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ABSTRACT

Sequentially solving similar optimization problems under strict runtime con-
straints is essential for many applications, such as robot control, autonomous driv-
ing, and portfolio management. The performance of local optimization methods
in these settings is sensitive to the initial solution: poor initialization can lead to
slow convergence or suboptimal solutions. To address this challenge, we propose
learning to predict multiple diverse initial solutions given parameters that define
the problem instance. We introduce two strategies for utilizing multiple initial
solutions: (i) a single-optimizer approach, where the most promising initial solu-
tion is chosen using a selection function, and (ii) a multiple-optimizers approach,
where several optimizers, potentially run in parallel, are each initialized with a dif-
ferent solution, with the best solution chosen afterward. We validate our method
on three optimal control benchmark tasks: cart-pole, reacher, and autonomous
driving, using different optimizers: DDP, MPPI, and iLQR. We find significant
and consistent improvement with our method across all evaluation settings and
demonstrate that it efficiently scales with the number of initial solutions required.
The code is available at https://github.com/EladSharony/miso.

1 INTRODUCTION

Many applications, ranging from trajectory optimization in robotics and autonomous driving to port-
folio management in finance, require solving similar optimization problems sequentially under tight
runtime constraints (Paden et al., 2016; Ye et al., 2020; Mugel et al., 2022). The performance of local
optimizers in these contexts is often highly sensitive to the initial solution provided, where poor ini-
tialization can result in suboptimal solutions or failure to converge within the allowed time (Michal-
ska & Mayne, 1993; Scokaert et al., 1999). The ability to consistently generate high-quality initial
solutions is, therefore, essential for ensuring both performance and safety guarantees.

Conventional methods for selecting these initial solutions typically rely on heuristics or warm-
starting, where the solution from a previously solved, related problem instance is reused. More
recently, learning-based solutions have also been proposed, where neural networks are used to pre-
dict an initial solution. However, in more challenging cases, where the optimization landscape is
highly non-convex or when consecutive problem instances rapidly change, predicting a single good
initial solution is inherently difficult.

To this end, we propose Learning Multiple Initial Solutions (MISO) (Figure 1), in which we train
a neural network to predict multiple initial solutions. Our approach facilitates two key settings: (i)
a single-optimizer method, where a selection function leverages prior knowledge of the problem
instance to identify the most promising initial solution, which is then supplied to the optimizer; and
(ii) a multiple-optimizers method, where multiple initial solutions are generated jointly to support
the execution of several optimizers, potentially running in parallel, with the best solution chosen
afterward.

More specifically, our neural network receives a parameter vector that characterizes the problem
instance and outputs K candidate initial solutions. The network is trained on a dataset of prob-
lem instances paired with (near-)optimal solutions and is evaluated on previously unseen instances.
Crucially, the network is designed not only to predict good initial solutions—those close to the
optimal—but also to ensure that these solutions are sufficiently diverse, potentially spanning all un-
derlying modes of the problem in hand. To actively encourage this multimodality, we implement
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Figure 1: As opposed to previous works that predict a single initial solution, MISO trains a single
neural network to predict multiple initial solutions. We use them to either initialize a single optimizer
or jointly initialize multiple optimizers.

training strategies such as a winner-takes-all loss that penalizes only the candidate with the lowest
loss, a dispersion-based loss term to promote dispersion among solutions, and a combination of
both.

We evaluate MISO across three distinct local optimization algorithms applied to separate robot con-
trol tasks: First-order Box Differential Dynamic Programming (DDP), which utilizes first-order
linearization for the cart-pole swing-up task; Model Predictive Path Integral (MPPI) control, a
sampling-based method, for the reacher task; and the Iterative Linear Quadratic Regulator (iLQR),
a trajectory optimization algorithm, for an autonomous driving task. Our results show that MISO
significantly outperforms existing initialization methods that rely on heuristics, learn to predict a
single initial solution or use ensembles of independently learned models.

In summary, our key contributions are as follows:

1. We present a novel framework for predicting multiple initial solutions for optimizers.
2. We introduce two distinct strategies for utilizing the predicted initial solutions: (i) single-

optimizer, where the most promising solution is chosen based on a selection function, and
(ii) multiple-optimizers, where multiple optimizers are initialized, potentially in parallel,
with the best solution chosen afterward.

3. We design and implement specific training objectives to prevent mode collapse and ensure
that the predicted solutions remain multimodal.

4. We apply our framework to three distinct sequential optimization tasks and perform exten-
sive evaluation.

2 RELATED WORK

Learning for optimization. Advancements in machine learning have introduced numerous
learning-based approaches to optimization problems (Sun et al., 2019). Early work by Gregor &
LeCun (2010) replaced components of classical convex optimization algorithms with neural net-
works. More recent works aim to replace optimization methods entirely with end-to-end neural net-
works (OpenAI et al., 2020; Mirowski et al., 2017) or generate new optimization algorithms (Chen
et al., 2022b) for specific classes of problems. Other works enhance optimization-based control
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algorithms (Sacks & Boots, 2022), learn constraints (Fajemisin et al., 2024), or learn objective func-
tions and system dynamics (Lenz et al., 2015; Wahlström et al., 2015; Tamar et al., 2017; Hafner
et al., 2019; Nagabandi et al., 2018; Xiao et al., 2022).

Learning initial solutions. Previous studies have proposed heuristic approaches to generate ini-
tial solutions for optimizers (Johnson et al., 2015; Marcucci & Tedrake, 2020). More recently,
learning-based methods for initializing optimizers have gained attention in various fields, aiming to
enhance both computational efficiency and resulting solutions quality. In mixed-integer program-
ming, neural networks have enhanced solver performance by predicting variable assignments (Nair
et al., 2020), branching decisions (Sonnerat et al., 2021), and integer variables (Bertsimas & Stel-
lato, 2021). Baker (2019) employed Random Forests to predict solutions for AC optimal power flow
problems. Kang et al. (2024) utilized nearest neighbor search to warm-start tight convex relaxations
in nonconvex trajectory optimization problems. In robot control, neural networks were used to pre-
dict initializations for trajectory optimizers or Model Predictive Control (MPC) (Chen et al., 2022a;
Wang & Ba, 2019; Lembono et al., 2020). An exciting line of recent work developed differentiable
optimization algorithms, which allow jointly learning objectives, constraints, and initializations by
backpropagating through the optimization process (Amos et al., 2018; East et al., 2019; Karkus
et al., 2022; Sambharya et al., 2023). In contrast, we learn multiple initializations instead of one,
and we do so without strong assumptions about the task or the optimizer. Notably, Bouzidi et al.
(2023) used multiple initializations by repurposing a motion prediction model and Bézier curve fit-
ting for a downstream MPC; however, this approach is specifically tailored for autonomous driving,
incorporating a dedicated motion prediction module.

