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ABSTRACT

This paper proposes a novel reinforcement learning framework to address the Liner Shipping Network
Design Problem (LSNDP), a challenging combinatorial optimization problem focused on designing
cost-efficient maritime shipping routes. Traditional methods for solving the LSNDP typically involve
decomposing the problem into sub-problems, such as network design and multi-commodity flow,
which are then tackled using approximate heuristics or large neighborhood search (LNS) techniques.
In contrast, our approach employs a model-free reinforcement learning algorithm on the network
design, integrated with a heuristic-based multi-commodity flow solver, to produce competitive
results on the publicly available LINERLIB benchmark. Additionally, our method also demonstrates
generalization capabilities by producing competitive solutions on the benchmark instances after
training on perturbed instances.

Keywords liner shipping · network design · neural network · reinforcement learning

1 Introduction

The liner shipping industry is the backbone of global maritime trade. It plays a critical role in the international supply
chain, ensuring the efficient movement of merchandise across the globe. This industry involves the design and operation
of container vessels that traverse fixed maritime routes to transport goods between ports efficiently and profitably. The
strategic planning of these routes plays a pivotal role in optimizing both the revenue of ocean freight companies and the
operational efficiency of their vessels. Well-designed shipping networks not only enhance profitability but also reduce
the total number of vessels utilized, leading to lower maintenance costs and decreased emissions.

The Liner Shipping Network Design Problem (LSNDP) addresses this complex business challenge by modeling this
as a mathematical optimization problem. The goal of the LSNDP is to design optimal vessel routes and allocate
cargo flows across the network to maximize overall profitability. As a specialized routing problem, the LSNDP falls
under the broader category of combinatorial optimization problems. Similar routing problems include the well-known
Traveling Salesman Problem (TSP) and Vehicle Routing Problem (VRP). Similar to these, the LSNDP is classified as
NP-hard, due to which solving large-scale instances to optimality with traditional OR approaches such as Mixed-Integer
Programming (MIP) is computationally intractable.

However, recent advances in deep learning for routing problems have introduced an alternative approach to solving
NP-hard combinatorial optimization problems. Kool et al. [2018] applied Reinforcement Learning (RL) to the
Traveling Salesman Problem (TSP) and several variants of the Vehicle Routing Problem (VRP), demonstrating the
potential of RL in this domain. Building on this, Joshi et al. [2019] enhanced the RL framework by incorporating
Graph Convolutional Networks (GCN), which yielded promising results for TSP. These learning-based approaches
achieved results comparable to traditional OR methods in terms of optimality, while also demonstrating impressive
generalizability. This opens up avenues to learn general purpose policies from a diverse dataset and use these to infer
high quality solutions on new unseen data points.
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In this paper, we present a learning-based approach to the LSNDP. We break down the LSNDP into two sub-problems,
as is classically done in OR-based approaches to this problem, namely the Network Design Problem (NDP) and the
Multi Commodity Flow Problem (MCF). We formulate the NDP as a Markov Decision Process (MDP). By integrating
a reinforcement learning (RL) algorithm with a heuristic-based multi-commodity flow solver, our method achieves
competitive results on the publicly available LINERLIB 1 benchmark. Our approach offers its value in two distinct
ways. Firstly, our approach demonstrates that it can serve as a competitive end to end optimizer, in a similar vein to
traditional OR solvers, and secondly, our approach shows signs of generalization capabilities by learning a robust policy
that can provide high quality solutions for perturbed instances.

The rest of the paper is organized as follows. We introduce the Liner Shipping Network Design Problem (LSNDP)
and its decomposed sub-problems: multi-commodity flow (MCF) and network design problem (NDP) in Section 3.
For the decomposed network design problem, we introduct our reinforcement learning framework in Section 4. We
demonstrate the quality and generalizability of the proposed approach on the LINERLIB benchmark in Section 6.
Finally, we conclude the paper in Section 7.

2 Related Work

The Liner Shipping Network Design Problem (LSNDP) has been extensively researched within the operations research
(OR) community for several decades. To support benchmarking efforts for the LSNDP, Brouer et al. [2014] introduced
a standardized dataset known as LINERLIB1, which includes seven real-world instances of the problem, each varying
in scale. In a comprehensive review of the LSNDP literature, Christiansen et al. [2020] discussed the standardized
formulation of the problem widely accepted by the OR community and reviewed the development of the OR-based
approaches typically used in this domain. The performance of leading algorithms is benchmarked on the LINERLIB
dataset in their work. According to the authors, traditional OR approaches to the LSNDP can generally be categorized
into the following main types:

• Holistic MIP-based formulations, which address both the service design and the multi-commodity flow aspects
simultaneously, as exemplified by the work of Plum et al. [2014] and Wang and Meng [2014].

• Local search-based methods, which explore variations from a predefined set of candidate services, such as the
approach described by Meng and Wang [2011] and Balakrishnan and Karsten [2017].

• Two-stage algorithms: These decompose the problem into two distinct phases: first solving the network design
problem (NDP) and then the multi-commodity flow (MCF) problem separately. A common method, as used by
Brouer et al. [2014] and Thun et al. [2017], involves designing the services (i.e., NDP) first and subsequently
routing the containers through the designed network (i.e., MCF). Alternatively, Krogsgaard et al. [2018]
propose a reverse approach, where containers are first flowed through a relaxed network before finalizing the
network design based on the flow. This class of approaches has generally proven to be the most effective,
yielding reasonable solutions on the largest instance in the LINERLIB dataset, where other methods have
failed.

Despite these advancements, two significant challenges persist across all OR methods. First, scalability remains a critical
issue due to the NP-hard nature of the LSNDP, with large, real-world instances still unsolved. Second, generalizability
is a major limitation, as even small perturbations in problem instances often necessitate a complete reconstruction of the
solution, requiring a similar level of computational effort as the original problem.

In the past decade, Reinforcement Learning (RL) has gained increasing attention as a method for solving combinatorial
optimization problems. Khalil et al. [2017] pioneered the use of RL to tackle the Maximum Cut and Minimum
Vertex Cover problems, combining graph embeddings with Q-learning to generate heuristics. Hu et al. [2017] made
the first attempt at applying RL to the Bin Packing Problem. Within the domain of routing problems, Vinyals et al.
[2015] introduced the Pointer Network (PN) to address the Traveling Salesman Problem (TSP), employing attention
mechanisms to map inputs to outputs. Bello et al. [2016] built on this work by applying the Actor-Critic algorithm
to improve PN performance. Nazari et al. [2018] extended the RL approach to the Vehicle Routing Problem (VRP),
enhancing the Pointer Network by replacing the Long-Short Term Memory (LSTM) encoder with a 1-D convolutional
embedding.

More recent advances in RL for routing problems include the work of Kool et al. [2018], who developed a construction-
heuristic learning approach applied to the TSP, VRP, and other related routing challenges. Their approach enhanced the
encoder by introducing a Transformer-like attention mechanism, while the decoder maintained a similar structure to
the original PN. Joshi et al. [2019] further advanced the field by incorporating a Graph Convolutional Network (GCN)

1https://github.com/blof/LINERLIB

2



for the encoder, alongside a highly parallelized, non-autoregressive beam search roll-out. This method outperformed
autoregressive models in terms of solution quality for TSP. Building on these developments, Fellek et al. [2023]
introduced a more sophisticated graph embedding scheme, leveraging a multi-head attention structure that embeds edge
information. Their approach demonstrated notable improvements for VRP, further advancing the effectiveness of RL in
solving complex routing problems.

Significant strides have been made to improve the scalability and generalizability of RL-based approaches. Drori
et al. [2020] tackled edge-selection problems by converting them into node-selection tasks using line graphs and
applied Graph Attention Networks (GAT) for embedding. Their method was tested on various NP-hard combinatorial
optimization problems, including TSP, and showed that inference time scaled linearly with problem size. Other key
advancements include the Adaptive Multi-Distribution Knowledge Distillation (AMDKD) framework proposed by Bi
et al. [2022], and the work of Fu et al. [2021], which employed Monte Carlo Tree Search (MCTS) alongside a heat map
generated from a pre-trained supervised learning model to effectively scale solutions for arbitrarily large VRP instances.

The advancements of the above-mentioned RL methods show potential for application to a wider range of routing
problems beyond TSP and VRP, including the Liner Shipping Network Design Problem (LSNDP). This paper attempts
to take strides in that direction, by applying RL to a richer, and harder class of NP-hard combinatorial optimization
problems, which has significant applications to real-world applications.

3 LSNDP

Brouer et al. [2014] and Christiansen et al. [2020] both provided a comprehensive definition of the Liner Shipping
Network Design Problem (LSNDP): Given a set of ports, a fleet of container vessels, and a collection of demands
specified in the quantity of Forty-Foot Equivalent units (FFE) with designated origins, destinations, and shipping rates,
the objective is to design a set of cyclic sailing routes for the vessels (i.e., services) that maximize revenue from fulfilling
the demands while minimizing the overall operational costs of those vessels.

It is important to note that, unlike the VRP or other dispatch problems, the LSNDP does not focus on the specific
scheduling of vessels. Instead, it generates a set of services, each representing a round-trip route with a fixed itinerary
of ports, called at regular intervals, typically at a weekly or bi-weekly frequency. Vessel assignments are subsequently
determined to support these services. For example, if a round-trip route takes six weeks to complete, six vessels will be
needed to maintain a weekly service. Additionally, the demand in LSNDP is normalized according to these service
frequencies, simplifying the problem formulation.

