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MTDSense: AI-Based Fingerprinting of Moving
Target Defense Techniques in Software-Defined

Networking
Tina Moghaddam, Guowei Yang, Chandra Thapa, Seyit Camtepe, and Dan Dongseong Kim

Abstract—Moving target defenses (MTD) are proactive se-
curity techniques that enhance network security by confusing
the attacker and limiting their attack window. MTDs have
been shown to have significant benefits when evaluated against
traditional network attacks, most of which are automated and
untargeted. However, little has been done to address an attacker
who is aware the network uses an MTD. In this work, we propose
a novel approach named MTDSense, which can determine when
the MTD has been triggered using the footprints the MTD
operation leaves in the network traffic. MTDSense uses unsuper-
vised clustering to identify traffic following an MTD trigger and
extract the MTD interval. An attacker can use this information
to maximize their attack window and tailor their attacks, which
has been shown to significantly reduce the effectiveness of MTD.
Through analyzing the attacker’s approach, we propose and
evaluate two new MTD update algorithms that aim to reduce the
information leaked into the network by the MTD. We present an
extensive experimental evaluation by creating, to our knowledge,
the first dataset of the operation of an IP-shuffling MTD in a
software-defined network. Our work reveals that despite previous
results showing the effectiveness of MTD as a defense, traditional
implementations of MTD are highly susceptible to a targeted
attacker.

Index Terms—Artificial intelligence, cyber attacks, intelligent
cyber attacks, moving target defense, software-defined network-
ing

I. INTRODUCTION

AS the world grows increasingly digital and more of the
everyday workings of life and business come to rely

on computer networks, securing network infrastructure is an
ever-present problem. In this landscape, traditional networks
resemble sitting ducks, as their static nature gives attackers
an advantage [1]. More modern virtualized networks still
underutilize their potential to respond to adaptive attacks by
adopting traditional modes of operation despite their flexibility.
Moving Target Defense (MTD) is a class of defense strategies
that allow the defender to be more proactive [2]. In adopting
MTD, the defender changes some properties of the attack
surface to hinder the attacker. Proposed MTDs have changed
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the network hosts’ IP addresses, transmission routes, and
available applications to invalidate the attacker’s understanding
of the network, reduce their windows of opportunity, and
confuse them in their approach. Recently, MTDs are also
increasingly being offered as consumer security solutions
through companies such as SCIT Labs [3] and NexiTech [4].
As the defense and commercial usage of MTD increases,
evaluating their true security against sophisticated attackers
is increasingly important.

Since their introduction, MTDs have been shown to be
effective in reducing the attacker’s chances of success [1], [2].
However, most evaluations assume that the attacker does not
consider the MTD itself or does not even know it is being used
as a defense mechanism. Previous work has mostly evaluated
MTD against simple automated attackers, such as scanning
worms and DDoS attacks [2], [5]. Very few works consider
AI-powered attackers who can adjust their behavior given
the MTD. Among these, skilled human attackers have been
considered [6], as well as deanonymizing devices employing
MAC address randomization [7], [8]. To the best of our
knowledge, no work directly targets network MTD itself.

This paper addresses the gap by exploring how an attacker
could overcome the MTD by targeting it directly in recon-
naissance. Specifically, we look in detail into how the attacker
can determine when an IP shuffling MTD is triggered in a
software-defined network (SDN). Machine learning techniques
are making it much simpler to find meaningful information
among large volumes of noisy data at near-real-time speeds.
We leverage this in analyzing passively collected network
traffic between legitimate clients and servers. We propose a
novel approach called MTDSense, which uses unsupervised
clustering techniques to determine the absolute MTD trigger
time and the duration between triggers, which we call the
MTD interval. With this information, an attacker can plan the
timing of their attacks, which has been shown to improve the
attack success rate across all phases of a cyber attack by 40%
[9]. Our work reveals that current MTD mechanisms are sus-
ceptible to attackers who target them during reconnaissance,
even though there has been considerable work to show that
they are effective against common known attacks.

Next, we investigate the fingerprint the MTD leaves in
the network that allows the MTD trigger to be detectable
using machine learning. By finding the unique timing features
that reveal the operation of the MTD, we propose alternative
update mechanisms to reduce the MTD fingerprint. Typical
mechanisms for IP shuffling MTD are modeled on common
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routing protocols of the internet and do not consider informa-
tion leakage. Our novel update mechanisms deliberately time
the update operations to minimize the information leak and
make it harder for MTDSense to detect their operation. We
experimentally evaluate MTDSense with respect to network
and traffic size and MTD update mechanism using a real SDN
testbed as well as supporting simulations.

The main contributions of this work are summarized as
follows:

• We demonstrate that an Artificial intelligence (AI)-
capable attacker can determine the timing of an IP
shuffling MTD. To the best of our knowledge, this is
the first work where network reconnaissance targets the
MTD directly.

• We propose, implement, and evaluate two novel MTD
update algorithms with the aim of reducing the MTD
fingerprint. The susceptibility of these algorithms against
the attack and the respective trade-offs are analyzed.

• We collect a dataset from an SDN using an IP shuffling
MTD for defense covering both a simulated and testbed
environment. The dataset varies a series of parameters of
network and traffic size and comprises over 150 days of
traffic data.