Parallel optimizers. Leveraging parallelism has a long history in optimization research (Betts &
Huffman, 1991). With recent advances in parallel computing hardware, such as GPUs, methods that
execute multiple optimizers in parallel have also emerged. For example, Sundaralingam et al. (2023)
introduced cuRobo, a GPU-accelerated method combining L-BFGS and particle-based optimization
for robotic manipulators. Similarly, Huang et al. (2024) utilized massive parallel GPU computa-
tion for efficient inverse kinematics and trajectory optimization. de Groot et al. (2024) proposed a
topology-driven method that plans for multiple evasive maneuvers in parallel. Barcelos et al. (2024)
focused on initializing parallel optimizers through rough paths. However, these works have not uti-
lized learning. Lembono et al. (2020) explored learning-based strategies for initializing trajectory
optimizers based on a database of previous solutions and ensemble-learned models, particularly
in manipulation and humanoid control tasks. In contrast, we propose a single neural network to
generate multiple initializations, which, as shown in our experiments, significantly outperforms the
ensemble-based approach.

3 INITIALIZING OPTIMIZERS

Problem setup. In the most general form, we need to solve instances of a parameterized optimiza-
tion problem,

x⋆(ψ) = argmin
x

J(x;ψ) s.t. g(x;ψ) ≤ 0; h(x;ψ) = 0, (1)

where x ∈ Rn is the variable vector to be optimized, J is the objective function, g and h are
collections of inequality and equality constraints, and ψ ∈ Rm is a parameter vector that defines
the problem instance, e.g., parameters of the objective function and constraints that differ across
problem instances. A local optimization algorithm, Opt, attempts to find an optimum of J , namely,

x̂⋆ = Opt(J,ψ, tlim;x
init),

where xinit is initial solution provided to the optimizer, and tlim is the runtime limit.

Heuristic methods. A common choice of the initial solution, xinit, is the solution to a previ-
ously solved similar problem instance, referred to as a warm-start. For example, in optimal control
the warm-start is typically the solution from the previous timestep, shifted and padded with zeros,
xw.s. := {{xcand

t+k }H−2
k=1 ,0} (Otta et al., 2015). This heuristic often works well in practice, how-

ever, it can struggle when large changes in the problem instance, ψ, occur between consecutive
time steps, leading to significant shifts in the optimal solution. For example, in autonomous driving,
abrupt events like a traffic light switch or the sudden appearance of a pedestrian might drastically
alter the reference trajectory or constraints. In such cases, the previous solution becomes a poor
initialization, and the optimizer may fail to find a good solution within the allocated time frame.
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4 LEARNING MULTIPLE INITIAL SOLUTIONS ( MISO)

The main idea of MISO is to train a single neural network to predict multiple initial solutions to
an optimization problem, such that the initial solutions cover promising regions of the optimization
landscape, eventually allowing a local optimizer to find a solution close to the global optimum. The
key questions are then how to design a multi-output predictor; how to utilize multiple initial solutions
in existing optimizers; and how to train the predictor to output a diverse set of initial solutions. In the
following, we discuss our proposed solutions to these questions, illustrate the need for multimodality
with a toy example, and discuss applications to optimal control.

4.1 MULTI-OUTPUT PREDICTOR

Our multi-output predictor is a neural network that takes the problem instance, ψ, as input and
outputs K initial solutions for the optimization problem,

{x̂init
k }Kk=1 = f(ψ;θ),

where θ are the learned parameters of the network. We train the network on a dataset of problem
instances and their corresponding (near-)optimal solutions, {(ψi,x

⋆
i )}ni=1. Such dataset can be

generated offline, for example, by running a slow yet globally optimal solver, or allowing the same
local optimizer to run with longer time limits, potentially many times from different initial solutions.

4.2 OPTIMIZATION WITH MULTIPLE INITIAL SOLUTIONS

We propose two distinct settings to leverage multiple initial solutions: single-optimizer and multiple-
optimizers. The resulting frameworks are illustrated in Fig. 1.

Single optimizer. In the single-optimizer setting we run a single instance of the optimizer with the
most promising initial solution, x̂⋆ = Opt(J,ψ, tlimit; x̂

init). We introduce a selection function,
Λ, which, given a set of candidate solutions and the problem instance ψ, returns the most promis-
ing candidate, x̂init = Λ({x̂init

k }Kk=1,ψ). A reasonable choice for Λ used in our experiments is
selecting the candidate that minimizes the objective function the optimizer aims to minimize, i.e.,
Λ := argmink J(x̂

init
k ;ψ). Other possibilities include risk measures, metrics based on perfor-

mance stability, robustness, exploration, or domain-specific metrics that align with the objectives of
the overall task.

Multiple optimizers. In the multiple-optimizers setting, we assume multiple instances of the opti-
mizer can be executed in parallel. We then initialize each optimizer with a different initial solution,
x⋆
k = Optk(J,ψ, tlimit; x̂

init
k ), k ∈ {1, . . . ,K}. To select a single solution from the outputs of

the optimizers, we can use the same selection function Λ, as in the previous case, e.g., the solution
that minimizes the objective function.

Our framework can be trivially generalized to allow a different number of optimizers and initial
solution predictions, as well as using a heterogeneous set of optimization methods. Further, to
maintain performance guarantees, one may include the default, e.g., warm-start, solution as one of
the considered initial solutions, which ensures that even with poor predictions, the final solution
quality does not degrade.

4.3 TRAINING STRATEGIES

The ultimate goal is to predict multiple initial solutions so that the downstream optimizer can find a
solution close to the global optima, i.e., J(x̂⋆;ψ) ≈ J(x⋆;ψ). Training a neural network directly
for this objective is not feasible in general. Instead, we propose proxy training objectives that com-
bine two terms: a regression term that encourages outputs to be close to the global optimum, e.g.,
Lreg(x̂

init
k ,x⋆) = ∥x̂init − x⋆∥, where ∥ · ∥ is a distance metric; along with a diversity term that

promotes outputs being different from each other, thereby covering various regions of the solution
space. An illustrative example is in Sect. 4.4. In the following, we present three simple training
strategies promoting diversity and preventing mode collapse. We discuss alternative formulations,
with probabilistic modeling and reinforcement learning, in Sect. 7.
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Pairwise distance loss. A simple method to encourage the model’s outputs to differ from each other
is to penalize the pairwise distance between all outputs. The overall loss combines this dispersion-
promoting term with the regression loss,

LMISO−PD =
1

K

K∑
k=1

Lreg(x̂
init
k ,x⋆) + αK

1

K

K∑
k=1

LPD,k(x̂
init
k ,x⋆),

LPD,k =
1

K − 1

K∑
k′=1
k′ ̸=k

∥x̂init
k − x̂init

k′ ∥,

where αK is a hyperparameter that balances the trade-off between accuracy and dispersion.

Winner-takes-all loss. A more interesting way to encourage multimodality is to select the best-
predicted output at training time and only minimize the regression loss for this specific prediction,

LMISO−WTA = min
k

{Lreg(x̂
init
k ,x⋆)}.

Intuitively, the model only needs one of its outputs to be close to the ground truth, while the other
predictions are not penalized for deviating, potentially aligning with different regions of the under-
lying distribution. Similar losses have been used, e.g., in multiple-choice learning (Guzman-Rivera
et al., 2012). One advantage of this approach is that it is hyperparameter-free.

Mixture loss. Lastly, we consider a combination of the previous two approaches to potentially
enhance performance, as it provides some measure of dispersion we can tune,

LMISO−MIX = min
k

{
Lreg(x̂

init
k ,x⋆) + αKΦ

(
LPD,k(x̂

init
k ,x⋆)

)}
,

here, Φ is an upper-bounded function, such as min or tanh, designed to limit the contribution of the
pairwise distance term.