Services in the LSNDP are categorized based on the topological structure of their routes. A simple service follows
a round-trip route where vessels visit each port exactly once, forming a single circular loop. However, services are
often non-simple, meaning that some ports are visited more than once along the same route. Visually, these non-simple
services form multiple loops. Depending on their structure, they can be classified as butterfly services, pendulum
services, or complex services. Figure 1 illustrates an example of a butterfly service generated in the LSNDP, where
ports are labeled using their corresponding UNLOCODE2. Note that one hub port London (GBLON) is visited twice.

Building on the basic definition provided above, several variations of the LSNDP have been extensively studied in the
literature. These variations introduce additional factors such as transit time, which imposes time constraints on demand,
transshipment costs, vessel speed optimization, and penalties for leaving a portion of the demand unsatisfied (rejected
demand). In line with most studies that benchmark their results using the LINERLIB dataset, this work focuses on
the LSNDP variation that incorporates transshipment costs and rejected demand, while excluding considerations for
transit time and vessel speed optimization. Additionally, we assume that vessels operate strictly at their designed speed
and permit fractional vessel assignments, which simplifies the modeling of vessel deployment and optimizes resource
allocation.

As discussed in Section 2, a widely adopted approach within the traditional operations research (OR) community for
solving the Liner Shipping Network Design Problem (LSNDP) is to decompose it into two closely related sub-problems:
the multi-commodity flow (MCF) problem and the network design problem (NDP). Detailed descriptions of the MCF
and NDP can be found in Appendix A.

In our proposed reinforcement learning (RL) approach, we aim to leverage this two-tier framework. Rather than
formulating the NDP as a Mixed-Integer Problem (MIP), we represent it as a Markov Decision Process (MDP), where
round-trip services are generated sequentially. At each step t, the generation of a complete service is treated as an action
At, with the step index t indicating the number of services generated up to that stage.

2https://unece.org/trade/uncefact/unlocode
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Figure 1: Example of a butterfly service with a hub port at London (GBLON).

The MCF serves as a key component in the reward evaluation function at each step, defined by:

Rt+1 = ηt+1 − ηt, (1)

where Rt+1 is the reward in the MDP context, and ηt+1 and ηt represent the profit of the network with all services
generated up to steps t+ 1 and t, respectively. For further details on the MDP formulation, refer to Appendix C.

To support the RL approach, an advanced MCF algorithm is crucial for enabling fast reward evaluation, as the reward
function is invoked hundreds of millions of times during the training process. Additionally, the quality of the NDP
solution is partly influenced by the performance of the MCF algorithm since variations in the reward signals can steer
the RL training in different directions. In this study, we have implemented a basic version of the MCF algorithm
(see Appendix B), which is less sophisticated than the state-of-the-art heuristic implementations, such as those by
Krogsgaard et al. [2018], and also lags behind MIP-based solutions.

Despite the limitations of our MCF implementation, we were still able to develop an RL-based solution for the NDP
component of the LSNDP. In the following section, we introduce two approaches for finding optimal NDP solutions by
parameterizing the policy as neural networks.

4 Policy Neural Network Design

In this section, we present two modeling approaches for parameterizing the policy πθ as neural networks: the encoder-
only approach and the encoder-decoder approach. After representing the NDP as a Markov Decision Process (MDP),
either approach can produce a parameterized policy πθ that guides the actions at each step t. This process can be
described by the following sampling equation:

At ∼ πθ(·|St), (2)

where the action At in the context of the NDP comprises of two components: the vessel selection Av,t ∈ RV , which
determines the vessel type to be deployed from the overall fleet, and the service selection Ap,t ∈ RP , which specifies
an ordered sequence of ports:

At = [Av,t, Ap,t]. (3)

The state at step t is represented by two components: St = {St,g, St,v}. Here, St,g captures the state of the shipping
network as a graph, and St,v describes the status of the available vessels. These components are defined as follows:

St,g = {fp, fe}, (4)

St,v = vt ∈ RV×Dv . (5)
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In this representation, fp ∈ R(P+1)×2 contains the two-dimensional features of all nodes in the graph, where each node
corresponds to a port in the shipping network. The notation P represents the total number of ports in a given problem
instance, while the two-dimensional features capture the total incoming and outgoing demand for each port at step t.
An additional node is included to track the global features of the graph, resulting in a total of P + 1 nodes. The feature
matrix fe ∈ RE×De describes the edges in the graph, where each edge represents a potential leg in a service connecting
two ports. Here, E represents the total number of possible port pairs that a vessel can traverse in a single leg, and De is
the dimension of the edge features, with De = 6 + |S|, where |S| is the maximum number of services allowed in the
problem instance. Note that features fe and fp are step t dependent, here we drop the subscript for simplicity.

The notation vt represents the feature set for each vessel class, including the number of vessels remaining to be deployed
in each class. Here, V denotes the total number of vessel classes in the problem instance, and Dv represents the
dimension of the vessel features. For more details on the state representations, please refer to Appendix C.

Both the encoder-only and encoder-decoder approaches follow a similar sequence: selecting the vessel class first, and
then determining the service rotation. The sequence repeats at each step t until one of the following conditions is
met: the maximum number of services |S| is reached, all demands are satisfied, or all vessels are exhausted. The key
difference lies in how the service rotation Ap,t is generated. Note, Ap,t represents the selection of one service for the
shipping network, which involves determining a sequence of ports to include in the service. This can be approached in
two ways: either selecting all ports simultaneously and deciding their sequence afterward (encoder-only approach) or
selecting each port sequentially (encoder-decoder approach).

The encoder-only approach uses a one-shot rollout, where a complete sequence of actions is generated in a single step,
based on a policy that predicts the entire sequence simultaneously. In contrast, the encoder-decoder approach relies on
an autoregressive rollout, where the policy generates ports sequentially one at a time, using each previously selected
port as input for the next selection. The complete sequence of ports once generated constitutes an action.

4.1 Encoder-Only Approach with One-Shot Rollout

Figure 2 demonstrates the workflow of the encoder-only approach. Instead of defining vessel selection as sampling
from a stochastic policy, we use a simple deterministic heuristic for vessel selection. Specifically, we select the “largest
available vessel” as the action Av,t, where “largest” refers to the vessel class with the highest capacity, measured in
FFEs:

Av,t = argmax
v∈[1,V ]

(vt)v,1>0

Capacity(v). (6)

Here, v represents the index of the vector vt, and Capacity(v) denotes the capacity of the vessel class corresponding to
index v. The constraint (vt)v,1 > 0 ensures that only vessel classes with available vessels are considered for selection.
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Figure 2: Encoder policy diagram for NDP.

Our encoder is composed of L sequential layers of Graph Attention Networks (GAT) with an embedding dimension of
H , followed by a standard Transformer encoding layer. The GAT layers learn contextual representations for each port
by leveraging the underlying graph structure, while the Transformer encoder enables attention across all port pairs,
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capturing interactions between them. We omitted the positional embedding layer, as our embedding structure does not
have inherent temporal properties.

We pass the graph representation, fp and fe, through the GAT layers. After processing it through L graph attention
layers, we obtain a dense, contextualized representation h

(L)
p ∈ R(P+1)×H . Mathematically, this process can be

expressed as follows:

h(1)
p = GAT(1)(fp, fe) ∈ R(P+1)×H , (7)

h(l)
p = GAT(l)(h(l−1)

p , fe) ∈ R(P+1)×H , (8)

where the superscript (l) denotes the l-th layer of the network. Note that only the node features are transformed into the
dense representation h

(l)
p , while the edge features fe remain unchanged. Through this iterative message-passing process,

information from both the nodes and edges is effectively aggregated into the node representations.

It is important to note that the output from the GAT consists of two components: the port embeddings and the global
embedding:

h(L)
p = [h

(L)
p,port,h

(L)
p,global] ∈ R(P+1)×H , (9)

where h
(L)
p,port ∈ RP×H represents the embeddings of the ports, and h

(L)
p,global ∈ R1×H corresponds to a global node

embedding that serves as a general representation of the entire graph. In the encoder-only approach, only the port
embeddings are utilized, while the global embedding is used by the decoder.

With the port information fully encoded, we now shift our focus to the vessel information. Based on the vessel action
Av,t described earlier, v denotes the index of the selected vessel class. In this step, only the features of the selected
vessel class, (vt)v ∈ RDv , are used in the workflow. The vessel state is then encoded using a matrix multiplication:

hv = Wv(vt)v ∈ RH , (10)

where Wv ∈ RH×Dv is a linear transformation that maps the vessel state features to a dense representation of dimension
H .

After encoding both the graph state and vessel state into dense matrices, they are processed through a standard
Transformer encoder. The resulting updated graph embedding ĥp is then passed through a Sigmoid function:

[ĥp, ĥv] = Transformer(h(L)
p,port,hv) ∈ R(P+1)×H , (11)

h̃p =
1

1 + e−(Wpĥp)T
∈ RP , (12)

where Wp is a linear transformation that maps the graph embedding to a P -dimensional vector. The Sigmoid function
produces h̃p ∈ RP , with all elements constrained within the range [0, 1]. The resulting embedding is then subjected to
a Bernoulli sampling process, defined by:

Xp = Bernoulli(h̃p) ∈ {0, 1}P . (13)

We define the set Ãp = {i|(Xp)i = 1,∀i ∈ Xp}, which represents an unordered set of ports to be included in a service.
A port is included in the service if the corresponding value in Xp is 1, and excluded if the value is 0.