II. MTD IN SOFTWARE DEFINED NETWORKING

While MTD techniques have been studied in other systems,
software-defined networking (SDN) introduced a new set of
MTD techniques for large networks and accelerated research
with the development of the OpenFlow protocol standard [2].
SDN decouples the control of the network from the physical
devices. Decision making in SDNs is centralized to the SDN
controller. In turn, SDN-enabled switches store network traffic
rules in their flow tables, which can be programmed by the
controller. This makes it possible to change system config-
urations on the fly and more frequently than in traditional
decentralized systems, making implementing MTDs in SDNs
much easier in comparison. As a result, a large portion of
MTDs are implemented in SDNs [1].

Network level and specifically network address randomiza-
tion MTD techniques are amongst the most popular and most
researched MTD techniques [1], [2]. In IP shuffling MTD,
also known as host address mutation MTD, network hosts are
assigned a temporary IP address that is valid for only a certain
period of time. These techniques are designed to counter
network reconnaissance. While an attacker scans a network
address range and proceeds with their attack based on this
information, the MTD is triggered, and the IP addresses and
any information about the hosts with a particular IP that were
gathered by the attacker are no longer valid. Thus, the attacker
must spend more resources and has a valid view of the network
for only a limited time. In this work, we use an IP shuffling
MTD based on Flexible Random Virtual IP Multiplexing
(FRVM), where each port on each host is assigned a virtual IP
address (vIP) [10]. Evaluations of this technique have shown
it to be effective at reducing the attacker’s success in network
reconnaissance through modeling [10], emulations [11], and
in a realistic testbed [12].

(a)

(b)

Fig. 1: (a) Steps of MTD update at T based on the update
mechanism. Lines above the network connections (green)
show the steps for on-demand installation (ODI), and the lines
below the network connections (orange) show the steps for
on-time installation (OTI) and PEI MTD, which happen at
two distinct times t1 and t2. (b) Timing of when the MTD
update is made in the SDN switches for update Ti. In the
ODI scheme, updates are made when a client connection is
requested, making it transient. In PEI, updates are installed in
advance but do not come into effect until Ti.

Each network host has a real IP address (rIP). The SDN
controller assigns each host with virtual IP addresses and
maintains a mapping between the rIPs and vIPs. When the
MTD is triggered, new vIP addresses are assigned to the
hosts. The controller adjusts the flow rules in the SDN-enabled
switches to forward packets according to the mapped vIPs.
The replacement of the rIP and vIP in the IP packets is done
at the network edge, so the IP mutation is transparent to
both end-user devices and network hosts. Legitimate clients
can find the new vIPs through an authenticated DNS service.
Any hosts scanning the network will not be aware that their
previously discovered hosts are invalid when the IP shuffling
has occurred.

The MTD triggering can be time-based, happening at reg-
ular intervals (which we call the MTD interval T ), event-
based, happening after some network event, such as an IDS
alert, or a hybrid of the two. A shorter MTD interval will
provide greater security against scanning attacks but also incur
a greater performance cost [12].

III. MTD ARCHITECTURE AND IMPLEMENTATION

The MTD design defines the broad way the MTD should
operate: when it should trigger, what should change in the
system, and how it should change. The implementation details
of how the MTD is triggered influence the fingerprint the
operation leaves in the network traffic, which can then be ex-
ploited by an attacker. We call the sequence of events that are
enacted at MTD trigger time the ‘update mechanism.’ Below,
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we categorize and explore three possible update mechanisms
and their characteristics.

A. On-Demand Installation

In on-demand installation (ODI), the controller removes any
MTD-related rules in the switches at MTD trigger time. The
switches always retain a rule to forward any packets that do
not match any other rules to the controller. As such, when a
new packet arrives at a switch with no corresponding rule, it is
forwarded to the controller, who decides what to do. The MTD
application in the controller computes what IP substitutions
need to be made in the packet and installs a corresponding
rule in the switches. Thus, MTD rules are installed on the
switches when there is relevant traffic. The algorithm for this
update mechanism is shown in Algorithm 1. The previous rules
are deleted after the MTD trigger interval T has passed, and
the rules are installed in each switch after a packet arrives at
some other time. This typical mode of operation is described
in [11].

Algorithm 1 MTD trigger algorithm for on-demand installa-
tion

SrcIP: the source IP address for traffic
DstIP: the destination IP address for traffic

Require: ∆t ≥ T
switches← deleteRules
updateDNS

Require: packet at switch
if Src or Dst is in Network then

if Src is in Network then
switch← newRule(forward rIP to vIP

for DstIP )
else if Dst is in Network then

switch← newRule(forward vIP to rIP
for SrcIP )

end if
Await confirmation from switch
Forward packet along path to next switch

else
Drop packet

▷ We can check for malicious or irrelevant traffic.
end if

This method mimics the common mechanisms that are used
for maintaining routing tables and forwarding traffic on the
internet, similar to updating addresses in layer-2 switches. The
majority of the logic is independent for each switch and path,
and the MTD operation interfaces only minimally with the
normal flow of traffic. As a result, this method is very flexible
and has minimal overhead. The flexibility means that, like in
traditional networks, switches and hosts can be added at any
time, and there is minimal impact on load balancing.

Some aspects of the operation of the MTD are also simpler
in this scheme. Legitimate IP addresses do not need to be
tracked in advance and instead can be checked at arrival time.
Inserting rules has a performance cost, and once rules are
added, the performance of a switch is inversely related to the

size of its flow table. In this scheme, rules are only installed
when needed, so the impact on performance is minimized.

From a security perspective, on-demand installation allows
the controller to try and distinguish between a legitimate client
and an attacker at packet arrival time before installing the rules
that allow access to network hosts. There are no additional
components or databases needed to implement this method,
and the details of the implementation are clear. Since the
changes to the switches are dependent on the incoming traffic,
the operations are naturally staggered in time, giving better
resource utilization. However, this also means that there is no
one singular MTD trigger time; rather, it is a transient period
of time after T when the rules are most likely being installed.
Based on our analysis of ODI with MTDSense, we propose
on-time and pre-emptive installation, which we describe next.