Beyond the losses above, MISO could be integrated with other training paradigms, such as reinforce-
ment learning or probabilistic modeling. We discuss these options in Sect. 7 but differ investigation
to future work.

4.4 ILLUSTRATIVE EXAMPLE

Figure 2: Top: The one-
dimensional cost function c(x)
with global minima at A and
C and a local minimum at B.
Bottom: Predicted initial solution
for different methods, demon-
strating why explicitly promoting
multimodality is important.

To illustrate the advantage of using a single model with mul-
timodal outputs compared to regression models or ensembles
of regressors, we examine a straightforward one-dimensional
optimization problem aimed at minimizing the cost function
c(x) shown in Fig. 2 (top). The function features two global
minima, denoted as A and C, with a local minimum located
between them at B.

Applying our learning framework to this simple problem, the
dataset of optimal solutions includes instances of A and C.
A single-output regression model has no means to distinguish
the two modes and inevitably learns to predict the mean of
examples in the dataset, somewhere near B. Consequently,
the local optimizer is likely to converge to the suboptimal lo-
cal minimum at B. Constructing an ensemble of such models
to generate multiple initial solutions does not mitigate this is-
sue, as each ensemble member tends to be biased toward the
mean of the two modes near B. We implemented the optimiza-
tion problem and showed the predictions for different training
strategies in Fig. 2 (bottom). Details are in Appendix A.5. In-
deed, an ensemble of single-output predictors fails to predict
a global optimum, while our multi-output predictor succeeds
with winner-takes-all and mixture losses.

While the problem considered here is purposefully simplistic,
the existence of local minima is the key challenge in most op-
timization problems.
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(a) Cart-pole (b) Reacher (c) Driving

Figure 3: Optimal control tasks used in our experiments.

4.5 APPLICATION TO OPTIMAL CONTROL

MISO is applicable to a broad class of sequential optimization problems; however, for the sake of
evaluation, we focus on optimal control problems. Optimal control has a wide range of applications,
e.g., in robotics, autonomous driving, and many other domains with strict runtime requirements, and
due to the complexity induced by constraints and non-convex costs, local optimization algorithms
are highly sensitive to the initial solution.

In optimal control the optimization variable x represents a trajectory defined as a sequence of states
and control inputs over discrete time steps: τ = {st,ut}t=1:H . Here, st ∈ S and ut ∈ U denote
the state and control input at time step t ∈ Z+, and H ∈ Z+ is the optimization horizon. The
constraints involve adhering to the system dynamics fd(st+1, st,ut) = 0, starting from an initial
state s0 = scurr, where scurr represents the system’s current state. The problem instance parameters
ψ encompass the initial state s0, and other domain-specific variables that parameterize the objec-
tive function or constraints, such as target states, reference trajectories, obstacle positions, friction
coefficients, temperature, etc.

A specific property of optimal control problems is that the relationship between optimization vari-
ables, states st and controls ut, are defined by the dynamics constraint fd; and the initial state s0 is
given. Therefore, a sequence of controls uniquely defines an (initial) solution. We can leverage this
property by learning to predict only a sequence of controls instead of the full optimization variable
of state-control sequences. Further, one can define the training loss over either control, state, or
state-control sequences and backpropagate gradients through the dynamics constraint as long as it
is differentiable. In our experiments, we use state-control loss by default as we found it to improve
both our and baseline learning methods. In Appendix A.7, we show that our conclusions hold with
control-only loss as well.

5 EXPERIMENTAL SETUP

Tasks. We evaluated our method on the three robot control benchmark tasks shown in Fig. 3, each
employing a distinct local optimization algorithm. Cart-pole. This task involves balancing a pole
upright while moving a cart toward a randomly selected target position (Barto et al., 1983), using a
first-order box Differential Dynamic Programming (DDP) optimizer (Amos et al., 2018). Reacher.
In this task, a two-link planar robotic arm needs to reach a target placed at a random positon (Tassa
et al., 2018), using a Model Predictive Path Integral (MPPI) optimizer (Williams et al., 2015). Au-
tonomous Driving. Based on the nuPlan benchmark (Caesar et al., 2021), this task focuses on
trajectory tracking in complex urban environments by following a reference trajectory generated by
a Predictive Driver Model (PDM) planner (Dauner et al., 2023), using the Iterative Linear Quadratic
Regulator (iLQR) optimizer (Li & Todorov, 2004). Further details are in Appendix A.1 and Ap-
pendix A.2.

Baselines. We compare MISO to a range of alternative methods to provide single or multiple initial
solutions. For a single initial solution, we considered: Warm-start, the default method that uses
the optimizer output from the last problem instance; Regression, a single-output regression model
(the K = 1 version of MISO); Oracle Proxy, optimization with unlimited runtime, which we also
used to generate our training data. For methods that generate multiple initial solutions, we consid-
ered: Warm-start with perturbations, which extends the warm-start approach by adding Gaussian
noise to the optimizer output from the last problem instance; Regression with perturbations, where
Gaussian noise is introduced to the predictions of the single-output regression model; Multi-output
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Table 1: Results for the single optimizer setting. The mean cost of solutions found by the single
optimizer using different initial solutions across tasks and evaluation settings.

One-Off Optimization Sequential Optimization
Method K Reacher Cart-pole Driving Reacher Cart-pole Driving
Single Optimizer
Warm-start 1 13.48 ±0.88 11.69 ±0.84 283.86 ±37.91 13.48 ±0.88 11.69 ±0.84 283.86 ±37.91
Regression 1 13.40 ±0.88 11.19 ±0.80 74.23 ±7.69 19.56 ±0.52 6.18 ±0.47 70.62 ±7.38
Warm-start w. perturb 32 13.46 ±0.88 11.64 ±0.83 145.01 ±23.01 14.71 ±0.93 16.29 ±0.44 164.75 ±22.84
Regression w. perturb 32 13.38 ±0.88 11.16 ±0.80 67.69 ±8.01 15.28 ±0.58 5.74 ±0.47 66.75 ±6.56
Multi-output regression 32 13.41 ±0.88 11.21 ±0.80 70.25 ±8.75 18.49 ±0.55 6.62 ±0.45 78.74 ±8.99
Ensemble 32 13.39 ±0.88 10.94 ±0.79 47.22 ±4.71 8.40 ±0.40 3.55 ±0.34 52.59 ±4.81
MISO pairwise dist. 32 13.41 ±0.88 11.22 ±0.80 66.06 ±7.48 19.20 ±0.49 6.07 ±0.45 71.90 ±7.90
MISO winner-takes-all 32 13.36 ±0.88 10.48 ±0.77 30.17 ±2.24 2.72 ±0.21 0.83 ±0.06 30.75 ±2.15
MISO mix 32 12.74 ±0.86 10.48 ±0.77 33.95 ±2.39 2.44 ±0.20 0.79 ±0.04 33.38 ±2.21
Oracle Proxy 1 13.43 ±0.88 11.01 ±0.80 41.94 ±4.31 6.88 ±0.58 4.54 ±0.71 26.52 ±2.00

Table 2: Results for the multiple optimizers setting. Mean cost of solutions found by multiple
optimizers using different initial solutions across tasks and evaluation settings.