To generate an ordered set representing a service, we use a fast approximate TSP solver (see Shintyakov [2017]) to
transform the unordered set into an ordered rotation:

Ap,t = TSP(Ãp, fe). (14)

The TSP solver requires additional static graph features from fe (such as the distance matrix between ports) to determine
the optimal port-call sequence. The resulting ordered set of ports is treated as the service selection action for the current
step, Ap,t. Here, we include the time step subscript t to maintain consistency with the notation used in other sections.
Assembling Av,t from Eq. 6 and Ap,t from Eq. 14, action At is completed as defined in Eq. 3.

4.2 Encoder-Decoder Approach with Autoregressive Rollout

Equations 11 to 14 describe the one-shot rollout for the encoder-only approach, where the probability of each port being
included in a service is modeled independently within each action At. While this method is straightforward and intuitive,
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it treats the inclusion of each port as independent, limiting its ability to account for dependencies between selected ports.
In contrast, the encoder-decoder approach with autoregressive rollout, explicitly models these dependencies, where the
decision to include an additional port depends on the previously selected ports in the current and all previous services.

In the autoregressive rollout, the action At is generated sequentially, involving multiple sub-steps within a single step t.
The process begins with a sub-step, denoted as τ , for vessel selection, followed by several sub-steps to select ports,
thereby completing the generation of a single service. It is important to note that in this approach, vessel selection is
also determined by the policy πθ, which is parameterized by a neural network, rather than the rule-based selection used
in the encoder-only approach (Eq. 6).

The embeddings used for the autoregressive rollout are generated as outputs from the encoder phase. Specifically, for
the port embeddings, we define:

ȟp = Transformer(h(L)
p,port) ∈ RP×H , (15)

where h
(L)
p,port ∈ RP×H is the port embedding previously defined in Eq. 9. For the vessel embeddings, we similarly

define:

ȟv = W
′

vvt ∈ RV×H . (16)

where ȟv represents the embeddings for all vessel classes, rather than just the selected vessel class as used in Eq. 10 for
the encoder-only approach. Note the W

′

v ∈ RH×Dv is distinct from Wv. Next, we define the overall embedding for
the decoder:

hembed =

 ȟp

ȟv

hBOS

 ∈ RN̄×H , (17)

where hBOS ∈ RH represents the embedding for the “beginning of service” (BOS). This vector is randomly initialized
and remains static throughout the entire service generation process. The notation N̄ = P + V + 1 reflects the total
dimensionality of the embedding, where P is the number of ports, V is the number of vessel classes, and the additional
1 corresponds to the BOS. It’s important to note that the embeddings ȟp and ȟp vary with each step t, but remain
constant across all sub-step τ ’s. For simplicity, we have omitted the t subscripts in this equation.

Softmax

concatenated node embedding node embedding node probability neural networkmasked probability

Softmax Softmax Softmax

LSTM

FF

LSTM

FF

LSTM

FF

LSTM

FF

Figure 3: LSTM-based decoder for NDP. The decoder takes in xt generated from the previous steps and builds x
sequentially. The example shows how a full service At = (v2, p1, p3) is generated sequentially over τ = 1, 2, 3, 4
within step t. Note that at τ = 4, p1 is selected again, which closes the circle and ends At.

Figure 3 illustrates how the agent progresses through each sub-step τ within a step t, using Long Short-Term Memory
(LSTM) to guide the rollout process. This can be mathematically expressed as follows:

h′
1,h1, c1 = LSTM(1) (xt,h0, c0) , (18)

h′
τ ,hτ , cτ = LSTM(τ) (x,hτ−1, cτ−1) . (19)

Here, xt ∈ RH×n0 represents the embeddings of all vessels and ports selected in prior services up to step t, while
x ∈ RH×n extends this by including the embeddings of vessels and ports selected up to sub-step τ , where n = n0 + τ .
The cell state of the LSTM at sub-step τ , denoted by cτ , is initialized as

c0 = h
(L)
p,global ∈ RH , (20)
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where h(L)
p,global is the global embedding defined in Eq, 9. The hidden state of the LSTM at sub-step τ , represented by hτ

, is initialized as:

h0 =
1

P

P∑
i=1

(ȟp)i ∈ RH . (21)

Once the output of the LSTM h′
τ ∈ RH×n is generated through Eq. 19, it is passed through a fully connected feed-

forward (FF) layer with ReLU activation, which transforms the embedding from dimension H to N̄ . To enhance
stability during training, layer normalization (LN) is applied to the resulting embeddings:

ĥτ = LN (FF(h′
τ )) , (22)

ĥτ = [ĥτ
1 , . . . , ĥ

τ
n] ∈ RN̄×n. (23)

The last embedding vector ĥτ
n ∈ RN̄ is then processed through a Softmax layer to produce the final output probabilities:

h̃τ =
eĥ

τ
n∑N̄

j=1 e
(ĥτ

n)j
∈ RN̄ . (24)

The probability distribution is filtered through a masking rule before it is used to sample the index of the vector which
represents the next vessel or port in the service. The embedding of the selected vessel or port is then appended to x,
which will serve as the input vector for the subsequent sub-step:

i ∼ P
Ä

mask(h̃τ )
ä
, (25)

x← [x, (hembed)i]. (26)

Here, i represents the index of vector h̃τ . The masking rule operates as follows: during the very first sub-step within
step t, all ports are masked to allow for vessel selection. From the second sub-step onward, the ports are unmasked
while the vessels are masked. Ports that have already been visited in step t remain masked, except for the first port, as
revisiting it indicates the completion of a service generation. Noted that the “begin of service” (BOS) embedding is
only unmasked at the first sub-step (τ = 1) of the initial step (t = 1).

Importantly, both xt and x represent the same set of embeddings, capturing the vessels and ports selected at various
stages. When carried over across different steps, it is referred to as xt, whereas when carried over across sub-steps
within the same step, it is denoted as x.

The sub-steps in each action are generated autoregressively, with our neural network architecture applying the chain
rule to factorize the probability of generating a service at step t as:

πθ(At|St) =

nτ∏
τ=1

P(At(τ)|At(τ
′ < τ), St), (27)

where nτ represents the total number of sub-steps within step t. The term At(τ) refers to the selection made at sub-step
τ , while At(τ

′ < τ) denotes all selections made in the previous sub-steps leading up to τ .

5 Policy Optimization

To optimize our policy network πθ, we employ policy gradient methods, which iteratively refine the policy to maximize
the reward. Policy gradient methods form a broad class of reinforcement learning algorithms that directly improve the
policy πθ by rewarding actions that lead to higher-value outcomes based on sampled trajectories. In this work, we
utilize an enhanced variant of the standard policy gradient algorithm known as Proximal Policy Optimization (PPO)
Schulman et al. [2017]. PPO introduces a clipped surrogate objective that significantly enhances the stability of the
learning process. Detailed hyperparameter settings for PPO are provided in Appendix D.

6 Experiments

We conduct experiments to evaluate the performance of the proposed RL approach on the LINERLIB benchmark,
demonstrating that the RL-based solution for the NDP is a promising alternative to MIP and heuristic methods. Notably,
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Google ORTools1 recently published their own benchmark results on the LINERLIB dataset, which we include in our
comparison where applicable.

To focus on benchmarking the solution quality for the NDP, we use the MCF algorithm introduced in Appendix B
to evaluate all network solutions, including those generated by our RL-based method, LINERLIB, and ORTools.
For a consistent comparison, we decompose all multi-loop services, such as butterfly services, into simple services.
Additionally, we relax the hard limit on the number of vessels, treating it as a soft constraint with an associated penalty,
to further facilitate the comparison.

Unless otherwise stated, all experiments, including both training and inference, are performed on an A100 GPU. As
described in Section 5, we employ the standard PPO algorithm for policy optimization during training. For detailed
hyper-parameter settings, please refer to Appendix D.

6.1 Result on Baltic Instance

In this section, we evaluate the performance of our RL-based NDP approach on the Baltic instance from the LINERLIB
dataset, which consists of 12 ports (i.e., vertices in the graph). Training and validation are conducted on separate
datasets with a total of 16,000 instances, where the demand quantities were perturbed from the original LINERLIB
Baltic instance (with a factor of ±10%), while the origins and destinations of the demand remained unchanged. For
a detailed description of the perturbation process, please refer to Appendix E. The test set consists of a single data
point—the actual LINERLIB Baltic instance—to ensure a fair comparison with publicly available benchmark solutions.
It is worth noting that we primarily report results from the encoder-decoder RL-based solution, as the encoder-only
variant produced nearly identical results in this case.

Table 1 provides a detailed profit breakdown for the RL-based solution and compares it with the LINERLIB benchmark.
Notably, if a solution utilizes fewer vessels than the available fleet, a profit is gained based on the time charter rate.
Conversely, if the solution requires more vessels than available, additional costs are incurred.

Table 1: Profit ($) breakdown of the RL-based NDP solution and LINERLIB solution.