B. On-Time Installation

In on-time installation (OTI), the switches are emptied and
repopulated at the MTD trigger time Ti. As all of the MTD
operations happen at the start of an interval, this is the only
time that any fingerprints can be left in the network traffic.
Once the installation period has passed, there will be no
further MTD operations until the next trigger interval starts.
The algorithm for this is shown in Algorithm 2. Once again,
the rule to forward nonmatching packets to the controller is
retained. In this scheme, any traffic that matches no rules
will be forwarded to the controller, where it can be managed
according to the firewall rules. In this case, the traffic will
be dropped if the client cannot authenticate, or it will be
forwarded through the network by the controller, similar to
the ODI scheme.

Algorithm 2 MTD trigger algorithm for on-time installation

Require: ∆t ≥ T
switches← deleteRules
for all switch ∈ switches do

for all client ∈ ExpectedClients do
for all rIP ∈ rIPs do

switch← newRule(forward rIP to vIP
for DstIp)

switch← newRule(forward vIP to rIP
for SrcIp)

end for
end for

end for
updateDNS

This method ensures all new rules are installed at the
switches some short time after the MTD trigger time. However,
it is less flexible. Since the clients are not being discovered and
authenticated at connection time, the controller must maintain
a list of expected clients (both previously connected clients and
those that could be expected to connect in this MTD interval).
The controller needs to decide in advance which clients to
allow and precalculate the paths through the network. The
operations at MTD trigger time will also take longer as many
rules need to be installed at once. In the case of event-based
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MTD, using this mechanism also means there will be a longer
delay when triggering the MTD after an event.

The lack of flexibility from this method means some down-
sides need to be mitigated. Since all clients are added at
the same time this hinders the controllers ability to apply up
to date load balancing, instead any load differences must be
predicted in advance. Additionally, there may be a longer delay
in making changes if the optimal path changes due to network
events. These issues can be addressed at the next MTD trigger
instead of at any time, and the MTD intervals may be short
enough for this to be acceptable. Finally, in a large network,
precalculating the paths can have a large storage overhead and
require a lot of computing time.

C. Pre-Emptive Installation

The goal of the pre-emptive installation (PEI) method is
to have the new rules come into effect at trigger time Ti,
with any operations finalized by this time. Like in the OTI
scheme, this again requires the controller to predetermine and
authenticate clients. In this scheme, sometime before Ti, the
controller installs the rules for the next MTD interval into the
switches. The rules are configured to come into effect at the
next MTD interval start time and expire at the interval end
time. The algorithm for this scheme is shown in Algorithm 3.

Algorithm 3 MTD trigger algorithm for pre-emptive installa-
tion
Require: ∆t < (T − ϵ)

for all switch ∈ switches do
for all client ∈ ExpectedClients do

for all rIP ∈ rIPs do
switch← newRule(forward rIP to vIP

for DstIp, expire after T )

switch← newRule(forward vIP to rIP
for SrcIp, expire after T )

▷ Rules are added at the bottom of the
flow table.

end for
end for

end for
Require: ∆t ≥ T

updateDNS

In this way, the overhead of communication between the
controller and the switches is taken on before the trigger time,
so the actual delay for the change between the two sets of
rules should be reduced. This requires that the switch allows
the controller to install new rules without needing to reload or
otherwise interfere with ongoing traffic. This method suffers
from the same reduced flexibility as on-time installation.

In addition, there are security implications for PEI and,
to some extent, OTI implementations. By preempting the
MTD trigger and installing all the possibly required rules,
the information about the configurations for the next MTD
interval is available more completely and for a longer time.
The full list of authenticated clients is also stored in two
places and is now also being kept on the switches at all times.

Keeping in mind that SDN switches can also be compromised
[13], this increases risk. Further, connecting devices cannot
be re-assessed for access at connection time. These issues
are bounded by the limited MTD interval, however additional
access control mechanisms need to be implemented to manage
dynamic changes during the interval.

Figure 1 shows a simplified model of the SDN environment,
with the timings and behavior for the three update mecha-
nisms. In the ODI case, all communication from the controller
is made whenever traffic arrives at a switch. In the OTI and PEI
cases, there is an initial time t1 when all rules are installed
and a later time t2 when traffic arrives at the network. The
difference in timing of the update with respect to the MTD
interval is shown in Figure 1b.

D. Implementation and Data

1) Environment and Component Behavior: Data was col-
lected in a small-scale SDN testbed, which offers the necessary
dynamism and flexibility to effectively evaluate the perfor-
mance and behavior of the MTD and the attacker. Because
testbed experiments must run in real time and are there-
fore limited, we supplement the data with simulations using
Mininet [14]. Mininet was carefully configured to simulate
the testbed environment. These cover intermediate parameter
values and allow for faster prototyping during development.
The general structure of the network is shown in Figure 2. It
includes the following components:

• The controller, which is connected to the switches
through separate out-of-band links and implements the
MTD. We use a Open Network Operating System
(ONOS) 2.4.0 controller [15] and OpenFlow 1.3.

• A DNS server, which provides service to legitimate
clients.

• A router, which divides the SDN network from the
user network and acts to simulate a connection over the
internet.

• SDN-enabled switches that are programmed by the con-
troller. In the SDN-testbed, these are HP Aruba 2920F
and 2930M network switches.