One-Off Optimization Sequential Optimization
Method K Reacher Cart-pole Driving Reacher Cart-pole Driving
Multiple Optimizers
Warm-start w. perturb 32 13.41 ±0.88 10.93 ±0.79 155.53 ±24.33 5.89 ±0.50 6.68 ±0.59 162.13 ±34.10
Regression w. perturb 32 13.34 ±0.88 11.12 ±0.80 64.88 ±6.84 3.53 ±0.27 5.36 ±0.48 62.07 ±6.39
Multi-output regression 32 13.34 ±0.88 11.21 ±0.80 70.29 ±9.13 3.31 ±0.26 6.38 ±0.43 70.71 ±8.18
Ensemble 32 13.34 ±0.88 10.65 ±0.78 45.44 ±4.64 3.08 ±0.23 2.21 ±0.20 49.08 ±5.29
MISO pairwise dist. 32 13.34 ±0.88 11.22 ±0.80 67.62 ±7.58 3.42 ±0.27 6.09 ±0.47 71.33 ±8.13
MISO winner-takes-all 32 13.34 ±0.88 10.29 ±0.76 30.87 ±2.30 2.21 ±0.16 0.76 ±0.05 30.48 ±2.07
MISO mix 32 12.72 ±0.86 10.29 ±0.76 33.52 ±2.35 1.56 ±0.14 0.63 ±0.02 34.85 ±2.64

regression, a naive multi-output regression model without a diversity-promoting objective; and En-
semble, which trains multiple single-output neural networks with different random initializations.
Finally, we assessed variants of our proposed method with the different training losses discussed
in Sect. 4.3: pairwise distance, winner-takes-all, and mix.

Evaluation settings. We employ two evaluation modes. (i) One-off, where the optimization task is
treated as an isolated problem with the objective of finding the minimum of a given function. This
mode serves as the default configuration for training neural networks, where data is replayed to the
model, and the optimizer’s solution is recorded but not executed. Methods are assessed by the mean
cost of the optimizer’s output over problem instances. (ii) Sequential, which involves solving a se-
ries of related optimization problems, executing each proposed solution, and starting the subsequent
optimization from the resulting state. This setting simulates real-world conditions where the opti-
mizer continuously interacts with a dynamic environment in a closed loop. We evaluate performance
by taking the mean cost over problems in a sequence, and then the mean over sequences.

To account for the additional time required to predict initial solutions, we assumed that all models
perform inference in under 0.85ms, which was the case for all methods on both CPU and GPU,
except for the ensemble (see Appendix A.6). In the autonomous driving task, we then reduced the
runtime allocated to the optimizer accordingly.

Implementation details. To generate the training data, we first create a set of problem instances by
sequentially executing the optimizer initialized with the default warm-start strategy. The problem
instances are then fed again to an “oracle” version of the optimizer with a significantly increased
runtime limit, and the resulting solutions are recorded. After training, evaluation is done on a sep-
arate unseen set of problem instances. All experiments are conducted on an Intel Core i9-13900KF
CPU and an NVIDIA RTX 4090 GPU. Further implementation details, including hyperparameters
and training procedures, are in Appendix A.4 and Appendix A.3.
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(a) Single Optimizer (b) Multiple Optimizers

Figure 4: Mean Cost of the autonomous driving environment with varying values of K. The shaded
regions around each curve indicate the standard error of the mean.

6 RESULTS

Our main results for optimization with different initial solutions are reported in Table 1 and Table 2
for single optimizer and multiple optimizers settings, respectively. Figure 4 shows the effect of the
number of predicted initial solutions. Figure 5 provides qualitative results. More detailed results,
including inference times, are in the Appendix.

Single optimizer. In the single-optimizer setting, Table 1, we first observe that even one learned
initialization outperforms heuristic solutions (regression vs. warm-start), in almost all settings, and
in particular in the most challenging autonomous driving task. We then examine the impact of gen-
erating multiple initial solutions. Perturbations-based methods show some improvement over their
single-initialization counterparts in most cases, and ensembles of independently learned models
perform consistently better than single models. Finally, our proposed multi-output methods demon-
strate substantial improvements over all baselines because they can learn to predict diverse multi-
modal initial solutions. Specifically, MISO winner-takes-all or MISO mix achieve the lowest mean
costs across all tasks. Considering the pairwise distance term alone proves insufficient to ensure
adequate diversity, whereas incorporating it with MISO winner-takes-all often boosts performance,
yet, its effectiveness varies, which underscores the challenge of selecting optimal hyperparameters.
As expected, improvements are consistently larger in the more important sequential optimization
setting, where errors over time compound.

Multiple optimizers. When considering the multiple-optimizers setting, we observe the same trend.
Learning-based methods outperform heuristic ones, and multi-output approaches yield further en-
hancements. As expected, the use of multiple optimizers leads to consistently better results com-
pared to the single-optimizer setting due to increased exploration of the solution space.

Scaling with the number of initial solutions. Figure 4 shows that our method scales effectively
and consistently with the number of predicted initial solutions K, and outperforms other approaches
across varying values of K. Importantly, as K increases, the inference time for ensemble approaches
grows, whereas MISO remains almost constant (see Appendix A.6). We further evaluate mode
diversity in Appendix A.8, and find that, in line with our conclusions, all MISO outputs remain
useful even when K increases.

Qualitative results. Figure 5 (left) depicts the optimizer’s output trajectories with different initial
solutions for the autonomous driving task. In this scenario, the high-level planner abruptly alters the
reference path, which could happen, e.g., because of a newly detected pedestrian. The change in
reference path makes the previous solution (warm-start) a poor initialization, and the optimizer con-
verges to a local minimum that minimizes control effort but is far from the desired path. Regression
and model ensemble also fail to predict a good initial solution. In contrast, MISO winner-takes-all
adapts to this sudden reference change and closely follows the reference path. Figure 5 (right) de-
picts MISO’s initial solutions for the cart-pole task. The different outputs capture different modes
of the solution space (moving upright, moving with left swing, moving with right swing), showing
MISO’s ability to generate diverse and multimodal solutions.
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Driving (Single Optimizer): 
Optimizer Output Across methods

Cart-Pole (Single Optimizer): 
Various Trajectories Predicted By MISO WTA

Figure 5: Left: Each method adaptation when the high-level planner abruptly modifies the reference
path. Right: Multiple predicted trajectories of MISO winner-takes-all.

Summary. Overall, our methods significantly outperform the other baselines in both settings. The
consistent superiority of the MISO mix and MISO winner-takes-all methods across different tasks
and configurations underscores the advantages of using learning-based multi-output strategies for
generating initial solutions. These findings demonstrate that promoting diversity among multiple
initializations is crucial for improving optimization outcomes, especially when combined with mul-
tiple optimizers.

7 CONCLUSIONS AND FUTURE WORK

We introduced Learning Multiple Initial Solutions (MISO), a novel framework for learning multiple
diverse initial solutions that significantly enhance the reliability and efficiency of local optimiza-
tion algorithms across various settings. Extensive experiments in optimal control demonstrated that
our method consistently outperforms baseline approaches and scales efficiently with the number of
initializations.

