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Abstract

This study focuses on building an algorithmic investment strategy employing a hybrid approach
that combines LSTM and ARIMA models referred to as LSTM-ARIMA. This unique algorithm
uses LSTM to produce final predictions but boost results of this RNN by adding the residuals
obtained from ARIMA predictions among other inputs. The algorithm is tested across three equity
indices (S&P 500, FTSE 100, and CAC 40) using daily frequency data spanning from January,
2000 to August, 2023. The architecture of testing is based on the walk-forward procedure which
is applied for hyperparameter tunning phase that uses using Random Search and backtesting
the algorithms. The selection of the optimal model is determined based on adequately selected
performance metrics combining focused on risk-adjusted return measures. We considered two
strategies for each algorithm: Long-Only and Long-Short in order to present situation of two various
groups of investors with different investment policy restrictions. For each strategy and equity index,
we compute the performance metrics and visualize the equity curve to identify the best strategy
with the highest modified information ratio (IR**). The findings conclude that the LSTM-ARIMA
algorithm outperforms all the other algorithms across all the equity indices what confirms strong
potential behind hybrid ML-TS (machine learning - time series) models in searching for the optimal
algorithmic investment strategies.

Keywords: Deep Learning, Recurrent Neural Networks, Algorithmic Investment Strategy, LSTM,
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1. Introduction

Predicting the financial market is known to be quite challenging due to factors such as volatility,

the complexity of the financial system, and the constantly changing economic landscape. We noticed

twice in the past 20 years, the 2008 recession and the COVID-19 pandemic, that there was so much

uncertainty on how the markets will progress. Researchers and traders try many approaches to
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successfully predict the financial market. Unfortunately, not all are successful as it depends on the

economic and political situation of the stock markets. They try to optimize their models ranging

from simple linear regression models to advanced machine learning (ML) algorithms and being tested

based on all types of invested assets.

High-frequency trading is gaining much more popularity; however, due to its complexity, it may

not be available for all users. Therefore, for this research, we will consider only daily data. We

believe that it can still give us a general picture of the interactions in the market and enable us

to develop an algorithmic investment strategy (AIS). The main focus of this study is to utilize

the Auto-regressive Integrated Moving Average (ARIMA) and Long-Short Term Memory (LSTM)

models and combine them into a hybrid model called LSTM-ARIMA. The ultimate goal is to apply

this hybrid model to develop an efficient AIS. Our main hypothesis states that the LSTM-ARIMA

model will outperform other algorithms in most cases*. The ensuing are the research questions that

our study aims to explore:

RQ1. Are the algorithmic investment strategies robust to changes in the asset?

RQ2. Does LSTM-ARIMA perform better than the models individually?

RQ3. Are the algorithmic investment strategies robust to changes in the model hyperpa-

rameters?

RQ4. Does the Long-Only or Long-Short strategy outperform the Buy&Hold?

To evaluate our algorithmic investment strategies, we have selected three assets, namely, S&P 500

(GSPC ), FTSE 100 (FTSE), and CAC 40 (FCHI ) equity indices. The motivation behind the choice

of assets was to diversify its results across various equity indices to capture the finest capability of

the AIS. Therefore, each asset is chosen from stock markets of different regions, from the New York

Stock Exchange (NYSE) to the London Stock Exchange (LSE) and Euronext Stock Market (PAR).

Our in-sample data begins on 2000-01-03 for S&P 500 and CAC 40 and 2000-01-04 for FTSE 100.

The out-of-sample data for the S&P 500 equity index starts on 2005-01-25, for the FTSE 100 equity

index on 2005-01-13, and the CAC 40 equity index on 2004-12-28 and lasts until 2023-08-30. We

capture the horizon of approximately 23 years. During this time frame, we capture two extreme

times of the market. Considering extreme market conditions while training the model can help them

perform well during both stable and volatile conditions.

Our contribution to the existing literature can be summarized in the following sentences. Firstly,

we develop algorithmic investment strategies based on the predicted closing prices from ARIMA,
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LSTM, and LSTM-ARIMA models and finally, we combine these forecasts into one ensemble model

additionally boosting its results. Additionally, we use walk-forward optimization (WFO) as this

technique reduces the risk of over-fitting to one specific sample of past returns. For each walk, we

divide our data into training, validation, and testing data sets, where the training set equals 1000

trading days and the validation and testing set equals 250 trading days. Moreover, we perform

hyperparameter tuning at every walk by performing a random search using a set of parameters

explained later on in the study. Finally, the paper is finished with a sensitivity analysis of the

most promising model to verify its robustness and potential for using it in real-time investments

in financial markets. From a broad literature review, we have concluded, that there are very few

papers that cover the process of testing algorithmic investment strategies in such a complex and

reliable way.