• Servers running an Apache webserver [16].
• Clients who periodically connect to the servers and

request webpages of various sizes.
• The attacker which sits outside the SDN network and is

connected to the same switch as the client.
2) Threat Model: The assumption of compromise is that

the attacker needs to be in the same subnet as a legitimate
client and be able to sniff the client’s traffic. The attacker
could be located anywhere in the network and could equally
compromise the client, a switch between the client and the
network, or any other elements on the path, but it does not need
to (though it could) compromise a component inside the SDN
network. The variety of choices means that it is more likely
the attacker could achieve access to at least one of these com-
ponents, and vulnerabilities are commonly found in various
components of networks, including in the SDN components
themselves [17]. The attacker passively sniffs the legitimate
client’s traffic, and since it is only sniffing passively and is
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Fig. 2: Our experimental environment.

outside the protected network, it cannot be detected without
extensive active scanning. We further relax the requirements
by showing that the traffic need not necessarily come from
one client but can be aggregated from multiple clients of the
network. The data collection can be located anywhere, does
not need to come from a singular source, does not involve
active disruption to the network and so does not need to evade
detection by the SDN network.

3) Parameters and Data Collection: Table I shows the
different experimental parameters that were considered when
taking data and the ranges of values that are considered for
each of the variables. What follows is an explanation of each
parameter and the reasoning for the chosen values.

The attacker observation window Owin is the duration
of time the attacker sniffs network packets before trying
to determine the MTD properties. This is varied between
3× the mtd interval, which is guaranteed to capture 2 MTD
triggers, and so is considered the lowest possible duration for
calculating the interval, and 10 hours. These values are used
to evaluate how long an attacker needs to observe a network
to be able to deduce MTD properties with our method. The
MTD interval T is the duration between two MTD triggers.
The range here was chosen based on the analyses by Connell
et al. [18], Mendonça et al. [19] and Kim et al. [12], who
have analyzed the performance and security trade-off of the
MTD interval which varies with respect to the expected attack
length. Based on their analyses, we find an interval of 60-300s
to be appropriate for our case and extend our window slightly
in both directions to cover other cases.

Requests by the client are a Poisson process defined by
the mean λ. The highest value for λ was chosen based on
benchmarking of the testbed. Due to the limitation of the
simulated network, higher values of lambda lead to occasional

TABLE I: Experimental Parameters and Their Values.

Variable Notation Range of values
Attacker observation window Owin 3T – 10 hours
MTD interval (seconds) T 30, 60, 120, 180, 240, 300, 600
# client requests/sec λ 10, 5, 1, 1/2, 1/5, 1/15, 1/30, 2/T
# servers nS 1, 2, 3
# clients nc 1, 2, 3
Size of webpages W 400kB – 4MB
Trials N 30

network dropouts. The slowest client request interarrival time
is half of the MTD interval, which is very slow considering
the number of requests fielded by a typical server on the
internet, but still ensures there is at least one request in
each MTD interval, which is required for triggering in the
ODI case. The lower bound of 10 requests per second is
typical in the literature [12], [18]–[20] and less than the
number of requests fielded by typical servers. For example,
the Wikimedia Foundation reports an average of 400 requests
per second per machine across their servers [21], and Google
Cloud allows a maximum of 1000 concurrent requests per
instance [22]. This makes it a reasonable minimum rate of
traffic for the attacker to require.

Different numbers of servers and clients are used to demon-
strate how the attack is affected by increasing the number
of nodes in the network. The size of webpages available on
the server ranges from 400kB to 4MB, following the typical
page weights below the 75th percentile found on the internet
as reported by the HTTP Archive [23]. The client requests
webpages at random following a normal distribution with a
mean file size of 2MB. Each set of experiments is run for 30
trials. For each trial, packets are sniffed from the network for
the length of the observation window.

The exact set of parameters used for each experiment is
specified in the results section. The data collected were the
network packets sniffed by the attacker and the ground truth
times when the MTD was triggered.

IV. ATTACKER’S APPROACH

The complete MTDSense pipeline is shown in Figure 3, and
the details of specific steps are discussed below.

A. Feature Set

The features that are relevant to changes made by the MTD
should capture changes in connections to a moving host in
a network. These will appear across time and within flows
rather than being distinguishable between individual packets.
Therefore, both flow-based and window-based features were
extracted from the raw packet data. The flow-based features
are built on the CICFlowMeter-v4 feature extractor, which
analyses flow traffic into 75 flow-level features [24]. Not all
of these features are relevant to this problem, so those that
were unchanged across all flows were removed at the outset.
In addition to these, timing and delay features were added.
These included the timing and delay of the TCP handshake
and message body packets separately. The interarrival time
between flows and entropy of IP addresses over time were
also included, as these are expected to best directly capture
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Fig. 3: Proposed MTDSense approach for data analysis.

the change to network components after an MTD trigger. An
analysis of the importance of the relevance of the features is
discussed in Section V-A4.

Naturally, most of the time, the MTD is not being triggered.
This means the volume of traffic captured directly after an
MTD trigger is far less than the volume of traffic in between
triggers. Therefore, there is a large class imbalance when
distinguishing between the two cases, which was addressed
with undersampling.

B. Clustering Techniques

We assume that the attacker knows that the network is
adopting an IP shuffling MTD but does not know the settings
of the MTD and is not able to access the ground truth for
the MTD trigger time or interval. As such, we must use unsu-
pervised clustering algorithms to determine the MTD trigger
time. To this end, we use primarily k-means clustering, which
is a very commonly used method and continues to be used in
some state-of-the-art clustering pipelines [25]. Other clustering
algorithms, such as OPTICS, a generalization of the DBSCAN
algorithm, which is density-based and can capture patterns of
behaviors that k-means cannot, were also employed. However,
after dimensionality reduction, differences in results were not
pronounced.