Limitations. Our approach is not without limitations. First, to train a useful model, we rely on
the coverage and quality of the training data, as the method does not directly interact with the op-
timizer or the underlying objective function. Second, the underlying assumption of our regression
loss is that initial solutions closer to the global optimum increase the likelihood of successful op-
timization may not hold in complex optimization landscapes with intricate constraints. Third, in
highly complex optimization problems where each solution constitutes a high-dimensional and in-
tricate structure, accurately learning initial solution candidates can become exceedingly challenging,
potentially diminishing the effectiveness of our approach.

Future work. There are several promising directions for future research. To address the aforemen-
tioned limitations, one may simply incorporate the optimization objective into the model training
loss, thus creating a direct link to the final optimization goal. Alternatively, using reinforcement
learning (RL) to train MISO is a particularly exciting opportunity. By framing the problem in an RL
context, e.g., where the reward is the negative cost of the optimizer’s final solution, models would
be directly trained to maximize the probability of the optimizer finding the global optima and may
learn to specialize to the specific optimizer. One challenge would be computational, as RL would
require running the optimizer numerous times during training.

Other extensions of our approach include probabilistic modeling, e.g., Gaussian mixture models,
variational autoencoders, or diffusion models; however, preventing mode collapse and promoting
diversity would remain a challenge. Future work may explore alternative selection functions, such
as risk measures or criteria based on stability, robustness, exploration, or other domain-specific met-
rics; as well as using a heterogeneous set of parallel optimizers. Finally, we are excited about various
possible applications in optimal control and beyond, where sequences of similar optimization prob-
lems need to be solved, for example, localization and mapping in robotics, financial optimization,
traffic routing optimization, or even training neural networks with different initial weights, e.g., for
meta-learning, or scene representation learning with Neural Radiance Fields or 3D Gaussian splat-
ting.
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Ethics statement. Our work is concerned with a general class of optimization problems that do not
raise particular ethical considerations.

REFERENCES

Brandon Amos, Ivan Jimenez, Jacob Sacks, Byron Boots, and J Zico Kolter. Differentiable MPC
for end-to-end planning and control. In Advances in Neural Information Processing Systems, pp.
8299–8310, 2018.

Kyri Baker. Learning warm-start points for ac optimal power flow. In 2019 IEEE 29th International
Workshop on Machine Learning for Signal Processing (MLSP), pp. 1–6, 2019.

Lucas Barcelos, Tin Lai, Rafael Oliveira, Paulo Borges, and Fabio Ramos. Path signatures for
diversity in probabilistic trajectory optimisation. The International Journal of Robotics Research,
pp. 02783649241233300, 2024.

Andrew G. Barto, Richard S. Sutton, and Charles W. Anderson. Neuronlike adaptive elements
that can solve difficult learning control problems. IEEE Transactions on Systems, Man, and
Cybernetics, SMC-13(5):834–846, 1983. doi: 10.1109/TSMC.1983.6313077.

Dimitris Bertsimas and Bartolomeo Stellato. The voice of optimization. Machine Learning, 110(2):
249–277, 2021.

John T Betts and William P Huffman. Trajectory optimization on a parallel processor. Journal of
Guidance, Control, and Dynamics, 14(2):431–439, 1991.

Mohamed-Khalil Bouzidi, Yue Yao, Daniel Goehring, and Joerg Reichardt. Learning-aided
warmstart of model predictive control in uncertain fast-changing traffic. arXiv preprint
arXiv:2310.02918, 2023.

Holger Caesar, Juraj Kabzan, Kok Seang Tan, Whye Kit Fong, Eric M. Wolff, Alex H. Lang,
Luke Fletcher, Oscar Beijbom, and Sammy Omari. NuPlan: A closed-loop ml-based planning
benchmark for autonomous vehicles. In Conference on Computer Vision and Pattern Recognition
(CVPR) ADP3 Workshop, 2021.

Steven W Chen, Tianyu Wang, Nikolay Atanasov, Vijay Kumar, and Manfred Morari. Large scale
model predictive control with neural networks and primal active sets. Automatica, 135:109947,
2022a.

Tianlong Chen, Xiaohan Chen, Wuyang Chen, Howard Heaton, Jialin Liu, Zhangyang Wang, and
Wotao Yin. Learning to optimize: A primer and a benchmark. Journal of Machine Learning
Research, 23(189):1–59, 2022b.

Daniel Dauner, Marcel Hallgarten, Andreas Geiger, and Kashyap Chitta. Parting with miscon-
ceptions about learning-based vehicle motion planning. In Conference on Robot Learning, pp.
1268–1281, 2023.

Oscar de Groot, Laura Ferranti, Dariu Gavrila, and Javier Alonso-Mora. Topology-driven parallel
trajectory optimization in dynamic environments. arXiv preprint arXiv:2401.06021, 2024.

Sebastian East, Marco Gallieri, Jonathan Masci, Jan Koutnik, and Mark Cannon. Infinite-horizon
differentiable model predictive control. In International Conference on Learning Representations,
2019.

Adejuyigbe O Fajemisin, Donato Maragno, and Dick den Hertog. Optimization with constraint
learning: A framework and survey. European Journal of Operational Research, 314(1):1–14,
2024.

Karol Gregor and Yann LeCun. Learning fast approximations of sparse coding. In Proceedings of
the 27th international conference on international conference on machine learning, pp. 399–406,
2010.

10



Preprint

Abner Guzman-Rivera, Dhruv Batra, and Pushmeet Kohli. Multiple choice learning: Learning to
produce multiple structured outputs. Advances in neural information processing systems, 25,
2012.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning latent dynamics for planning from pixels. In International conference on
machine learning, pp. 2555–2565. PMLR, 2019.

Huang Huang, Balakumar Sundaralingam, Arsalan Mousavian, Adithyavairavan Murali, Ken Gold-
berg, and Dieter Fox. Diffusionseeder: Seeding motion optimization with diffusion for rapid
motion planning. In 8th Annual Conference on Robot Learning, 2024.

Travis C Johnson, Christian Kirches, and Andreas Wachter. An active-set method for quadratic
programming based on sequential hot-starts. SIAM Journal on Optimization, 25(2):967–994,
2015.

Shucheng Kang, Xiaoyang Xu, Jay Sarva, Ling Liang, and Heng Yang. Fast and certifiable trajec-
tory optimization. In 16th International Workshop on the Algorithmic Foundations of Robotics
(WAFR), 2024.

Peter Karkus, Boris Ivanovic, Shie Mannor, and Marco Pavone. Diffstack: A differentiable and
modular control stack for autonomous vehicles. In 6th Annual Conference on Robot Learning,
2022.

Teguh Santoso Lembono, Antonio Paolillo, Emmanuel Pignat, and Sylvain Calinon. Memory of
motion for warm-starting trajectory optimization. IEEE Robotics and Automation Letters, 5(2):
2594–2601, 2020.

Ian Lenz, Ross A Knepper, and Ashutosh Saxena. Deepmpc: Learning deep latent features for
model predictive control. In Robotics: Science and Systems, volume 10, 2015.

Weiwei Li and Emanuel Todorov. Iterative linear quadratic regulator design for nonlinear biological
movement systems. In First International Conference on Informatics in Control, Automation and
Robotics, volume 2, pp. 222–229. SciTePress, 2004.

