amazon ML [5], and
AzureML [8] are designed to support development and de-
ployment. However, these systems do not support data gath-
ering or exploration.

We know of two other systems that fully support data col-
lection with exploration, model development, and deploy-
ment: LUIS [32] (based on ICE [44]), and NEXT [27].
These systems support active learning,7 and hence make ex-
ploration decisions for labeling in the back-end (unlike the
Decision Service which makes decisions for customer-facing
applications), and do not provide MWT capability.

9 Conclusion
We have presented the Decision Service, the first general-
purpose service for contextual learning. It supports the
complete data lifecycle and combines an ML methodology
with careful system design to address many common fail-
ure modes. Going forward, our goal is to make the service
completely parameter free. We also plan to use MWT capabil-
ity to provide more sophisticated safeguards for production
deployments.

6SigOpt.com is a commercial platform which builds on Yelp MOE.
7NEXT does have some support for bandit algorithms, but does not pro-

vide the MWT capability or fully general contextual bandits.

12

References
[1] A. Agarwal, O. Chapelle, M. Dudík, and J. Langford. A reli-

able effective terascale linear learning system. The Journal of
Machine Learning Research, 15(1):1111–1133, 2014.

[2] A. Agarwal, M. Dudík, S. Kale, J. Langford, and R. E.
Schapire. Contextual bandit learning with predictable re-
wards. In 15th Intl. Conf. on Artificial Intelligence and Statis-
tics (AISTATS), pages 19–26, 2012.

[3] A. Agarwal, D. Hsu, S. Kale, J. Langford, L. Li, and
R. Schapire. Taming the monster: A fast and simple algo-
rithm for contextual bandits. In 31st Intl. Conf. on Machine
Learning (ICML), 2014.

[4] D. Agarwal, B.-C. Chen, Q. He, Z. Hua, G. Lebanon, Y. Ma,
P. Shivaswamy, H.-P. Tseng, J. Yang, and L. Zhang. Personal-
izing linkedin feed. In Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining, pages 1651–1660. ACM, 2015.

[5] Amazon Machine Learning - Predictive Analytics with AWS.
https://aws.amazon.com/machine-learning/.

[6] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire. The
nonstochastic multiarmed bandit problem. SIAM J. Comput.,
32(1):48–77, 2002. Preliminary version in 36th IEEE FOCS,
1995.

[7] Azure Data Lake Analytics. https://
azure.microsoft.com/en-us/services/
data-lake-analytics/.

[8] Azure Machine Learning. https://azure.
microsoft.com/en-us/services/
machine-learning.

[9] Azure Stream Analytics. https://azure.microsoft.
com/en-us/services/stream-analytics/.

[10] Azure Web Apps. https://azure.microsoft.com/
en-us/services/app-service/web/.

[11] A. Beygelzimer, J. Langford, Z. Tong, and D. J. Hsu. Agnostic
active learning without constraints. In Advances in Neural
Information Processing Systems, pages 199–207, 2010.

[12] L. Bottou, J. Peters, J. Quinonero-Candela, D. X. Charles,
D. M. Chickering, E. Portugaly, D. Ray, P. Simard, and
E. Snelson. Counterfactual reasoning and learning systems:
The example of computational advertising. J. of Machine
Learning Research (JMLR), 14(1):3207–3260, 2013.

[13] S. Bubeck and N. Cesa-Bianchi. Regret Analysis of Stochas-
tic and Nonstochastic Multi-armed Bandit Problems. Founda-
tions and Trends in Machine Learning, 5(1), 2012.

[14] Computational Netwrk Toolkit. http://www.cntk.ai/.

[15] D. Crankshaw, X. Wang, G. Zhou, M. J. Franklin, J. E. Gon-
zalez, and I. Stoica. Clipper: A low-latency online prediction
serving system. In 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI), pages 613–627,
2017.

[16] Decision Service source code and documentation. http://
[anonymized]/.

[17] M. Dudík, D. Erhan, J. Langford, and L. Li. Sample-efficient
nonstationary policy evaluation for contextual bandits. In 28th
Conf. on Uncertainty in Artificial Intelligence (UAI), pages
247–254, 2012.