RL-based Solution LINERLIB Solution

Revenue 3,688,028 3,687,260
Unused vessel profit −12,596 6823
Vessel used 6.34 5.72
Vessel service cost 267,898 245,176
Voyage cost and fee 634,729 689,083
Handling and transshipment cost 2,116,377 2,109,876
Rejected demand penalty 380,000 389,000
Total net profit 276,428 260,948

The RL-based approach utilizes 2.03 Feeder 800 vessels (with a capacity of 800 FFEs) and 4.31 Feeder 450 vessels
(with a capacity of 450 FFEs), while the LINERLIB solution employs 2.14 Feeder 800 vessels and 3.58 Feeder 450
vessels. Any over- or under-utilization of vessels is accounted for in the “unused vessel profit,” where the LINERLIB
solution shows a positive profit, while the RL-based solution incurs a loss. However, the RL-based solution is able to
satisfy more demand, resulting in a smaller penalty for rejected demand due to the higher vessel utilization. Despite
these nuances, the RL-based solution ultimately achieves a higher net profit compared to the LINERLIB solution. For a
visual comparison of the network designs, refer to Figures 8 and 9 in Appendix F, which show the networks produced
by the RL-based and LINERLIB solutions, respectively.

6.2 Experiments on Other Instances

In this section, we explore the potential of using the RL-based NDP solution as an optimizer, where the training process
of the RL agent functions as a traditional optimization solver. In this scenario, there is no distinction between the
training and inference phases.

We extend the experiments to include two additional instances from LINERLIB: West Africa (WAF) and World
Small. These instances contain 20 and 47 ports, respectively. A performance comparison between the two RL-based
NDP approaches—encoder-only and encoder-decoder—and the benchmark solutions is presented in Table 2. Both

1https://developers.google.com/optimization/service/shipping/benchmarks/lsndsp
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LINERLIB and ORTools solutions are listed as benchmarks, with ORTools results being available only for the World
Small instance. Please refer to Appendix G for a visual comparison of the networks designed by the RL-based solution
and the LINERLIB solution.

To ensure a fair comparison, both the LINERLIB and ORTools solutions are evaluated using our MCF algorithm
introduced in Appendix B.

Table 2: Max profit (in million $) of RL-based NDP approaches on LINERLIB problem instances.

Baltic (n=12) WAF (n=20) World Small (n=47)

Encoder-only (RL) 0.28 5.60 42.73
Encoder-decoder (RL) 0.29 5.60 42.32
LINERLIB 0.26 5.20 32.28
ORTools N/A N/A 40.10

Both RL-based NDP approaches yield higher profits compared to the benchmark solutions, demonstrating the clear
potential of using the RL-based solutions as a viable alternative solver for the Network Design Problem.

6.3 Solve Time Comparison

Table 3 reports both the inference time and training time for the RL-based NDP solution on the LINERLIB instances
we experimented on. The solve time is benchmarked with the LINERLIB solution on corresponding instances. Note
that for the RL-based NDP solution, the inferences are all run on an Apple M2 CPU with 12 cores, while the trainings
are conducted on an A100 GPU. We only report the encoder-only approach as the RL-based NDP solution in Table 3
given that the encoder-decoder approach yields an inference time similar to that of the encoder-only approach.

Table 3: Inference time (in seconds) of the proposed encoder-only approach on different LINERLIB instances.

Baltic (n=12) WAF (n=20) World Small (n=47)

RL-based NDP inference 0.03 0.11 0.60
Environment simulation + RL-based inference 0.22 0.40 15.04
LINERLIB benchmark 300 900 10,800
RL training time (excluding inferences) 720 4000 360,000

It is important to clarify that the “RL-based NDP inference” time in Table 3 includes both the generation of the full
set of services and the execution of the underlying MCF algorithm, whereas the “environment simulation + RL-based
inference” time also accounts for the setup and updates of the environment. When comparing the inference time of the
RL-based solution to the solve time of the LINERLIB solution, which uses a MIP solver, we observe an approximate
1000x speedup across the three problem instances tested.

6.4 Solution Robustness against Variations in the Problem Instance

In real-world applications beyond the academic scope of the LSNDP, schedulers often face disturbances on short notice
that can have long-term impacts. Examples include trade wars, which affect demand quantities, or pirate activities,
which influence the availability of certain ports or routes in network design. Consequently, having an algorithmic tool
that can quickly generate optimal network designs for a variety of perturbed problem instances is of immense value.

In this part of the experiment, we evaluate the effectiveness of our RL-based NDP solution in handling a large set
of problem instances perturbed from a common baseline. Additionally, we explore how enhancing the RL agent
by exposing it to these perturbed instances during training improves its performance compared to the baseline RL
agent, which is trained on a single problem instance (as used in Section 6.2). For the enhanced RL agent, training
and validation are conducted on separate datasets totaling 80,000 instances, where demand quantities are perturbed by
±10% from the original LINERLIB Baltic instance (matching the perturbation level in Section 6.1). During inference,
100 different test instances are randomly generated, and for each instance, the RL agent produces 100 network designs.
From these designs, the maximum profit (i.e., reward) is selected for each instance. The mean and standard deviation of
these maximum profits across the 100 test instances are then reported.

To further examine the agent’s robustness, we increase the perturbation level in both the training and test datasets from
10% to 50%, assessing how much additional improvement the enhanced RL agent offers over the baseline. Notably, the
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perturbation levels are kept consistent between training and testing; for instance, when evaluating performance on a
dataset with 50% perturbation, the RL agent is trained on data with the same 50% perturbation.

The first row of Table 4 compares the mean profit value across 100 test instances with a 10% perturbation between
the enhanced and baseline RL agents. On average, the enhanced RL agent trained on perturbed instances achieves a
$257,945 higher profit than the baseline RL agent trained on a single instance. The second row shows that with the
demand quantity perturbation increased to 50%, both agents perform worse, but the profit uplift from the enhanced RL
agent rises to $401,005. It is important to note that these results are based on the encoder-decoder RL approach, though
we expect similar trends for the encoder-only approach.

Table 4: Mean and standard deviation (in parenthesis) of profits in $ over 100 test instances for enhanced RL agent and
baseline RL agent at corresponding perturbation levels.

Enhanced agent
trained on perturbed instances

Baseline agent
trained on single instance

Test dataset (10% perturbation) 274,387.17 (5,835.62) 16,441.79 (25,430.68)
Test dataset (50% perturbation) 78,215.53 (34,042.51) -322,789.09 (56,312.07)

6.5 Discussion

The experiments conducted in this section demonstrate the effectiveness of our RL-based NDP solution in two significant
ways. Firstly, when evaluated on the Baltic instance from the LINERLIB dataset, the RL-based solution generates
near-optimal results and compares favorably against the benchmark solutions. Secondly, when applied as an optimizer
on previously unseen instances, such as the Baltic, West Africa (WAF), and World Small datasets, the RL-based
approach continues to deliver competitive performance without the need for retraining. This motivates the use of
reinforcement learning based methods to learn general, competitive policies that can potentially deliver high-quality
solutions on new instances.

However, a few limitations should be noted, stemming from both the computational resources and the experimental
setup. The most significant limitation arises from the underlying heuristic multi-commodity flow (MCF) algorithm,
which serves as a key part of the reward function evaluator for the RL agent. Unfortunately, we do not have access to
the state-of-the-art MCF implementations used by the benchmarks. This discrepancy between our MCF implementation
and those used in the benchmarks means the associated NDPs are effectively different problems. As a result, we
evaluate all benchmark solutions using our MCF implementation.

Additionally, it’s important to note that the NDP definition has been relaxed to better align with our RL-based approach.
For instance, we consider only simple services in the network design and relaxed the hard limit on the number of vessels
to a soft constraint with penalties. These modifications explain why the LINERLIB and ORTools solutions reported
here may differ from those found in other literature. According to industry experts, these relaxations have only a limited
impact on the solution quality. Nonetheless, tightening these constraints and preparing the solution for an end-to-end
benchmark on the full LSNDP would be a valuable next step.

Our current experiments cover three out of the seven instances in the LINERLIB dataset. Expanding the experiments to
include all instances, particularly the World Large instance (the largest in the dataset), would further test the scalability
of the approach. Moreover, the perturbations in this study are limited to demand quantities. Extending the perturbations
to include the origin and destination of the demand, the number of available vessels in each class, and the inclusion of
specific ports would provide a more comprehensive demonstration of the solution’s generalizability.

7 Conclusion and Future Work

In this paper, we propose a model-free RL-based framework to address the network design aspect of the Liner Shipping
Network Design Problem (LSNDP). By leveraging a heuristic-based multi-commodity flow (MCF) solver as part of the
evaluator function, our approach can solve the LSNDP in an end-to-end fashion. This work marks the first attempt
to approach LSNDP through a method distinct from traditional operations research (OR) techniques. Our framework
demonstrates scalability with problem size and achieves competitive results on the LINERLIB benchmark. We have
shown that our approach offers value in two key ways: it can rapidly generate near-optimal solutions for problem
instances perturbed from the training data or be utilized as an optimizer, delivering effective performance on unseen
problem instances without requiring prior training.
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Our approach introduces a novel paradigm for solving LSNDP compared to conventional OR methods, which typically
require equal computational effort for each new problem instance. In contrast, our method front-loads the computational
work during the training phase, while enabling rapid inference to new instances. This makes the solution ideal for
problems like LSNDP, where long-term plans are frequently disrupted by unexpected events or frequent data updates.
In terms of real world applications, this enables rapid “tactical” changes by reacting to real world dynamics.