Tobia Marcucci and Russ Tedrake. Warm start of mixed-integer programs for model predictive
control of hybrid systems. IEEE Transactions on Automatic Control, 66(6):2433–2448, 2020.

Hannah Michalska and David Q Mayne. Robust receding horizon control of constrained nonlinear
systems. IEEE transactions on automatic control, 38(11):1623–1633, 1993.

Piotr Mirowski, Razvan Pascanu, Fabio Viola, Hubert Soyer, Andrew J. Ballard, Andrea Banino,
Misha Denil, Ross Goroshin, Laurent Sifre, Koray Kavukcuoglu, Dharshan Kumaran, and Raia
Hadsell. Learning to navigate in complex environments. International Conference on Learning
Representations (ICLR), 2017.
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Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex Ray, Jonas Schneider, Szy-
mon Sidor, Josh Tobin, Peter Welinder, Lilian Weng, and Wojciech Zaremba. Learning dexterous
in-hand manipulation. The International Journal of Robotics Research, 39(1):3–20, 2020.

11



Preprint

Pavel Otta, Ondrej Santin, and Vladimir Havlena. Measured-state driven warm-start strategy for
linear mpc. In 2015 European Control Conference (ECC), pp. 3132–3136. IEEE, 2015.
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A APPENDIX

A.1 DETAILED DESCRIPTIONS OF BASELINE OPTIMIZERS

This subsection provides detailed descriptions of the optimization algorithms used in our evalua-
tions: First-order Box Differential Dynamic Programming (DDP), Model Predictive Path Integral
(MPPI), and the Iterative Linear Quadratic Regulator (iLQR). These algorithms were selected due to
their widespread use and effectiveness in solving optimal control problems across various domains.

First-order Box Differential Dynamic Programming (DDP). Building on the work of Tassa et al.
(2014), Amos et al. (2018) introduced a simplified version of Box-DDP that utilizes first-order
linearization instead of second-order derivatives. This approach, termed ”first-order Box-DDP,”
reduces computational complexity while maintaining the ability to handle box constraints on both
the state and control spaces.

Model Predictive Path Integral (MPPI). MPPI (Williams et al., 2015) is a sampling-based model
predictive control algorithm that iteratively refines control inputs using stochastic sampling. Starting
from the current state and a prior solution, it generates a set of randomly perturbed control sequences,
simulates their trajectories, and evaluates them using a cost function. The control inputs are then
updated based on a weighted average, favoring lower-cost trajectories. We use the implementation
from https://github.com/UM-ARM-Lab/pytorch_mppi.

Iterative Linear Quadratic Regulator (iLQR). iLQR (Li & Todorov, 2004) is a trajectory opti-
mization algorithm that refines control sequences iteratively by linearizing system dynamics and
approximating the cost function quadratically around a nominal trajectory. It alternates between
a forward pass, simulating the system trajectory, and a backward pass, computing optimal control
updates. We use the implementation provided in the nuPlan simulator.

A.2 DETAILED TASK DESCRIPTIONS AND HYPERPARAMETERS

This subsection provides detailed descriptions of the tasks used in our experiments: cart-pole,
reacher, and autonomous driving. For each task, we outline the system dynamics, control inputs,
and the specific hyperparameters employed in our evaluations.

Cart-pole. The cart-pole task (Barto et al., 1983) involves a cart-pole system tasked with swinging
the pole upright while moving the cart to a randomly selected target position along the rail. The
goal is to balance the pole vertically and simultaneously reach the target cart position. The system
is characterized by the state vector st ∈ R4, which includes the pole angle θ, pole angular velocity
θ̇, cart position x, and cart velocity ẋ. The control input is a single force applied to the cart, ut ∈ R.

Hyperparameters. The mass of the cart is mc = 1.0 kg, the mass of the pole is mp = 0.3 kg,
and the length of the pole is l = 0.5m. Gravity is set to g = −9.81m/s2. Control inputs are
bounded by umin = −5.5N and umax = 5.5N, with a time step of ∆t = 0.1 s and nsub steps = 2
physics sub-steps per control step. Each episode has a maximum length of Tenv = 50 steps. Both
optimizers use goal weights of [0.1, 0.01, 1.0, 0.01] for the state variables and a control weight of
0.0001. The prediction horizon is set to H = 10. For the online optimizer, we set lqr iter =
2 and max linesearch iter = 1. In the oracle optimizer, we use lqr iter = 10 and
max linesearch iter = 3. The initial state s0 ∈ R4 is sampled as follows: x0 ∼ U(−2, 2)m,
ẋ0 ∼ U(−1, 1)m/s, θ0 ∼ U(−π

2 ,
π
2 ) rad, and θ̇0 ∼ U(−π

4 ,
π
4 ) rad/s. The goal state is defined

by a target cart position xgoal ∼ U(−2, 2)m, while the rest of the state variables (pole angle and
velocities) are set to zero, ensuring the goal is to bring the pole upright and bring the system to rest.

Reacher. The Reacher task (Tassa et al., 2018) involves a two-link planar robot arm tasked with
reaching a randomly positioned target. The goal is to move the end-effector to the target position in
the plane. The system is characterized by the state vector st ∈ R4, which includes the joint angles
θ1, θ2 and angular velocities θ̇1, θ̇2. The control inputs, ut ∈ R2, are torques applied to each joint.

Hyperparameters. The simulation uses a time step of ∆t = 0.02 s, with joint damping set to
0.01 and motor gear ratios of 0.05. The control inputs are constrained by umin = [−1,−1] and
umax = [1, 1]. The wrist joint has a limited range of [−160◦, 160◦]. Each episode is limited to
Tenv = 250 steps. Both optimizers are set with a control noise covariance σ2 = 1 × 10−3, a
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temperature parameter λ = 1× 10−4, and a prediction horizon H = 10. The online optimizer uses
num samples = 3, while the oracle optimizer uses num samples = 50. The target position
is generated by sampling θtarget ∼ U(0, 2π) and rtarget ∼ U(0.05, 0.20)m, then set as posx =
rtarget cos(θtarget) and posy = rtarget sin(θtarget).

Autonomous Driving. The autonomous driving task, based on the nuPlan benchmark (Caesar et al.,
2021), evaluates the performance of motion planning algorithms in complex urban environments.
Our focus is on the control (tracking) layer, which is responsible for accurately following the planned
trajectories. The task involves navigating a vehicle through a series of scenarios with varying traffic
conditions, obstacles, and road layouts. The goal is to execute safe, efficient, and comfortable
trajectories while adhering to traffic rules and avoiding collisions. The system is characterized by
the state vector st ∈ R5, which includes the vehicle’s position (x, y), orientation ϕ, velocity v, and
steering angle δ. The control inputs, ut ∈ R2, are acceleration a and steering angle rate δ̇. We
use the state-of-the-art Predictive Driver Model (PDM) planner (Dauner et al., 2023) to generate the
reference trajectories rt.