The structure of the paper is as follows: Section 1 contains an introduction. Section 2 presents a

brief overview of the literature. Section 3 provides us with the data description. Section 4 defines

the methodology describing ARIMA, LSTM, and LSTM-ARIMA models. It also presents the

WFO, performance metrics, research description, and hyperparameter tuning. Section 5 covers

the empirical results of the strategies using the equity curves and performance metrics. Section 6

presents the sensitivity analysis where we show the sensitivity of the outcomes to changes in the set

of hyperparameters. Section 7 presents the ensembled AIS. The last section concludes and presents

a further extension of this paper.

2. Literature

Researchers are continuously searching for ways to build algorithmic investment strategies (AIS)

and make higher and less risky profits in their investments This section will focus on the use of time

series, machine learning, and hybrid models to forecast the stock market prices and create efficient

algorithmic investment strategies.

2.1. Time Series Models

Time series models are considered to be well-performing as they can catch the features of the

financial time series data such as the seasonality, trend, and cyclicality of historical data to predict

the future values. The time series model used in this study is ARIMA. However, in this section, we

will also discuss other types of models used for time series analysis.

ARIMA, introduced by Box and Jenkins (1976), has been one of the main tools of financial

time series forecasting for a long time. ARIMA model is derived from the ARMA model, by taking
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the first difference of the prices to have a stationary data set. Mondal et al. (2014) studied the

effectiveness of ARIMA by forecasting fifty-six stocks from the Indian stock market from different

industries. For their predictions, they achieved an accuracy of 85% and the fast-moving consumer

goods (FMCG) sector was the most accurately predicted sector by ARIMA. Furthermore, they also

concluded that in ARIMA the change in training data size does not influence the accuracy of their

models.

Ariyo et al. (2014) used the ARIMA model to predict the prices of stocks from the New York

Stock Exchange (NYSE) and the Nigerian Stock Exchange (NSE). They chose Nokia’s and Zenith

Bank stocks and the time frame was 16 years and 5 years respectively. The authors find the best

model using the Bayesian Information Criterion (BIC), the standard error of regression, and the

highest adjusted R-squared as the main criterion. They concluded that the best model to predict

Nokia’s stock was ARIMA(2,1,0) and for Zenith Bank, the best was ARIMA(1,0,1).

Devi et al. (2013) studied the effectiveness of ARIMA for the prediction of stock trends. The

authors selected the parameters based on manual examination of ACF, and PACF plots to find the

AR and MA orders. The best model was selected based on the AIC and BIC criteria. The paper

considered five years of historical data for the analysis. The authors conclude that ARIMA is the

most accurate model to predict the stock trend and make investment decisions.

Bui and Ślepaczuk (2022) explores the use of Hurst Exponent for an algorithmic pair trading

strategy. The authors also explored the use of correlation and cointegration for their pair trading

strategy. The study is focused on 103 stocks from the NASDAQ 100 equity index, covering

approximately 18 years with daily frequency. The empirical findings indicate that among all

103 stocks, the correlation method demonstrated superior performance in terms of risk-adjusted

return. However, the Buy&Hold strategy outperformed all other strategies in terms of compounded

annualized return.

Malladi and Dheeriya (2021) conducted a time series analysis of cryptocurrency returns and

volatility using GARCH, VAR, and ARMAX models. ARMAX is an extension of the base ARMA

which considers exogenous inputs. They test the algorithm on BTC and XRP. The comparison is

done with a standard regression model. The conclusion is that both ARMAX and GARCH perform

better than the standard regression and the VAR model, as expected. However, ARMAX showed

the best results due to its high accuracy.

Li et al. (2023) introduces spARIMA, a novel time series prediction framework designed with a

sequential training approach in batches. Named for its sequential training based on noise levels and
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model fit contributions, spARIMA incorporates a self-paced learning (SPL) strategy to effectively

mitigate data noise-induced instability. The model’s performance is evaluated across twelve diverse

datasets, including equity index prices (NASDAQ, RUSSEL, NYSE), as well as traffic and temperature

data. Comparisons are made with traditional ARIMA models using two gradient descent algorithms.

While spARIMA did not consistently outperform ARIMA across all datasets, it demonstrates

promising capabilities against strong noise in time series prediction tasks, demonstrating its potential

in enhancing forecasting accuracy.

The Vector Autoregression (VAR) model is also known for its time series modeling capabilities.

Suharsono et al. (2017) uses VAR and VECM to model the stock price. They use the ASEAN share

price index and perform a manual search to find the best parameters for the models. The criteria to

check the performance of the model was based on the Akaike information criterion (AIC). They

concluded that in comparison to the VECM model, the VAR model performed the best in modeling.