Looking ahead, there are several opportunities to enhance the encoder-decoder architecture. Replacing the LSTM with
a transformer-based architecture could allow the network to handle larger and more complex use cases. Additionally, as
mentioned in Section 6.3, the MCF algorithm accounts for a significant portion of the runtime during both training and
inference. A faster MCF implementation would further improve training efficiency and reduce thhe training wall clock
time. Exploring a Graph Neural Network (GNN)-based surrogate for MCF is another promising avenue to speed up
reward function evaluation.

In terms of training strategies, there are several paths to explore. One interesting direction is the application of reward
shaping, as discussed by Ng et al. [1999], to enhance training efficiency. Reward shaping provides additional signals
to guide the RL agent toward an optimal policy, especially when only terminal rewards are available during policy
exploration. Introducing penalties in the reward function could also help guide the agent’s behavior; for instance, adding
a service length penalty could encourage the agent to select shorter routes that optimize transshipment usage.

Another area worth exploring is the inherent symmetry of the LSNDP, where the reward remains unchanged if ports are
rotated within a service. Inspired by OR techniques, which often limit symmetry in the search space to improve solving
speed, symmetry can also be leveraged in neural combinatorial optimization, as demonstrated by Kwon et al. [2020]
and Kim et al. [2022]. Adapting these techniques to our RL framework could improve sample efficiency for LSNDP.

Other reinforcement learning algorithms that favor exploration and improve sample efficiency could potentially improve
performance over PPO. For example, Soft Actor-Critic (SAC, Haarnoja et al. [2018]), an off-policy actor-critic algorithm,
maximizes both expected reward and entropy, promoting more effective exploration. Additionally, Monte Carlo Tree
Search (MCTS, Kocsis and Szepesvári [2006]) based methods when combined with neural networks Silver et al.
[2017] have proved to be effective model-based approaches and have yielded superhuman performance in deterministic
environments. RL algorithms designed to scale with problem size (Drori et al. [2020]) and generalize across a variety
of instances (Fu et al. [2021]) may also align with broader business needs beyond LSNDP. Adapting these techniques to
train models on smaller instances and transfer the learned policy to larger problems would be a valuable extension of
this work.
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A LSNDP details

A.1 Dataset

Brouer et al. [2014] offers a comprehensive introduction to the LSNDP benchmark suite, LINERLIB. Here, we provide
a brief overview to establish the context for the problem we aim to address using reinforcement learning. At a high
level, a liner shipping network comprises a fleet of vessels V deployed across rotations or services S to satisfy a set of
commodity demands D, normalized to a weekly frequency. Visualizing the network as a graph, ports can be seen as
vertices, with edges E representing the connections between them. Each service s ∈ S involves a rotation through a
sequence of ports sP , is assigned a specific subset of vessels sV , and includes a set of legs sE that define the route.
Below, we provide a more detailed breakdown of each of these elements.

LINERLIB includes a predefined set of ports P that vessels can access. Each port p within this set is characterized by
the following features:

p Port ID, represented by UNLOCODE.
pf Fixed cost per port call, the cost in USD for each vessel call at this port.
pv Variable cost per port call, the additional cost in USD per FFE for visiting this port, based on the vessel’s

capacity.
pt Transshipment cost per FFE, the cost in USD per FFE for transferring cargo across different services at

this port.

A fleet of vessels V contains different vessel classes vF , each with different capacities and characteristics. Each vessel
class has a finite number of vessels available for deployment. A vessel v ∈ vF is characterized by the following features:

vcap Capacity, the maximum number of FFEs the vessel can carry at once.
vn Quantity, the total number of available vessels of class v.
vTC TC rate, the daily cost of renting or operating the vessel.
vs Design speed, the vessel’s standard sailing speed.
vfs Fuel consumption at design speed, the vessel’s daily fuel consumption (converted to $) when sailing at

design speed.
vfi Fuel consumption while idling, the vessel’s daily fuel consumption (converted to $) when idle at the

port.
vSuez Suez fee, the fee for passing through the Suez Canal.
vPanama Panama fee, the fee for passing through the Panama Canal.

Each port in p also includes data on latitude and longitude coordinates (which we omitted earlier for brevity). The
LINERLIB dataset provides distance information, including whether the route passes through the Panama or Suez
canals. This distance data corresponds to the edge e ∈ E in the graph and is described by the following features:

eo Origin port, the Port ID in UNLOCODE.
ed Destination port, the Port ID in UNLOCODE.
edist Distance, the distance between the origin port and the destination port, measured in nautical miles.
eSuez Suez traversal, a flag indicating whether the sailing route passes through the Suez Canal. A value of 1

signifies the route uses the Suez Canal; 0 otherwise.
ePanama Panama traversal, a flag indicating whether the sailing route passes through the Panama Canal. A value

of 1 signifies the route uses the Panama Canal; 0 otherwise.

At last, each commodity demand d ∈ D is characterized by the following features:

do Origin port, the Port ID in UNLOCODE.
dd Destination port, the Port ID in UNLOCODE.
dR Revenue, generated per unit FFE transported.
dq Quantity, demand quantity in FFE per week.
Yd Penalty if rejected, penalty for rejection of this demand, which is set to $1000.

Note that we have only listed the dataset elements relevant for solving the LSNDP with transshipment, rejected
demand, and fractional vessel assignments. For a complete description of the dataset, please refer to Brouer et al.
[2014]. Throughout this paper, when we refer to an “instance”, we mean a specific LSNDP setup with a defined set of
commodities, available ports, edges, and fleet, which collectively determine the characteristics of the shipping network.
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A.2 Multi Commodity Flow

The maximum profit Multi-Commodity Flow Problem seeks to determine the optimal flow of multiple commodities
through a capacitated network to maximize total profit. Each commodity has a specific origin and destination and
moves through the network’s edges, constrained by capacity limits. Additionally, each unit of flow for a commodity
may generate a defined revenue. The goal is to allocate flows for all commodities in a way that maximizes the overall
profit while adhering to the network’s capacity constraints. The capacity limits of the network are defined by the
designed rotations or services from the associated network design problem, which will be discussed later. The capacity
constraints on each edge of the network are derived from the capacities of the vessels assigned to those routes.

Here, we omit the specific details of the constraints and focus only on the objective function. For a comprehensive
description of the complete problem formulation, please refer to Brouer et al. [2014].

Maximize η = Rtotal − Creject − Chandle − CNDP, (28)

where η is the profit, Rtotal represents the total revenue generated, Creject represents the penalty associated with rejected
demand, and Chandle denotes the handling costs. Detailed descriptions of these terms are provided in the equations
below. Note that CNDP is the fixed cost of establishing all services in the network, independent of the decisions made
within the multi-commodity flow problem. This fixed cost is determined by the network design and will be discussed in
detail later.

Rtotal =
∑
d∈D

dR

Ñ ∑
∀e|ed=dd

fd
e

é
, (29)

Creject = Yd

∑
d∈D

Ñ
dq −

∑
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fd
e

é
, (30)
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é
+
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∑
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e′d=p,e′′o=p,e′d ̸=dd

(
fd
e′ − fd

e′′
)
. (31)

Here, fd
e is a decision variable within MCF, which represents the quantity of commodity demand d that flows through

edge e, while e′ and e′′ refer to two edges within the same service. The remaining notation is detailed in Appendix A.1.
It is important to note that the handling cost, as described in Eq. 31, has two components: the first is the cost associated
with onloading and offloading, and the second is the transshipment cost. It is important to note that, in contrast to the
fixed cost CNDP, the terms in Eqs. 29, 30, and 31 represent variable costs, with revenue broadly considered as a form of
negative cost.

The MCF problem is known to be NP-hard (see Theorem 6.2 in Brouer et al. [2014]). Rather than solving it using a
MIP formulation, we employ a fast, greedy heuristic-based approach, which is detailed in Appendix B.

A.3 Network Design Problem

The network design problem (NDP) focuses on identifying the optimal set of services for a given LSNDP instance
to maximize the overall profitability of the shipping network. However, the ultimate profitability of the network is
determined by the Multi-Commodity Flow (MCF) solution, as discussed previously. The primary objective of the NDP
is to develop a network design that defines the capacities on the edges of the services, which are used as constraints in
MCF. The fixed cost associated with the designed network corresponds to the CNDP term in Eq. 28 and is calculated as
follows:

CNDP = Cservice + Cunused + Cvoyage, (32)

where Cservice represents the vessel service cost, accounting for the total cost of renting or operating all vessels assigned
to the services. Cunused captures the cost (or profit) of unused vessels. If the generated services do not utilize all available
vessels, the remaining vessels can be rented out at the time charter (or TC) rates. Conversely, if the services require
more vessels than are available, additional vessels must be acquired at the same rate. The term Cvoyage refers to the
voyage cost, which includes fuel costs, port calling costs, and canal fees associated with operating the vessels to support
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the services. The detailed breakdown of these terms is provided in the equations below:

Cservice =
∑
s∈S

∑
v∈sV

nv,s · vTC, (33)

Cunused = −
∑
v∈V

(
vn −

∑
r∈R

nv,r · vTC

)
, (34)

Cvoyage =
∑
s∈S

∑
p∈sP

∑
v∈sV

(pf + pv · vcap) · nv,s +
∑
s∈S

∑
v∈sV

(∑
e∈sE

edist

vs
· vfs +

∑
p∈sP

1 · vfi

)
· nv,s

+
∑
s∈S

∑
v∈sV

∑
e∈sE

(esuez · vsuez + epanama · vpanama) . (35)

Here, Cvoyage accounts for various voyage-related expenses, including fixed and variable port fees, fuel consumption
during sailing, and costs associated with passing through the Suez and Panama canals. The variable nv,s represents the
number of vessels in a given class that are assigned to service s, making it a key decision variable in the NDP. The
remaining notation is detailed in Appendix A.1. Since the problem setup assumes that vessels operate strictly at their
designed speed and allows for fractional vessel assignments, the required number of vessels can be calculated as a
function of the total distance of the service and the vessel’s designed speed. As a result, there is no expected idle time
for the vessels except for the required 1 day at each port.