Hyperparameters. The prediction horizon is set to H = 40 with a discretization time step of
∆t = 0.2 s. The cost function is weighted with state cost diagonal entries [1.0, 1.0, 10.0, 0.0, 0.0]
for the position, heading, velocity, and steering angle, respectively, and input cost diagonal entries
[1.0, 10.0] for acceleration and steering angle rate. The maximum acceleration is constrained to
3.0m/s2, the maximum steering angle is 60◦, and the maximum steering angle rate is 0.5 rad/s.
A minimum velocity threshold for linearization is set at 0.01m/s. The online optimizer is limited
to a maximum solve time of max solve time = 5ms, while the oracle optimizer allows for
max solve time = 50ms. For a fair comparison, we keep the total runtime limit fixed, including
both initialization and optimization. The total runtime limit for warm-start and perturbation methods
is 5ms. For learning-based methods, the inference time for our neural networks is between 0.6ms
and 0.7ms on a GPU, and 0.7ms to 0.8ms on a CPU. For simplicity, we allocate 0.85ms for model
inference and run the optimizer for the remaining 4.15ms. We have not performed any inference
optimization for our models (e.g., TensorRT).

A.3 NETWORK ARCHITECTURE AND TRAINING DETAILS

This section provides a brief overview of the network architecture, the data collection process, and
the training procedures used in our experiments. We summarize the design of our base Transformer
model, outline the methods used to generate and preprocess the training data, and detail the key
training methodologies and hyperparameters employed.

Network Architecture. The base model is a standard Transformer architecture with absolute po-
sitional embedding, a linear decoder layer, and output scaling. The core Transformer architecture
remains standard, with task-specific configurations. The input to the network is the concatenated
sequence of the warm-start state trajectory error, τw.s.

e , defined as the difference between the ref-
erence trajectory, ψ = τr, (in the autonomous driving task) or the goal state, ψ = xg (in the
cart-pole and reacher tasks), and the warm-start trajectory, τw.s.

x . The warm-start control trajectory
is τw.s.

u = {{ucand
t+k }H−2

k=1 ,0}. The network predicts K control trajectories, {τ̂ init
u,k }Kk=1, for the next

optimization step. Each environment’s configuration is described in Table 3.

Table 3: Configuration of the Transformer model for each environment.
Parameter Description Reacher Cart-pole Driving
n layer Number of layers 4 4 4
n head Number of heads 2 2 2
n embd Embedding dimension 64 64 64
dropout Dropout rate 0.1 0.1 0.1
src dim Input dimension 8 5 7
src len Sequence length 10 9 40
out dim Output dimension 2 1 2

Data Collection and Preprocessing. In all experiments, the training data is generated by (1) un-
rolling an optimizer using a warm-start initialization policy and recording its inputs and outputs,
and (2) replaying the same scenarios using an oracle optimizer—essentially the same optimizer with
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enhanced capabilities, such as more optimization steps or additional sampled trajectories—and log-
ging its inputs and outputs. The resulting mapping may be seen as a filter, refining (near-)optimal
initial solutions into optimal ones.

Training. Prior to training, all features were standardized to ensure consistent input scaling. We
used the AdamW optimizer and applied gradient norm clipping. The models were trained using
standard settings without any complex modifications. All hyperparameters are detailed in Table 4.

Table 4: Training hyperparameters for each environment.
Parameter Description Reacher Cart-pole Driving
epochs Epochs 125 125 125
batch size Batch size 1024 1024 1024
lr Learning rate 0.001 0.0003 0.0001
weight decay Weight decay 0.0001 0.0001 0.0001
grad norm clip Gradient norm clipping 2.0 2.0 2.0
control loss weight Control loss weight 100.0 1.0 5.0
state loss weight State loss weight 0 0.01 0.005
pairwise loss weight Pairwise loss weight 0.1 0.01 0.1

A.4 DESCRIPTIONS OF BASELINE METHODS

This section introduces the baseline methods used in our experiments in more detail and discusses
their implementation specifics. These baselines serve as reference points to evaluate our proposed
methods’ performance and understand the benefits and limitations of different initialization strate-
gies in optimization algorithms.

Warm-start (K = 1). A common technique involves shifting the previous solution forward by one
time step and padding it with zeros. Assuming the system does not exhibit rapid changes in this
interval, the previous solution should retain local, feasible information.

Oracle Proxy (K = 1). This proxy serves two purposes: (1) estimating the gap between a real-
time-constrained optimizer and an unrestricted one and (2) providing a proxy for a mapping worth
learning. For each optimization algorithm, a suitable heuristic is defined. In DDP, the oracle is
allowed more iterations to converge; in MPPI, it has a larger sample budget; and in iLQR, it is given
more time to perform optimization iterations.

Regression (K = 1). This approach involves training a neural network to approximate the oracle’s
mapping. Unlike the oracle heuristic, which is impractical for real-time use, the trained neural
network requires only a single forward pass.

Warm-start with Perturbations (K >1). We utilize the warm-start technique as another baseline
by duplicating the proposed initial solution K times and adding Gaussian noise. While this intro-
duces some form of dispersion, the resulting initial solutions are neither guaranteed to be feasible
nor to ensure any level of optimality.

Regression with Perturbations (K >1). Similar to the warm-start with perturbation, after predict-
ing an initial solution using the neural network, we duplicate it K times and add perturbations.

Ensemble (K >1). An ensemble of K separate neural networks leverages the idea that networks
initialized with different weights during training will often produce different predictions. The main
drawbacks of this approach are (1) the need to train K neural networks and (2) the requirement to
run K forward passes, which may be impractical for real-time deployment.

Multi-Output Regression (K >1). A naive approach to predicting K initializations from a single
network involves calculating the loss for each prediction and summing the losses. However, since
there is no explicit multimodality objective, these models are prone to mode collapse.

MISO Pairwise Distance (K >1). One way to mitigate mode collapse is to introduce an additional
term in the loss function, such as the pairwise distance between predictions. While this approach re-
quires weight tuning and selecting an appropriate norm, a significant challenge lies in understanding
how effectively this term promotes multimodality in practice.
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MISO Winner-Takes-All (K >1). This approach updates only the best-performing mode based
on the loss of each prediction. Although no explicit dispersion objective is included, multimodality
is indirectly encouraged by maintaining multiple active modes while refining only the best one and
not penalizing the others.

MISO Mix (K >1). Lastly, we combine the pairwise distance term with the Winner-Takes-All
approach. While this allows for greater refinement, it adds complexity due to additional hyperpa-
rameters and the need to apply further operations—such as clamping distances—to ensure the loss
won’t diverge.

A.5 ILLUSTRATIVE EXAMPLE

This example provides a simplified scenario to illustrate the behavior of local optimization algo-
rithms in a controlled, low-dimensional setting with non-convex and multimodal objective function.
The system dynamics are defined by the linear equation xt+1 = xt + ut, where xt ∈ R represents
the state and ut ∈ [−1, 1] is the constrained control input at time step t. The initial state is x0 = 0,
and the optimization horizon is set to H = 5. The objective is to find the optimal control trajectory
τ ⋆
u = {ut}H−1

t=0 that minimizes the cumulative cost function τ ⋆
u = argminτu

∑H−1
k=0 c(xt+k), where

the resulting state trajectory τx = {xt}Ht=0 is obtained by unrolling τu from x0. The cost function,
c(x) = (x2+0.05)(x+1.5)2(x− 2)2, is non-convex and multimodal, featuring two global minima
at x⋆

1 = −1.5 and x⋆
2 = 2.