Given that there is over 80 features and not all are rele-
vant, we need a dimentionality reduction technique to obtain
consistent results. The clustering techniques were combined
with an autoencoder for dimensionality reduction. Firstly, this
was done in two separate steps, where the autoencoder was
trained and optimized for reconstruction loss, and the results
were used to train the clustering algorithm. As an extension,
the autoencoder and k-means algorithms were trained together
with a combined loss function. This approach was introduced
in [26] and is commonly used as a benchmark in clustering
literature.

The state-of-the-art in unsupervised clustering is in the
image domain and uses generative adversarial networks [27].
However, the image data is significantly different from our
data and has more complex spatial relationships. These models
do not transfer well to our domain. Additionally, we found
little difference before and after fine-tuning, which indicates
we have already extracted the maximum information from the
data. Postprocessing methods are discussed where they are
relevant.

C. Evaluation Metrics

Since the data is being clustered unsupervised, alternative
metrics that do not rely on labeling need to be used. Com-
paring labels will lead to scores that are not well defined on
different permutations of the clustering and give results that
are difficult to compare. Instead, the metrics need to measure
how well the data is grouped compared to the ground truth. For
this, we use the standard metrics often used in benchmarking
clustering algorithms. This includes the adjusted Rand index
(ARI) [28] and the clustering accuracy [26] (which we report
as ‘accuracy’). Note that ARI ranges mostly between 0 and 1;
however, it does not change linearly in comparison to accuracy.
The ARI will be 0 if the clustering is completely random and
1 if the cluster and class set are identical in their pairwise
membership. The value is bounded by −0.5, where negative
values indicate the clustering is less in line with the truth labels
than the expected random case.

V. EVALUATION

In this section, we evaluate the attacker’s ability to deter-
mine the timing of the MTD trigger with the following key
questions. Firstly, how effectively can the attacker, with our
proposed method, detect the MTD interval? Secondly, can
modifying the method of triggering reduce the effectiveness
of the detection? Thirdly, what conditions are needed for the
attacker’s approach to be effective?

A. Determining That The MTD Has Been Triggered

The results in this section use data with the On-Demand
Installation update mechanism, which we consider to be the
most natural for a network to implement because it most
closely conforms to the asynchronous behavior of the internet.
Section V-B provides a comparison of attack results with other
update mechanisms. The network configuration for this set
of experiments comprised one server and one client, with
data collected by the attacker and processed as described in
Section IV to determine the network flows that follow an MTD
trigger. In the case of the ODI update mechanism, this does not
necessarily correspond to the absolute time the MTD triggered.
Here, we report the MTD detection as successful for each item
used in the ARI metric if the absolute time determined for the
MTD trigger is within one second of the ground truth MTD
trigger time, which is a small interval compared to the MTD
interval T . We call this one second the ‘allowed detection
delay’ s.
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Fig. 4: The effect of attacker observation window on ARI for
T = 180s.

The results demonstrate that the attacker can determine
whether the MTD has been triggered with an ARI as high
as 0.92 and accuracy as high as 0.97, depending on the
experimental parameters.

The effect of network parameters on the fidelity of the results
is explored below.

To determine the most appropriate observation window for
the attacker to use, we tried possible values between one
minute and 10 hours in an environment with an 180s MTD
interval. In each case, the attacker collected data for the
length of an observation window and clustered the data for
that window. The results are shown in Figure 4, with each
point being an average of 50 trials. Error bars show the 95%
confidence interval. Based on this information, an observation
window of 2 hours was used for all other results reported going
forward, but note that the attacker’s information is fairly good
with an ARI of 0.875 and accuracy of 0.94 for an observation
window of 10 minutes, which is three times the MTD interval.

This shows that an attacker with a window as small as 3T
could still gain useful information with a few trials, and the
effectiveness plateaus at a window of two hours.

1) The Effect of the MTD Interval: Figure 5 shows the ARI
in detecting whether the MTD triggered or not for different
MTD intervals. From the results we can see that the detection
rate is independent of the MTD interval, the attacker can
determine T within this range with similar accuracy for all
the values tested. Unlike the security benefit of MTD against
traditional attacks that do not target the MTD mechanism
directly, the accuracy of detecting that the MTD has triggered
is not lowered by employing a lower MTD interval. As
discussed in section III-D3, we exclude very short MTD
intervals which we deem to have too large a performance cost.
Although very short MTD intervals may lower the detection
accuracy, they would not be performant and so are unlikely to
be employed in a network.

We achieved a similar accuracy of detection when the MTD
was triggered at a random interval.

For the final column of Figure 5 labeled ‘random’, the MTD
interval was sampled randomly from a normal distribution with
a range of 15 to 300 seconds at each trigger. The symptoms of
the MTD triggering in the network are completely independent

Fig. 5: The effect of varying the MTD interval T on the
attacker’s achieved ARI. The right-most result is for an MTD
where the next trigger time is decided by sampling randomly
from a distribution.

of the cause of triggering and of T . Referring to the Algo-
rithms 1-3, the effects are due to the ‘newRule’ installation
steps and appear regardless of the condition that caused the
MTD to trigger. For this reason, the method is still applicable
to an MTD that is triggered by a random interval, and we
predict it will also apply to an event-based MTD or any other
triggering mechanism.