To integrate the NDP and MCF, we first generate a network schedule through the NDP, which is subsequently used as
input for the MCF to calculate the associated revenues and penalties. The combined objective value thus includes both
the static network costs derived from the NDP and the variable flow costs calculated from the MCF. This combined
objective serves as the reward function, which is used to evaluate the performance of our complete algorithm.

B Heuristic MCF Details

As outlined in Appendix A.2, the Multi-Commodity Flow (MCF) problem seeks to identify optimal cargo routes
that maximize profit within a capacitated network. Instead of solving the MCF to optimality using a Mixed-Integer
Programming (MIP) approach, we propose a faster, heuristic-based method that employs a greedy sequential commodity
flow strategy, building on a graph representation of the liner shipping network.

However, directly using the original graph representation described in Section 4 presents challenges for the heuristic
MCF. Once we get into the MCF phase with the original representation, the graph only includes edges between ports
that are already connected by established services from the Network Design Problem (NDP) phase. As shown on
the left side of Fig. 4, the edge weights w represent the variable cost of moving an additional FFE of cargo, while
edge capacities define the maximum number of FFEs that can flow through those edges. Importantly, in this original
representation, w = 0, since it only accounts for the variable cost of transporting cargo between ports, and it does not
capture the internal dynamics of variable costs within a port, such as handling costs.

To effectively implement the heuristic MCF algorithm, the graph representation must be expanded to include these
intra-port dynamics. Specifically, the handling costs — such as onloading, offloading, and transshipment — need to be
incorporated as edge weights on the graph, allowing for an accurate representation of the network’s cost structure.

Among the variable cost terms, only the handling cost Chandle (as defined in Eq. 31) is considered in this expanded graph
representation. The revenue and rejected demand penalty are excluded for the following reasons: revenue is tracked
separately within the heuristic MCF algorithm, which will be discussed in detail later, and the rejected demand penalty
is uniform across all commodities, making it irrelevant to the heuristic MCF algorithm where the focus is on balancing
trade-offs between commodities. Additionally, the fixed costs, as outlined in Eqs. 33, 34, and 35, are not included at
this stage. These costs are already determined during the Network Design Problem (NDP) phase, and decisions made
during the MCF phase will not affect them.

The right side of Fig. 4 illustrates this expanded graph representation. A key component of this expansion is the
introduction of proxy nodes to represent port-service pairs for each port. For example, if ports p and q are visited by
rotations s1, s3 and s7, proxy ports p1, p3 and p7 are created for p, and similarly q1, q3 and q7 for q.

In the expanded graph, edges connecting p to its proxy nodes (p, ps), where s ∈ {1, 3, 7}, have weights representing
the onloading and offloading costs at port p. These edges are assigned infinite capacity, reflecting that there are no
logistical constraints on the volume of goods that can be handled at a port. Additionally, edges are introduced between
different proxy nodes ps′ and ps′′ , where s′ ̸= s′′, with infinite capacities. The weights on these edges correspond to
transshipment costs at port p.
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Figure 4: Expanded graph representation for an edge connecting ports p and q. The expanded representation on the
right side of the figure with proxy nodes fully captures all dynamics of commodity shipping.

Finally, the original direct connection between ports p and q is now decomposed into edges (ps, qs) for each service s.
The capacity of these edges is determined by the capacity of the respective service, while the weights remain zero, as
there is no additional cost for shipping commodities between ports once they are loaded onto a service, as long as the
service capacity is not exceeded.

Algorithm 1: Heuristic MCF with demand revenue prioritization
1: Input: Proposed services S, Graph G(P,E), Demand D, Revenue per demand R
2: Initialize: Commodity flows fd

e = [ ], Missed (rejected) demand Dm = [ ], Service capacity projected to edges:
Capacity[e],∀e ∈ E;

3: Descending sort D based on R;
4: for d = 1, · · · , D do
5: Initialize the remaining demand dr = d;
6: Get all available paths T from do to dd;
7: Ascending sort T based on marginal unit cost (from Chandling);
8: for t = 1, · · · ,T do
9: Get path capacity: t[capacity] = min({Capacity[e] for e in t.edges})

10: Flow quantity: q = min{dr, t[capacity]}
11: dr ← dr − q;
12: Append (d, e, q),∀e ∈ t to fd

e ;
13: Update remaining edge capacities: Capacity[e],∀e ∈ t;
14: if dr = 0, break; end if
15: end for
16: if dr > 0, Append dr to Dm; end if
17: end for
18: Return fd

e , Dm

With the expanded graph representation of the shipping network, we can now develop a greedy sequential commodity
flow strategy. For each commodity demand d with origin do and destination dd, we use Dijkstra’s shortest path algorithm
to find the least costly path t between do and dd, where the edge weights represent variable costs instead of distances
(as illustrated in Fig. 4). Once the cheapest path is identified, we ship a quantity equal to the path’s capacity along
this route. The path capacity is defined as the minimum capacity among all edges within the path. After shipping, the
remaining capacities of all edges in path t are updated to account for the flow of d. This process is repeated for any
remaining demand of d until no paths with non-zero capacities exist between do and dd.

This method is applied sequentially across all commodity demands D, with the order of processing determined by
ranking the demands in descending order of their revenue per FFE. The pseudocode for this approach is outlined in
Algorithm 1.
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After the MCF generates the commodity flow patterns and the corresponding handling costs Chandle (defined in Eq. 31),
we calculate the total revenue Rtotal and the penalties for missed (rejected) demand Creject, using Eqs. 29 and 30,
respectively.

It is worth mentioning that our implementation of the MCF is written in Rust (Klabnik and Nichols [2019]) to ensure
high performance. Since the MCF algorithm is executed multiple times during each training iteration, a low-latency
solution is essential for maintaining efficiency.

C MDP Details

Here, we represent the Liner Shipping Network Design Problem (LSNDP) as a Markov Decision Process (MDP).
Figure 5 provides a high-level overview of this representation. The action At consists of selecting a vessel and
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Figure 5: MDP representation of the LSNDP

determining the sequence of ports for the service s, as described in Eq. 3. The selected service s is then appended
to the existing set of services S. This updated set of services is used to directly compute the fixed operating costs.
Simultaneously, the updated services are fed into the heuristic MCF algorithm to calculate the variable costs, which
include revenue (treated as a negative cost). These fixed and variable costs are summed to compute the total profit ηt+1.

The reward Rt+1, defined in Eq.1, is then calculated, where both ηt+1 and ηt are derived from Eq.28 at their respective
steps. To enhance the stability of the training process, the rewards at each step are scaled by the initial reward η1, as
shown in Eq. 36 below:

Rt+1 =
ηt+1 − ηt

η1
. (36)

The full MDP process can be summarized in Algorithm 2 below.

Let’s delve deeper into the state representation, denoted by St. The state at step t is composed of two main components:
the vessel state Sv,t, and the graph state Sg,t, as defined in Eqs. 4 and 5, respectively. The graph state includes both port
features fp and edge features fe.

Port Features: The port feature vector fp can be expressed as:

fp = [p1,p2, ...pP+1] ∈ RP×2, (37)

where each element pp represents the total incoming and outgoing demand on port p:

pp = [
∑
dd=p

dq,
∑
do=p

dq] ∈ R2. (38)
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Here, the first element of pp captures the total demand destined for port p, and the second element captures the total
demand originating from port p. Additionally, P represents the total number of ports in the network. The last element,
pP+1, represents a global node that remains empty, i.e., pP+1 = [0, 0].

Edge Features: The edge feature matrix fe is composed of both static and dynamic features:

fe =

ï
fse
fde

ò
∈ RDe×E , (39)

where E is the number of edges, and De = 6 + |S| is the total number of edge features.

The static features fse ∈ R4×E consist of four attributes that do not change over time: the origin port index, the
destination port index, the distance between the origin and destination, and the revenue generated per unit demand
flowing through the edge.

The dynamic features fde ∈ R(2+|S|)×E include time-varying attributes: the remaining unsatisfied demand between the
origin and destination, and the remaining vessel capacity on the edge. Additionally, |S| number of binary indicators
track whether an edge is included in service s, where a value of 1 indicates inclusion in the service and 0 otherwise.