Table 5: Comparison of different methods for predicting the optimal control trajectories
Method xH+1 τ̂u

Ensemble 0.03 -0.02, 0.03, 0.00, 0.01, 0.01
0.02 -0.01, 0.02, -0.01, 0.01, 0.01

MISO pairwise dist. -0.24 -0.12, -0.05, -0.04, -0.02, 0.01
0.24 0.08, 0.05, 0.04, 0.03, 0.03

MISO winner-takes-all -1.49 -0.88, -0.65, 0.00, 0.02, 0.02
2.01 0.99, 0.94, 0.05, 0.01, 0.01

MISO mix -1.52 -0.90, -0.68, 0.00, 0.03, 0.03
2.05 0.99, 0.95, 0.07, 0.02, 0.02

Optimal -1.50 -1.00, -0.50, 0.00, 0.00, 0.00
2.00 1.00, 1.00, 0.00, 0.00, 0.00

The results from Table 5 provide a comparison of different methods for predicting optimal control
trajectories. The Ensemble method, which combines multiple single-output predictions, yields the
least accurate results, with final states close to zero. Due to the dispersion term, MISO pairwise
distance is a bit further from zero but still far from either optimum. On the other hand, MISO
winner-takes-all and MISO mix successfully predict both optimal sequences with high fidelity and
thus are able to reach either global optimum.

Overall, the results suggest that methods specifically tailored for capturing multimodality, such as the
winner-takes-all and mixed strategies, are more effective than their single-output regression coun-
terparts, particularly in non-convex environments.

A.6 INFERENCE TIME: ENSEMBLE VS. MULTI-OUTPUT MODELS

This experiment benchmarks the execution time of two model architectures: an ensemble of K
single-output models and a single multi-output model producing K outputs. Both models are based
on the Transformer architecture used in the autonomous driving environment.

The experiments were conducted on an Intel Core i9-13900KF CPU and an NVIDIA RTX 4090
GPU, measuring the mean inference time over 1000 runs across five random seeds. GPU operations
were synchronized before timing to ensure accurate measurements. The results, shown in Fig. 6,
display the mean inference time in milliseconds as K increases for both the ensemble and multi-
output models on CPU and GPU.
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Figure 6: Mean inference time for varying values of K for the ensemble and multi-output models
on CPU and CUDA

The multi-output model exhibits minimal sensitivity to the increase in K on both the CPU and GPU,
indicating that this architecture scales efficiently, maintaining a low overhead even as the number
of outputs grows. In contrast, the ensemble model’s inference time increases significantly with K,
suggesting that managing multiple models introduces overhead that scales poorly as K grows.

In applications with strict runtime constraints, such as the autonomous driving environment, the en-
semble approach becomes impractical as K increases. Conversely, the multi-output model remains a
viable option, even at larger values of K, making it the preferred choice for time-sensitive scenarios.

A.7 STATE LOSS

An additional challenge in learning control policies is addressing compounding errors—small in-
accuracies in the predicted control trajectory τu that, when unrolled, cause significant deviations in
the state trajectory τx. Even if most elements τu are accurate, errors in the initial steps can cause
the state τx to drift, leading to further divergence as the system evolves.

To mitigate compounding errors, we introduce a regression loss not only over the control trajectory
τu but also over the resulting state trajectory τx. In a supervised learning setting, this requires
a model of the system dynamics, which can either be known or learned. As we show in Table 6,
incorporating state trajectory loss helps mitigate these types of error accumulation and improve long-
horizon trajectory accuracy. More specifically, we see that (1) as the prediction horizon increases,
from H = 9 (Cart-pole) to H = 40 (Driving), so does the difference between using and not using
state loss, (2) The gap between One-Off and Sequential also increases thus we do not generalize as
well, (3) For the single-output regression model, the difference is even greater.

Table 6: Mean Cost Comparison for One-Off and Sequential Optimization (With and Without State
Loss)

One-Off Optimization Sequential Optimization
Method K Cart-pole Driving Cart-pole Driving

No SL With SL No SL With SL No SL With SL No SL With SL
Single Opt.
Regression 1 11.88 ±0.79 11.19 ±0.80 440.97 ±74.92 74.23 ±7.69 11.93 ±0.29 6.18 ±0.47 590.50 ±89.06 70.62 ±7.38
MISO WTA 32 10.62 ±0.77 10.48 ±0.77 128.32 ±22.55 30.17 ±2.24 1.86 ±0.20 0.83 ±0.06 151.4 ±20.70 30.75 ±2.15
MISO mix 32 10.63 ±0.77 10.48 ±0.77 153.37 ±21.8 33.95 ±2.39 2.28 ±0.26 0.79 ±0.04 212.70 ±28.02 33.38 ±2.21
Multiple Opt.
MISO WTA 32 10.25 ±0.75 10.29 ±0.76 144.51 ±19.51 30.87 ±2.30 0.97 ±0.06 0.76 ±0.05 158.71 ±20.94 30.48 ±2.07
MISO mix 32 10.24 ±0.75 10.29 ±0.76 196.09 ±31.43 33.52 ±2.35 1.14 ±0.12 0.63 ±0.02 214.56 ±28.02 34.85 ±2.64

Table 6 shows a comparison between using and not using state loss (SL) across One-Off and Sequen-
tial Optimization settings. While both strategies benefit from including the state loss, the improve-
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ment is more profound in the Sequential Optimization setting. This is because it involves executing
each solution and starting the next optimization from the resulting state, causing the compounding
errors to accumulate. The One-Off Optimization setting also benefits from state loss, but the impact
is less apparent and thus was not marked in the table.

A.8 MODE FREQUENCY

Figure 7 presents a heatmap illustrating the percentage of selections for each specific mode (output)
in MISO winner-takes-all by the selection function, which in this context chooses the output with
the lowest resulting cost. Although a few modes appear to dominate, all other modes remain active,
i.e., with a frequency greater than zero, indicating that there are problem instances where these
less frequent modes identify the optimal action, thereby contributing to the overall performance
improvements. Additionally, Fig. 8 compares the distribution of selections between MISO winner-
takes-all and MISO mix with the expected, approximately uniform distribution of the Ensemble
method.

(a) Cart-pole (Single Optimizer) (b) Driving (Single Optimizer)

Figure 7: Heatmap of MISO winner-takes-all outputs argmin frequency

(a) Cart-pole (Single Optimizer) (b) Driving (Single Optimizer)

Figure 8: Argmin frequency of various methods for K =32

A.9 MEAN COST SEQUENTIAL OPTIMIZATION

Figure 9 shows the mean cost of each method with varying values of K, for both cart-pole and
reacher environments. Both showcase that our method scales effectively and consistently with the
number of predicted initial solutions and outperforms other approaches across varying values of K.
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(a) Cart-pole: Single Optimizer (b) Cart-pole: Multiple Optimizers

(c) Reacher: Single Optimizer (d) Reacher: Multiple Optimizers

Figure 9: Mean Cost of the cart-pole and reacher environments with varying values of K. Subfigures
(a) and (b) show the results for cart-pole using Single and Multiple Optimizers, respectively, while
(c) and (d) display the same for the reacher environment. The shaded regions around each curve
represent the standard error of the mean.
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