2) The Effect of Client Traffic: Figure 6 shows the effect
of the average delay between client requests on the attacker’s
ability to determine the MTD has triggered. The rate of client
traffic ranges from 10 connections per second to one or two
connections per MTD interval, as discussed in Section III-D3.
Figure 6a shows the result over this full range, and 6b shows
the results over a log axis so that the effect over the majority
of the points is clearer.

Focusing on the s = 1 case, we can see the ARI is higher
for lower delays until the lowest delay value, which resulted
in less accurate detection than the second lowest value. This is
due to the maximum throughput of our network and the delay
between triggering the MTD within the network and updating
the DNS server. Since the DNS update is not instantaneous, it
is possible for a client connecting at the exact time between
the update to receive the old vIP just before it becomes invalid
and not be able to connect to it by the time they make
their request to the network. The client-server connection will
still be established since there is already a built-in timeout
mechanism for requesting the address again and reconnecting.

However, this creates an additional performance degradation
as the connection takes longer to establish. As the rate of
requests increases, the chance of a request being made at the
DNS update time increases, hence we see more of these events
at the highest request rate. For the attacker determining that
the MTD has triggered, this creates a different fingerprint in
the traffic, and so the time is not detected accurately.

This means the ARI increases with increased rate of client
requests until there are too many requests for the network
to handle without some performance degradation, at which
point the attacker’s accuracy also decreases.

The figure also shows the result for different allowed
detection delays. The data must have ground truth values
assigned to it. In the s = 1 case, a positive label is assigned
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(a)

(b)

Fig. 6: (a) The effect of the rate of legitimate client traffic λ
on ARI. In (b), the same data is shown over a log scale for
clarity. Given over a range of allowed detection delays s.

to a flow if it is within one second of the MTD trigger. We
can see that in the s = 1 case, the rate of client traffic must be
higher than 5requests/s to give good detection, and it starts
to degrade at λ = 1s. Results for the other s values follow a
similar pattern where s = 2 degrades at λ = 2s, and so on.
Given the way the ground truth labels are assigned, this effect
is less due to the attacker’s ability to detect the MTD trigger
and more to do with the ODI update mechanism.

When using the ODI update mechanism, the MTD rules are
not installed in the OpenFlow switches until there is relevant
network traffic. Due to this, we can consider the MTD trigger
time to be transient, where there is an initial phase at the
trigger time Ti and a time when all the rules come into effect
tci , which is probabilistic. The time the rules are installed
depends on when traffic arrives at a particular switch, so tci is
dependent on the rate at which traffic arrives, the number of
paths through the network, and how those paths are utilized.
The final rule can be installed at any time tci before the start
of the next interval Ti+1. Because the ground truth times
are the trigger time Ti and the symptoms on the network
depend on when the rules are installed tci , the delay with
which an attacker can determine that the MTD has triggered
depends on the delay between when the MTD is triggered
and when a client sends a packet. That is the the attacker’s
delay ∆tA = ∥T̃A

i − Ti∥ depends on the transient installation
interval ∆tI = ∥tci − Ti∥. Since there is a causal relationship,
the attacker’s delay cannot be shorter than the transient period
(∆tA ≥ ∆tI ). Note from the figure that as the rate of client
traffic increases, the duration of the transient period decreases,
so the attacker can accurately determine the MTD trigger time
with a lower detection delay.

This delay due to the transient period is important because

TABLE II: The MTD Interval T As Predicted by the Attacker
Based on Their Clustering.

Mininet Data Testbed Data
Actual
Interval
(seconds)

Predicted
Interval

(seconds)

Error
Rate

Predicted
Interval

(seconds)

Error
Rate

60 59.73 0.45% 60.39 0.65%
180 179.58 0.23% 180.84 0.47%
300 300.32 0.11% 301.58 0.52

Fig. 7: Ranking of feature importance to clustering.

if the attacker wants to time their attacks to complete within an
interval, they need to be able to accurately predict the duration
when the current set of IP addresses is valid, and this duration
is between the ground truth times Ti and Ti+1, with no fixed
relationship to tci . In the ODI case, the attacker can always tell
whether the MTD has been triggered since some previous time,
even when there is no traffic at the time of the MTD trigger.
This includes the cases where there is only one connection or
less in each MTD interval. The attacker can determine their
confidence of when the MTD is triggered based on the rate
of client traffic. This also means that in the ODI scheme, the
attacker can calculate the MTD interval T accurately based
on the timings of tci, even when there is not enough traffic to
accurately calculate the time tTi. This is addressed in Section
V-A3. The effect of the rate of traffic in the OTI and PEI
MTDs is explored in the next section.

3) Extracting The MTD Interval: Given that the attacker
knows when the MTD has triggered, they can restart their
attack to maximize the possible attack window. However, if
the attacker knows the MTD interval, they can further plan
their attacks and limit them to those that will have the greatest
chance of succeeding within the interval. To this end, we try
to estimate the MTD interval T and report the accuracy with
which it can be detected, given the accuracy of detecting the
MTD trigger. The results are shown in Table II. Note that all
values are predicted with an error of less than one percent.

4) Feature Importance: To rank the importance of the
features to the clustering result, we use the approach proposed
by Ismaili et al. [29], where a random forest classifier is trained
with the clustered labels as the training labels, and the feature
importance is extracted from the classifier. The results for the
15 most important features are shown in Figure 7.