[18] M. Dudik, D. Hsu, S. Kale, N. Karampatziakis, J. Langford,
L. Reyzin, and T. Zhang. Efficient optimal leanring for con-
textual bandits. In 27th Conf. on Uncertainty in Artificial In-
telligence (UAI), 2011.

[19] M. Dudík, J. Langford, and L. Li. Doubly robust policy eval-
uation and learning. In 28th Intl. Conf. on Machine Learning
(ICML), pages 1097–1104, 2011.

[20] Y. Freund and R. E. Schapire. A decision-theoretic generaliza-
tion of on-line learning and an application to boosting. Jour-
nal of Computer and System Sciences, 55(1):119–139, 1997.

[21] A. S. Gerber and D. P. Green. Field Experiments: Design,
Analysis, and Interpretation. W.W. Norton&Co, Inc., 2012.

[22] J. Gittins, K. Glazebrook, and R. Weber. Multi-Armed Bandit
Allocation Indices. John Wiley & Sons, 2011.

[23] Google Analytics. http://www.google.com/
analytics. See http://services.google.
com/websiteoptimizer for documentation on bandits.

[24] Google Cloud Machine Learning. https://cloud.
google.com/ml/.

[25] GraphLab. http://graphlab.org and https://
dato.com/products/create.

[26] S. Hanneke. Theory of disagreement-based active learning.
Foundations and Trends R© in Machine Learning, 7(2-3):131–
309, 2014.

[27] K. G. Jamieson, L. Jain, C. Fernandez, N. J. Glattard, and
R. Nowak. NEXT: A system for real-world development,
evaluation, and application of active learning. In Advances
in Neural Information Processing Systems, pages 2638–2646,
2015.

[28] R. Kohavi and R. Longbotham. Online controlled experiments
and a/b tests. In Claude Sammut and Geoff Webb, editor, En-
cyclopedia of Machine Learning and Data Mining. Springer,
2015. To appear.

[29] R. Kohavi, R. Longbotham, D. Sommerfield, and R. M.
Henne. Controlled experiments on the web: survey and prac-
tical guide. Data Min. Knowl. Discov., 18(1):140–181, 2009.

[30] A. Krishnamurthy, A. Agarwal, and M. Dudík. Efficient
contextual semi-bandit learning. arxiv.org, abs/1502.05890,
2015.

[31] J. Langford and T. Zhang. The Epoch-Greedy Algorithm for
Contextual Multi-armed Bandits. In 21st Advances in Neural
Information Processing Systems (NIPS), 2007.

[32] Language Understanding Intelligent Service (LUIS).
https://www.luis.ai.

[33] L. Li, W. Chu, J. Langford, and R. E. Schapire. A contextual-
bandit approach to personalized news article recommenda-
tion. In 19th Intl. World Wide Web Conf. (WWW), 2010.

[34] L. Li, W. Chu, J. Langford, and X. Wang. Unbiased of-
fline evaluation of contextual-bandit-based news article rec-
ommendation algorithms. In 4th ACM Intl. Conf. on Web
Search and Data Mining (WSDM), 2011.

13

https://aws.amazon.com/machine-learning/
https://azure.microsoft.com/en-us/services/data-lake-analytics/
https://azure.microsoft.com/en-us/services/data-lake-analytics/
https://azure.microsoft.com/en-us/services/data-lake-analytics/
https://azure.microsoft.com/en-us/services/machine-learning
https://azure.microsoft.com/en-us/services/machine-learning
https://azure.microsoft.com/en-us/services/machine-learning
https://azure.microsoft.com/en-us/services/stream-analytics/
https://azure.microsoft.com/en-us/services/stream-analytics/
https://azure.microsoft.com/en-us/services/app-service/web/
https://azure.microsoft.com/en-us/services/app-service/web/
http://www.cntk.ai/
http://[anonymized]/
http://[anonymized]/
http://www.google.com/analytics
http://www.google.com/analytics
http://services.google.com/websiteoptimizer
http://services.google.com/websiteoptimizer
https://cloud.google.com/ml/
https://cloud.google.com/ml/
http://graphlab.org
https://dato.com/products/create
https://dato.com/products/create
https://www.luis.ai

[35] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed,
V. Josifovski, J. Long, E. J. Shekita, and B.-Y. Su. Scaling
distributed machine learning with the parameter server. In
11th USENIX Symposium on Operating Systems Design and
Implementation (OSDI), pages 583–598, 2014.