Vessel Features: The vessel state vt represents the characteristics of each vessel class. The dimensionality of the
vessel features Dv = 11, corresponding to the columns listed in Table 3 of Brouer et al. [2014], captures key vessel
information at each step t.

Algorithm 2: Environment Step Function (from step t to t+ 1)
Input: Action At, Previous state St, Remaining vessels V , Total demand D, Services S∗, Profit history

[η0, · · · , ηt]
Output: Next state St+1, Reward Rt+1, Done flag
Execute Action and Update State Value:

• Add the action to services, and reduce the remaining vessels:

(S∗, V )← St

S∗ ← S∗ +At,

V ← V −At,

St+1 ← (S∗, V )

Run MCF Algorithm:
• Execute Algorithm 1 with current services S∗ on D:

fd
e ,Dm,Capacity(E)← env.mcf(S∗,D)

Compute Cost:
• Calculate the profit using the provided function:

ηt+1 ← env.get_profit(S∗, fd
e ,Dm, V )

• Append the profit to the profit history:
[η1, · · · , ηt]← ηt+1

Check for Termination:
• If all vessel counts are below 0 or remaining demands are 0, terminate:

If (vn < 0 ∀v ∈ V ) or (Dm = 0)⇒ terminate

• Else, continue the episode
Calculate Reward:

• Compute the reward based on the change in profit:

Rt+1 ←
ηt+1 − ηt

η1

return St+1, Rt+1, Done;
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D Problem Size and Hyper-parameter Setting

In this section, we summarize the problem size of each LINERLIB instance and the hyper-parameter settings of our
approaches in Table 5.

Table 5: Hyper-parameter settings for encoder / decoder etworks and PPO.

Hyperparameter Description Range of Values

Neural Networks
Hidden layer Number of neurons in the hidden layer 512
Transformer head Number of attention heads in the transformer 8
Transformer layer Number of transformer layers 3
GAT layer Number of Graph Attention Network layers 3
LSTM layer Number of LSTM layers 1

PPO
Learning rate Constant learning rate for optimizer [1e-4, 3e-4]
Environment Number of parallel environments [8, 16]
Step Number of steps per environment per update [50, 100]
Discount factor Discount factor for future rewards 1
TD lambda Lambda parameter for TD learning 0.9
Mini-batch size Size of mini-batches for training [64, 128]
Update epoch Number of epochs per update 10
Clip coefficient Clipping coefficient for PPO [0.15, 0.25]
Target KL Target Kullback-Leibler divergence 0.1
Entropy coefficient Coefficient for entropy regularization [0.01, 0.1]
Value function coef Coefficient for value function loss 0.5

We use the AdamW 2 optimizer on Pytorch, with default values for β1, β2 and weight decay. Our environment is
implemented with the Gymnasium Interface3.

2https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html
3https://github.com/Farama-Foundation/Gymnasium
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E Perturbation Profiles

In this section, we discuss the perturbations applied to the demand quantities in the Baltic instance. Figures 6 and 7
illustrate the ±10% and ±50% perturbations, respectively. In both figures, the blue bars represent the original demand
quantities from the Baltic instance, while the black error bars indicate the range of perturbation. The x-axis shows the
origin and destination ports for each demand.

The 10% and 50% perturbations correspond to the standard deviation of the distribution used to generate new demand
values. For example, when generating a perturbed instance with 10% perturbation, the new demand quantities are
randomly sampled from a distribution where the original demand dq is the mean, and the standard deviation is 10% · dq .

Additionally, note that the samples are truncated at 0 to prevent the generation of instances with negative demand values.

Figure 6: Perturbed demand quantities (in FFEs) for the Baltic instance with a perturbation level of 10%.

Figure 7: Perturbed demand quantities (in FFEs) for the Baltic instance with a perturbation level of 50%.
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F Network Design Comparison for the Baltic Instance

Figure 8 illustrates the network design for the Baltic instance generated by the RL agent using the encoder-decoder
approach. This design corresponds to the experimental setup described in Section 6.1, where training and validation
were performed on a dataset comprising 16,000 instances, with demand quantities perturbed by ±10% from the original
LINERLIB Baltic instance.

Figure 9 shows the network design for the Baltic instance produced by the LINERLIB solution. A comparison of the
two figures reveals that the RL-based design covers the same 8 out of 12 ports as the LINERLIB solution. Additionally,
both designs propose 5 simple services that follow a similar pattern.

Figure 8: Network design for Baltic instance obtained by the RL-based approach. Ports are connected by vessels with
specified capacity. The design uses 2.03 vessels of capacity 800 and 4.31 vessels of capacity 450. The total net profit is
$276,428.

Figure 9: Network design for Baltic instance obtained by the LINERLIB solution. Ports are connected by vessels with
specified capacity. The design uses 2.14 vessels of capacity 800 and 3.58 vessels of capacity 450. The total net profit is
$260,948.
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G Network Design Comparison for the WAF and World Small instances

In this section, we utilize the RL-based NDP solution as an optimizer, where the RL agent’s training process functions
similarly to a traditional optimization solver, eliminating the distinction between training and inference phases (as
outlined in Section 6.2). We compare the network designs generated by our encoder-decoder approach and the
LINERLIB solution for the WAF instance in Figure 10 and Figure 11, respectively. Additionally, the schedule outputs
for the World Small instance from both our encoder-decoder approach and the LINERLIB solution are compared in
Table 6 and Table 7. Finally, we compare vessel usage between the two approaches for the World Small instance in
Table 8. Even though we obtain different network designs from the LINERLIB solution, the total net profits of our
RL-based approach for both WAF and WorldSmall instances are higher than the LINERLIB benchmark, which shows
the capability of our RL-based approach being used as an optimizer.

Figure 10: Network design for WAF instance obtained by running our encoder-decoder approach. Ports are connected
by vessel with specified capacity. It uses 31.68 vessels of capacity 800 and 14.05 vessels of capacity 450. The total net
profit is $5,596,382.

Figure 11: Network design for WAF instance obtained by the LINERLIB solution. Ports are connected by vessel
with specified capacity. It uses 21.34 vessels of capacity 800 and 12.80 vessels of capacity 450. The total net profit is
$5,202,534.

24



Table 6: Schedule output for World Small instance obtained by our encoder-decoder approach.

Schedule Vessel capacity Number of vessels

Schedule 1 CNYTN→ ITGIT→ BEANR→ PAMIT→ USMIA
→ NGAPP→ HKHKG→MAPTM→ CNYTN 450 24.11

Schedule 2
CNYTN→ TWKHH→ NZAKL→ CNSHA→MYTPP
→ AEJEA→ INNSA→ SAJED→ ZADUR→ KEMBA
→ HKHKG→ LKCMB→ OMSLL→MYPKG→ CNYTN

800 19.29

Schedule 3
CNYTN→ TWKHH→ NZAKL→ PABLB→ CNSHA
→MYTPP→ LKCMB→ PKBQM→ HKHKG→MYPKG
→ KEMBA→ INNSA→ SGSIN→ CNYTN

800 19.81

Schedule 4

CNYTN→ TWKHH→ NZAKL→ PABLB→ CLSAI
→ JPYOK→ CNSHA→ AEJEA→ PKBQM→ KEMBA
→ ZADUR→ OMSLL→ SGSIN→ LKCMB→MYPKG
→ INNSA→ AOLAD→MYTPP→ HKHKG→ SAJED
→ TRAMB→ CNYTN

1200 28.98

Schedule 5

CNYTN→ TWKHH→ NZAKL→ CLSAI→ PABLB
→ ECGYE→ PAMIT→ USEWR→ USMIA→ BEZEE
→ BEANR→ NLRTM→ DEHAM→ ITGIT→ EGPSD
→MAPTM→ ESBCN→ CAMTR→ DEBRV→ GBFXT
→ TRAMB→ SAJED→ INNSA→ SGSIN→ AEJEA
→ LKCMB→ OMSLL→ KEMBA→ AOLAD→ GHTKD
→ UYMVD→MYTPP→MYPKG→ PKBQM→ ZADUR
→ HKHKG→ NGAPP→ CNYTN