We note that all of the most important features were related
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to the timing features of the traffic, specifically to the rate
of connections and the difference in rate between the TCP
handshake and the rest of the connection. This indicates the
MTD trigger is detectable due to the delay it creates in the
network traffic when rules are installed. This suggests that
detectability can be addressed by making the timing of the
MTD more closely resemble normal network timings, which
leads to the idea of alternative update schemes that aim to
reduce the delay associated with the MTD trigger.

B. Effect of MTD Update Mechanism

We explored whether the other proposed update mechanisms
affect the attacker’s ability to determine that the MTD has been
triggered. Experiments were run using the OTI and PEI update
mechanisms with an MTD interval of 180 seconds and for a
range of client request frequencies λ. Each data point is the
result of 30 two-hour trials, and the results can be compared
to those in Figure 6. The results for the OTI mechanism
are shown in Figure 8b. For convenience in comparison, the
results for the ODI update mechanism over a smaller range
are included as Figure 8a. We can see the attacker achieved a
similar accuracy for both schemes when there was more client
traffic (λ was high). As the amount of client traffic drops, the
accuracy drops somewhat faster with OTI. In OTI, the rules
are installed in the switch at the determined MTD time, which
takes some slightly variable amount of time η. If the delay
between the installation time and the arrival of client traffic is
more than η, there will be no symptom of the MTD trigger in
the network. However, at high λ where traffic is more likely
to arrive within η, the attacker is still effective. Given that in a
network, the utilization of each server is maximized as much
as possible, this change may not be sufficient.

Also note that in the OTI case, there is no longer an effect
due to s. At lower delays all s achieve similar accuracies,
and at higher delays, all s have large overlapping error bars
indicating the results are noise. This is because there the
detection here is tied to Ti and not tci , and therefore detection
is not possible at lower rates of traffic.

Figure 9 shows the results for the PEI mechanism with
the ODI and OTI cases overlaid for comparison. The attacker
has almost no ability to determine the MTD has triggered
here, even at higher λ. This indicates that the PEI mechanism,
making updates before they are needed, is an effective way to
reduce the timing difference before and after the MTD trigger
and thus remove the attacker’s ability to detect the trigger. We
note the detection here was variable, with some triggers being
detected correctly while others were missed. In other words,
there were more false negatives, but true positives were still
present, while false positives were very low and true negatives
high. The attacker is still able to detect some of the MTD
triggers at high λ.

The theory for PEI aims to hide the MTD trigger entirely
by performing all necessary changes preemptively, so there
should be no symptoms of the trigger in the network. The
results show some symptoms are still present, which we traced
back to the timing of the network. While the MTD trigger is
no longer responsive, there is still a delay in updating cached

(a)

(b)

Fig. 8: ARI for clustering the MTD triggers with (a) the ODI
update mechanism, and (b) the OTI update mechanism, T =
180s.

Fig. 9: Comparison of ARI for clustering the MTD triggers
between all update mechansims, T = 180s.

DNS records. Additionally, because updates are asynchronous,
it is not always possible to synchronize all switches to update
exactly at the same time. Given that the client requests can be
so frequent, this means in some triggers, at least one switch
still made a request to the controller.

The results show that we are able to minimize the range
of amount of traffic the attacker’s approach is effective for
with OTI and significantly reduce the detection with PEI.

In the PEI case, some symptoms are still present in the
network, but the attacker’s detection is significantly dampened.
When considering whether PEI can be deployed as a defense
mechanism against this attack, we have to consider that there is
a large performance cost associated with the non-asynchronous
update mechanism (OTI and PEI). These performance over-
heads are detailed in Section 3. Given that there is already a
performance cost associated with implementing OTI MTDs,
which has to be contended with, this may not be desirable in
a deployed network.
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Fig. 10: The effect of the number of clients and servers on ARI
when the total traffic volume across all hosts is kept constant.

C. Effect of Network Size

In this section, we first show that the total volume of client
traffic, which makes the attack possible, need not necessarily
come from one client or to one server. Under this model, we
assume the attacker has compromised a series of devices that
allow them to sniff the traffic from multiple clients to the
network. The total rate of traffic from all clients λtot to all
servers is kept the same but is generated by one, two, or three
clients. The network utilizes an 180s ODI MTD. The results
are shown in Figure 10.

The detection pipeline has to be expanded by one step in this
scenario because, in the ODI scheme, flow rules are installed
for each client and server pair at each switch. This means if we
have nc clients and nS servers, after each MTD interval, nc×
nS new rules are installed. Thus, the attacker will detect nc×nS
MTD triggers that are all very close in time. When determining
Ti, the attacker now groups all triggers it detects within two
seconds as one MTD trigger, with the assumption that this is
a far higher trigger frequency than would be expected of a
network in practice.

The results show similar effectiveness across one client and
server to multiple clients and servers. A minimum total
rate of traffic from all clients to all servers is required
for the attacker to be effective. However, allowing the
attacker to collect this traffic across many clients relaxes
the assumptions.

D. Cross Dataset Model Performance

The experimental results so far show that the attacker’s
method for determining the MTD interval is effective across
a range of MTD intervals in both a simulated and testbed
environment. These results are achieved with 2 hours of
training data. However, a key question to the practicality of this
method is what the attacker can do if they do not have access
to the network to collect enough training data. Additionally,
what if the MTD is responsive, and so its settings change
during or after the training interval? In this section, we show
that trigger detection is effective across datasets.

Table III shows the performance of the attacker’s model
with different training and testing environments using the ODI
update mechanism. The data with the configuration in the
row is used to train the autoencoder and clustered. Using the
same autoencoder weights and cluster centers, the data from
the configuration in the column is clustered, and the ARI is

TABLE III: Cross-dataset Performance of the Attacker Mod-
els. Results are given for both the simulation and testbed over
different MTD intervals.