Castellano Gómez and Ślepaczuk (2021) analyzed four algorithmic strategies and one of them

was based on ARIMA. They used S&P 500 equity index data for the predictions and used almost 31

years of historical data. The goal was to create a portfolio strategy using four selected algorithmic

strategies. All the strategies were compared with the benchmark buy&hold. The paper showed that

ARIMA did not perform well when compared to the Buy&Hold strategy, however, the performance

of ARIMA was the highest during the phases of high volatility.

2.2. Machine Learning Models

Machine learning is an advanced approach based on artificial intelligence which can be used to

forecast stock market prices. In recent years, Recurrent Neural Networks (RNN) have started to be

used more often for time series analysis. Rumelhart (1986) made significant contributions to the

field of RNN. Due to issues such as the vanishing gradient problem and the inability to effectively

capture long-term dependencies, the development of RNNs faces certain limitations. Hochreiter and

Schmidhuber (1997) proposed the architecture of the Long-Short-Term Memory (LSTM) model to

tackle the vanishing gradient problem. This gives LSTM a huge advantage over RNN especially

when it comes to time series analysis.

Xiong et al. (2014) presents an innovative approach leveraging a firefly algorithm (FA) to optimize

multi-output support vector regression (MAVR) parameters in financial forecasting. Their study

evaluates this FA-MAVR model across statistical, economic, and computational criteria. Statistical

evaluation includes goodness-of-forecast measures and testing methodologies, while economic criteria

assess the model’s performance using a naive trading strategy. Computational efficiency is also
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considered. Testing is conducted on major equity indices: S&P 500, FTSE 100, and Nikkei 225. In

comparison to genetic algorithms and particle swarm optimization, FA-MAVR demonstrates superior

forecast accuracy and profitability, establishing its effectiveness in equity indices price prediction.

Siami-Namini et al. (2018) compared the use of LSTM and ARIMA in forecasting time series.

They used them to predict the monthly closing prices for eleven stock market indices. In comparison

to ARIMA, they conclude that LSTM outperforms the ARIMA model, which results in RMSE

measure lower by 85%. Furthermore, they also mentioned that LSTM results were robust to the

number of epochs used in the process of estimation.

Grudniewicz and Ślepaczuk (2023) researched various machine learning techniques for creating

an AIS. They utilized various machine learning models, including Neural Networks, K Nearest

Neighbours, Regression Trees, Random RandomForest, Naive Bayes classifiers, Bayesian Generalized

Linear Models, and Support Vector Machines. These ML models were employed to generate trading

signals for WIG20, DAX, S&P500, and six CEE indices over a timeframe spanning approximately

21 years. The authors concluded that in terms of risk-adjusted returns, the Polynomial Support

Vector Machine model performed the best in the case of WIG20 and S&P 500 equity indices, while

the Linear Support Vector Machine model for DAX and six CEE equity indices.

Roondiwala et al. (2017) presented a study predicting stock prices using LSTM. Five years of

historical data on the NIFTY 50 index was used for testing purposes. The training of LSTM models

was done by allocating random weights and biases with an architecture of two LSTM layers and two

dense layers with ReLU and Linear activation function respectively. Finally, the predicted values

were compared with the actual values and evaluated using the RMSE. The best RMSE score was

given for the model with High/Low/Open/Close as the inputs with 500 training epochs.

Michańków et al. (2022) presented a study on using LSTM in Algorithmic Investment Strategies

(AIS) on BTC and S&P500 Index. The output of their model was a singular value predicting the

next day’s return value -1, 0, 1. The set of hyperparameters used for the tuning process, relating to

this paper, were the number of layers between 1 and 5, the number of neurons in each layer chosen

between 5 and 512, dropout rates between 0.001 and 0.2, several types of optimizers including SGD,

RMSProp, and Adam variants, learning rates chosen between 0.001 and 0.1, and the batch size

ranging from 16 to the length of the test size. After the hyperparameters tuning phase, they selected

the model with 3 hidden layers, with 512/256/128 neurons respectively, a dropout rate equal to 0.02,

Adam as an optimizer a learning rate of 0.00015, and a batch size of 80. They deduced that when it

comes to daily frequency, their model for S&P 500 equity index performed well for the Long-Only
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strategy, while the model for BTC performed well for both the Long-Only and Long-Short strategy.

Zhang et al. (2019) wrote an analysis of the Attention-based LSTM model for financial time series

prediction (AT-LSTM). Instead of making their prediction of LSTM by inputting the prediction

of ARIMA, the authors use the output of the attention model as the input of LSTM. The authors

compared the results of AT-LSTM with ARIMA and LSTM. The testing and training were done

on three data sets: Russell 2000, DIJA, and NASDAQ indices, and the best model was concluded

based on the MAPE (mean absolute percentage error). LSTM performed the best with 2 layers, 8

hidden neurons, 20 training time steps, batch size equal to 50, and 5000 epochs. Finally, the authors

summarized that the hybrid AT-LSTM performed better than LSTM and both of them performed

way better than ARIMA.