1200 41.42

Schedule 6
CNYTN→ HKHKG→ DEBRV→ NLRTM→ GBFXT
→ USCHS→ ITGIT→ ESALG→ NGAPP→ BRSSZ
→ ZADUR→ AEJEA→MYTPP→ CNSHA→ CNYTN

2400 17.56

Schedule 7 CNYTN→ HKHKG→ CNTAO→ CNSHA→ ITGIT
→ EGPSD→MYTPP→ CNYTN 2400 7.38

Schedule 8 CNYTN→ HKHKG→ JPYOK→ CNSHA→MYTPP
→ ITGIT→ EGPSD→ SAJED→ LKCMB→ CNYTN 2400 8.12

Schedule 9
CNYTN→ HKHKG→ JPYOK→ KRPUS→ CNSHA
→MYTPP→ ITGIT→ EGPSD→ SAJED→ AEJEA
→ INNSA→ LKCMB→ CNYTN

2400 9.18

Schedule 10 CNYTN→ HKHKG→ CNSHA→ JPYOK→ USLAX
→ CNTAO→ KRPUS→ TWKHH→ CNYTN 2400 6.45

Schedule 11
CNYTN→ HKHKG→ CNTAO→ KRPUS→ USLAX
→ CAVAN→ JPYOK→ CNSHA→ TWKHH→ NGAPP
→ GHTKD→ CNYTN

2400 14.10

Schedule 12
CNYTN→ HKHKG→ CNTAO→ CNSHA→ USLAX
→ CAVAN→ JPYOK→ KRPUS→ TWKHH→ AUBNE
→ CNYTN

2400 9.80

Schedule 13 CNYTN→ HKHKG→ TWKHH→ CNSHA→ CNTAO
→ AEJEA→ INNSA→ OMSLL→MYTPP→ CNYTN 2400 6.60

Schedule 14

CNYTN→MYTPP→ ESALG→ GBFXT→ DEBRV
→ NLRTM→ NGAPP→ ZADUR→ HKHKG→ TRAMB
→ BEANR→ BEZEE→ ITGIT→ SAJED→ LKCMB
→ CNYTN

4200 18.23

Schedule 15
CNYTN→ GHTKD→ USCHS→ PAMIT→ USMIA
→ NLRTM→ AEJEA→MYTPP→ ITGIT→ GBFXT
→ DEBRV→MAPTM→ CNYTN

4200 19.41

Schedule 16
CNYTN→ ZADUR→ USCHS→ PAMIT→ USMIA
→ USEWR→ BRSSZ→ DEBRV→ ESALG→ GHTKD
→ NGAPP→ CNYTN

4200 17.84

Schedule 17 CNYTN→ CNSHA→MYTPP→ CNYTN 4200 2.07
Schedule 18 CNYTN→ CNSHA→ CNYTN 4200 0.88

Schedule 19
CNYTN→ CNTAO→ CNSHA→ ZADUR→ NGAPP
→ NLRTM→ DEHAM→ DEBRV→ BEANR→ GBFXT
→ EGPSD→MYTPP→ CNYTN

7500 11.07
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Table 7: Schedule output for World Small instance obtained by the LINERLIB solution.

Schedule Vessel capacity Number of vessels

Schedule 1 NGAPP→ GHTKD→ NGAPP 450 0.60
Schedule 2 ZADUR→ AOLAD→MAPTM→ GHTKD→ ZADUR 450 6.68

Schedule 3 OMSLL→ SAJED→ KEMBA→ LKCMB→ INNSA
→ OMSLL 450 4.73

Schedule 4 AEJEA→ INNSA→ AEJEA 450 1.46
Schedule 5 SAJED→ KEMBA→ SAJED 450 2.57
Schedule 6 INNSA→ LKCMB→ KEMBA→ INNSA 450 3.31
Schedule 7 PABLB→ ECGYE→ PABLB 450 1.10
Schedule 8 PAMIT→ USCHS→ ECGYE→ PAMIT 450 2.97

Schedule 9 LKCMB→MYTPP→ TWKHH→ CNTAO→ HKHKG
→MYPKG→ INNSA→ LKCMB 800 5.33

Schedule 10 PKBQM→ SAJED→ OMSLL→ INNSA→ PKBQM 800 2.73

Schedule 11 MAPTM→ USEWR→ USLAX→ PABLB→ PAMIT
→ BRSSZ→ NGAPP→ ESALG→MAPTM 800 12.15

Schedule 12 ITGIT→ ESALG→ ITGIT 800 1.18
Schedule 13 EGPSD→ TRAMB→ EGPSD 800 0.99
Schedule 14 ITGIT→ TRAMB→ ITGIT 800 1.15
Schedule 15 PKBQM→ LKCMB→ AEJEA→ PKBQM 800 2.55
Schedule 16 INNSA→ AEJEA→ INNSA 800 1.30

Schedule 17

JPYOK→ KRPUS→ CNTAO→ CAVAN→ SGSIN
→MYTPP→ AEJEA→ SAJED→ OMSLL
→MYPKG→ HKHKG→ CNYTN→ TWKHH
→ CNSHA→ JPYOK

1200 11.06

Schedule 18 EGPSD→ SAJED→MYPKG→ HKHKG→MYTPP
→ LKCMB→ OMSLL→ ESBCN→ ITGIT→ EGPSD 1200 6.75

Schedule 19 CNSHA→ JPYOK→ CAVAN→ CNTAO→ CNSHA 1200 4.15
Schedule 20 MYPKG→ EGPSD→ OMSLL→MYTPP→MYPKG 1200 3.96

Schedule 21 SGSIN→ HKHKG→ KRPUS→ CNTAO→ USLAX
→ CNSHA→ TWKHH→MYTPP→ SGSIN 1200 6.72

Schedule 22 MYPKG→MYTPP→ TWKHH→ CAVAN→ AUBNE
→MYPKG 1200 6.71

Schedule 23 NZAKL→ AUBNE→ NZAKL 1200 1.17

Schedule 24
KRPUS→MYPKG→MYTPP→ AUBNE→ NZAKL
→ USLAX→ CAVAN→ JPYOK→ TWKHH
→ HKHKG→ CNTAO→ KRPUS

1200 9.06

Schedule 25 USEWR→ USCHS→ GBFXT→ DEBRV→ ESALG
→MAPTM→ EGPSD→ SAJED→ USEWR 1200 8.15

Schedule 26 ITGIT→ SAJED→ ITGIT 1200 1.41

Schedule 27 MYTPP→ CNYTN→ OMSLL→ SAJED→ NGAPP
→ ZADUR→ CNSHA→MYTPP 2400 10.54

Schedule 28 LKCMB→ ZADUR→ SAJED→ AEJEA→ LKCMB 2400 4.97

Schedule 29 AUBNE→ NZAKL→ TWKHH→ CNYTN→ SGSIN
→ AUBNE 2400 5.25

Schedule 30 MYTPP→ SGSIN→MYTPP 2400 0.31
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Table 7: Schedule output for World Small instance obtained by the LINERLIB solution (cont.).

Schedule Vessel capacity Number of vessels

Schedule 31 PABLB→ USEWR→ PAMIT→ ESALG→ NLRTM
→ USCHS→ USMIA→ CLSAI→ PABLB 2400 8.92

Schedule 32 USCHS→ PAMIT→ USCHS 2400 1.11

Schedule 33 CLSAI→ USLAX→ CAVAN→ PABLB→ PAMIT
→ CLSAI 2400 6.04

Schedule 34 ITGIT→MAPTM→ BRSSZ→ GBFXT→ DEBRV
→ SAJED→ EGPSD→ ITGIT 2400 7.36

Schedule 35 BEANR→ DEBRV→ DEHAM→ ITGIT→MAPTM
→ BEANR 2400 2.79

Schedule 36 USMIA→ NLRTM→ BEANR→ EGPSD→ SAJED
→ AEJEA→ NGAPP→ PAMIT→ USMIA 2400 9.99

Schedule 37 CNYTN→ HKHKG→ SGSIN→MYTPP→MYPKG
→ ZADUR→ CNTAO→ CNYTN 2400 6.68

Schedule 38 BRSSZ→ PAMIT→ USMIA→ USCHS→ ESALG
→ ITGIT→MAPTM→ NGAPP→ BRSSZ 2400 7.72

Schedule 39 ITGIT→ AEJEA→MYTPP→ OMSLL→ SAJED
→ BEZEE→ NLRTM→MAPTM→ ITGIT 4200 7.83

Schedule 40 ESBCN→ GBFXT→ NLRTM→ DEBRV
→ EGPSD→ SAJED→ ESBCN 4200 4.06

Schedule 41 LKCMB→ SAJED→ LKCMB 4200 2.30
Schedule 42 MYTPP→MYPKG→ LKCMB→MYTPP 4200 1.67

Schedule 43 AEJEA→ SAJED→ ITGIT→ ESALG→ LKCMB
→ AEJEA 4200 5.19

Schedule 44 HKHKG→ CNYTN→ KRPUS→ CAVAN
→ USLAX→ JPYOK→MYTPP→ HKHKG 4200 6.85

Schedule 45 LKCMB→MYTPP→ LKCMB 4200 1.45

Schedule 46 OMSLL→ SGSIN→MYTPP→ HKHKG→ CNSHA
→MYPKG→ AEJEA→ EGPSD→ ITGIT→ OMSLL 4200 7.86

Schedule 47 GBFXT→ NLRTM→ ITGIT→ GBFXT 4200 2.20

Schedule 48
HKHKG→ SGSIN→MYPKG→ AEJEA→ SAJED
→ OMSLL→MYTPP→ JPYOK→ KRPUS→ CNSHA
→ HKHKG

4200 7.48

Schedule 49 OMSLL→ ESALG→ DEBRV→ SAJED→ OMSLL 4200 4.57

Schedule 50 GBFXT→ USCHS→ CAMTR→ DEBRV→ NLRTM
→ GBFXT 7500 3.94

Schedule 51 CNYTN→ ITGIT→ HKHKG→ CNYTN 7500 5.61

Table 8: Comparison of Vessel usage from our RL-based encoder-decoder approach and the LINERLIB solution for the
World Small instance.

RL-based LINERLIB solution

Vessel capacity 450 24.11 23.43
Vessel capacity 800 39.10 27.37
Vessel capacity 1200 70.40 59.14
Vessel capacity 2400 79.19 71.68
Vessel capacity 4200 58.43 51.47
Vessel capacity 7500 11.07 9.55
Total vessel usage 282.30 242.64
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