Testing Dataset
Simulation

T=60s
Testbed
T=60s

Simulation
T=180s

Testbed
T=180s

Simulation
T=60s 0.917 0.92 0.922 0.914

Testbed
T=60s 0.918 0.916 0.911 0.892

Simulation
T=180s 0.921 0.897 0.912 0.918

Tr
ai

ni
ng

D
at

as
et

Testbed
T=180s 0.899 0.906 0.913 0.923

calculated. As an example, the value in row 1 column 3 shows
the result of training the model with data from a simulated
network with 180s MTD and testing it against the testbed
with 60s MTD. Across the diagonal is the performance of the
models trained and tested from data in the same environment
(though the training and test sets are separate). We can see
from this table that the performance of the model does not drop
significantly through this change. This is reasonable as the
symptoms in the network traffic are not changed by changing
the settings of the MTD, and as discussed in Section V-A4, the
features that contribute most to the clustering are timing and
rate-based features, which when normalized create the same
pattern in the two environments.

This indicates that the attacker’s approach can still be
successful if the settings of the MTD change and if the
attacker cannot collect enough data from one set system.

So if one client cannot be completely monitored, the attacker
can still be successful. Further, if the attacker still does not
have enough access to the system but does know the overall
design of the MTD, they can transfer a model from a different
environment to the target environment. This may be applicable,
for example, if the target is using a configurable commercial
MTD. In such a case, the importance of ensuring the MTD is
robust to this type of approach is very evident.

VI. RELATED WORK

Most literature on evaluating the effectiveness of MTDs
has focused on assessing them against simple automated
attackers that usually target traditional networks. Common
types of attacks considered in network MTDs include scanning
[30]–[32] and DDoS attacks [33]–[36]. While these works
demonstrate the effectiveness of MTD techniques, the attacks
considered are not tailored to an environment with MTD and
assume the attacker has no knowledge that an MTD is being
used.

Work considering an intelligent attacker that takes the MTD
into consideration is very sparse. Jafarian et al. evaluated a
combined MTD and deception technique using six skilled
human attackers who were able to identify hosts using their
fingerprints (open ports and running services), making the
MTD alone much less effective [6]. However, they used a
long MTD interval of 15 minutes and did not randomize port
numbers. Additionally, this requires the full attention of skilled



11

human operators, which is costly for an attacker. Moghaddam
et al. showed that if the attacker is assumed to know the MTD
interval, they can plan their attacks to significantly increase
the chances of success across all phases of a cyber attack [9].
However, they assumed the exact MTD interval is provided to
the attacker, which is a strong assumption that is not realistic
in typical attack environments.

There are also some works targeting MTD techniques
directly in the domain of MAC address randomization MTDs
in mobile phone devices. Vanhoef et al. uniquely identified and
tracked mobile devices employing MAC address randomiza-
tion MTD by clustering Wi-Fi probe requests [7]. This work
demonstrated the ability to identify devices despite address
mutation MTDs. However, it required that the protocol leak
data by using non-standard headers and failing to change
sequence numbers and scrambler seeds after mutation. In a
similar study, Matte et al. identified mobile devices from Wi-
Fi probes using only the timing of the probes, without the need
to rely on leaked information [8]. These works circumvent the
MTD instead of fingerprinting it but are notable in their use
of clustering. To the best of our knowledge, no prior work has
used machine learning or any other method to detect the MTD
trigger and MTD interval in a comprehensive manner.

VII. LIMITATIONS

The main limitations of this work and possible areas for
future research are as follows.

MTD dimension. MTD has three dimensions: 1) when
to move, 2) what to move, and 3) how to move [2]. In
this work, MTDSense was able to detect information about
the first dimension: when to move. In our SDN setup, we
have implemented other MTD techniques, such as virtual port
shuffling and web application diversity, which will allow us
to collect datasets involving the ‘what’ and ‘how’ aspects of
MTD. In future work, we plan to extend the attacker’s scope
to determine the other two dimensions of MTD using the same
techniques.

Extension on client(s) traffic. The effectiveness of MTD-
Sense is reliant on active clients in the network creating a
minimum amount of traffic. This gives the attacker flexibility
in what components are compromised aids in evading de-
tection, however is ineffective if there is not enough client
traffic. It is possible that some active scanning by the attacker
can be incorporated in environments where client traffic is
sparse. Moreover, our experiments are conducted with very
small numbers of clients and servers. These should be scaled
to larger environments, which have additional complexities.

Evaluation of other defense against MTDSense. We
explore alternative mechanisms for implementing MTD as a
possible defense. However, these do not completely hide the
operation of the MTD and have associated performance costs.
Other defenses are possible and need to be explored.

VIII. CONCLUSIONS

This work has presented a novel attacker approach named
MTDSense. We have shown that by clustering network flows

eavesdropped from an SDN network, the attacker can de-
termine when the MTD is triggered and calculate the MTD
interval. To our knowledge, this is the first work to estimate
the MTD trigger interval using an AI-based approach. The
experimental results have shown this attacker approach is
effective for a range of traffic volumes and network sizes,
and the learning can be transferable between networks with
differing configurations. Additionally, we have proposed two
new MTD update mechanisms and evaluated them against
MTDSense, showing that they are effective at low traffic
volumes, although we predict that they have considerable
performance and privacy costs. The attacker’s capability to
determine the MTD interval significantly reduces the effec-
tiveness of the defense and raises significant questions about
the benefits of MTD.
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