[36] Microsoft Azure. https://azure.microsoft.com/
en-us/.

[37] Mixpanel: Mobile Analytics. https://mixpanel.
com/.

[38] Multi-world testing: A system for experimentation, learn-
ing, and decision-making. White paper, http://
[anonymized]/, 2016.

[39] Multiworld testing Decision Service. http:
//[anonymized]/.

[40] Optimizely: A/B Testing & Personalization Platform.
https://www.optimizely.com/.

[41] Redis Cluster. http://redis.io/topics/
cluster-spec.

[42] E. Schurman and J. Brutlag. The user and business impact
of server delays, additional bytes, and http chunking in web
search. In Velocity, 2009.

[43] D. Sculley, G. Holt, D. Golovin, E. Davydov, T. Phillips,
D. Ebner, V. Chaudhary, and M. Young. Machine learning:
The high-interest credit card of technical debt. In SE4ML:
Software Engineering 4 Machine Learning, 2014.

[44] P. Simard, D. Chickering, A. Lakshmiratan, D. Charles,
L. Bottou, C. G. J. Suarez, D. Grangier, S. Amershi, J. Ver-
wey, and J. Suh. Ice: enabling non-experts to build models in-
teractively for large-scale lopsided problems. arXiv preprint
arXiv:1409.4814, 2014.

[45] SPARK MLlib. http://spark.apache.org/mllib.

[46] R. S. Sutton and A. G. Barto. Reinforcement Learning: An
Introduction. MIT Press, 1998.

[47] C. Szepesvári. Algorithms for Reinforcement Learning. Syn-
thesis Lectures on Artificial Intelligence and Machine Learn-
ing. Morgan & Claypool Publishers, 2010.

[48] TensorFlow. https://www.tensorflow.org/.

[49] Tensorflow serving. https://tensorflow.github.
io/serving.

[50] W. R. Thompson. On the likelihood that one unknown proba-
bility exceeds another in view of the evidence of two samples.
Biometrika, 25(3-4):285Ű294, 1933.

[51] Torch. http://torch.ch/.

[52] Vowpal Wabbit (Fast Learning). http://hunch.net/
~vw/.

[53] M. Wang, T. Xiao, J. Li, J. Zhang, C. Hong, and Z. Zhang.
Minerva: A scalable and highly efficient training platform
for deep learning. In NIPS Workshop, Distributed Machine
Learning and Matrix Computations, 2014.

[54] Yelp MOE (Metrics Optimization Engine). http://yelp.
github.io/MOE.

14

https://azure.microsoft.com/en-us/
https://azure.microsoft.com/en-us/
https://mixpanel.com/
https://mixpanel.com/
http://[anonymized]/
http://[anonymized]/
http://[anonymized]/
http://[anonymized]/
https://www.optimizely.com/
http://redis.io/topics/cluster-spec
http://redis.io/topics/cluster-spec
http://spark.apache.org/mllib
https://www.tensorflow.org/
https://tensorflow.github.io/serving
https://tensorflow.github.io/serving
http://torch.ch/
http://hunch.net/~vw/
http://hunch.net/~vw/
http://yelp.github.io/MOE
http://yelp.github.io/MOE

	1 Introduction
	2 Motivation
	3 Machine learning methodology
	4 System Design
	4.1 Design goals
	4.2 Abstractions and architecture
	4.3 Key techniques
	4.3.1 Full reproducibility
	4.3.2 Real-time safeguards
	4.3.3 Auto-generated features
	4.3.4 Low-latency learning

	5 Implementation and Deployment Options
	6 Deployments
	7 Evaluation and Lessons
	7.1 System evaluation
	7.1.1 Latency of decisions and learning
	7.1.2 High event rates
	7.1.3 Offline experimentation

	7.2 Technical debt evaluation
	7.2.1 (F1) Partial feedback and bias
	7.2.2 (F2) Incorrect data collection
	7.2.3 (F3) Changes in the environment
	7.2.4 (F4) Weak monitoring and debugging

	8 Related work
	8.1 Machine learning with exploration
	8.2 Systems for ML and experimentation

	9 Conclusion