Baranochnikov and Ślepaczuk (2022) analyzed various architectures of LSTM and GRU models

in Algorithmic Investment Strategies. Their LSTM model forecasted the rate of return for the period

T+1. The authors decided to use the set of parameters chosen from the financial literature. Ten

model architectures were used during the training process and parameters such as dropout rate,

batch size, epochs, and the learning rates were additionally modified. Adam optimizer with the

AMSGrad extension was used in all. The authors used the walk-forward process for estimation

purposes. The models were tested on Bitcoin, Tesla, Brent Oil, and Gold closing prices. The authors

deduced that the LSTM outperformed the traditional Buy&Hold strategy for Bitcoin and Tesla both

for daily and hourly frequency.

Another research was conducted in India by Hiransha et al. (2018) who predicted the National

Stock Market of India and the New York Stock Exchange using various algorithms such as MLP,

RNN, LSTM, and CNN. ARIMA was used as a benchmark. The authors tested three sectors of

industries, automobile, finance, and IT from both stock exchanges and measured the accuracy of

the predictions using the MAPE metric. The authors concluded that CNN (Convolution Neural

Network) outperformed all the other models and that LSTM was better performing than ARIMA

due to its useful capability of finding non-linearity.

Kijewski and Ślepaczuk (2020) predicted the S&P 500 equity index prices using the classical

models and RNN (Recurrent Neural Networks including ARIMA, MA, momentum and contrarian,

volatility breakout, macro factor, and finally LSTM. The models were trained and tested collectively

over twenty years. The range of parameters taken for the ARIMA model were, p: 0-5, d: 0-3, and q:

0-5, while in the case of LSTM, a prepared set of hyperparameters was taken from the literature.

They mentioned that the best LSTM model had the following configuration: 30 neurons in the
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hidden layers with ReLU activation, length of sequence equaling 15, and dropout rate 0.02 by using

Adam optimizer with learning rate 0.01 and loss function Mean Square Error. The authors concluded

that LSTM outperformed ARIMA and the benchmark buy&hold strategy.

Kryńska and Ślepaczuk (2022) tested several architectures of the LSTM model in AIS based

on the S&P 500 equity index and BTC. They tested three frequencies of data: daily, hourly, and

15-minute of S&P 500 and BTC. When the model was considering a regression problem, models

on daily data performed better than intraday frequencies. However, in the case of classification

problems, the model on intraday data performed the best.

Nelson et al. (2017) used LSTM to predict the stock market direction. The authors use different

stocks from the Brazilian stock exchange and some technical indicators as inputs. Furthermore,

log-return transformation was performed for the inputs and the frequency of data was 15 minutes.

The output of the model is a binary value (1, 0) denoting an increase and decrease in the prices

between the time steps. Four metrics were created to evaluate the performance, among which

were the accuracy and the precision. The authors concluded that the proposed model of the paper

outperforms the benchmark Buy&Hold strategy based on accuracy and offers less risky investment

compared to the others.

Mizdrakovic et al. (2024) investigates Bitcoin price dynamics by analyzing factors including

Ethereum, S&P 500, VIX, EUR/USD, and GBP/USD. The study introduces a two-tiered method-

ology: initially employing variational mode decomposition (VMD) enhanced with a variant of

the sine cosine algorithm to optimize VMD’s control parameters for trend extraction from time

series data. Subsequently, LSTM and hybrid Bidirectional LSTM models are utilized to forecast

prices over multiple time steps. The authors evaluate their approach across various feature sets,

comparing performances with and without VMD. Their findings highlight the outperformance of the

V-BiLSTM-HSA-SCA (VMD Bidirectional LSTM with hybrid self-adaptive sine cosine algorithm)

model, demonstrating its highest R2 and IA scores, as well as lowest MAE, MSE, and RMSE values

among all tested models.

2.3. Hybrid Models

Hybrid models are a combination of two models. A mix of models may work better together as

they capture the efficiencies of individual models. For instance, LSTM-ARIMA models can help us

capture the linear and non-linear dependencies in the data. Most algorithms can be combined. One

of the common combinations is a mixture of ARIMA and GARCH models. Vo and Ślepaczuk (2022)

tested a hybrid ARIMA-SGARCH model in algorithmic investment strategies (AIS). Three models
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were created during their research: ARIMA, ARIMA-SGARCH, and ARIMA-EGARCH. The models

were tested on the S&P 500 equity index and prices in the period of the last 20 years. The authors

selected the best ARIMA model using the Akaike Information Criterion (AIC). The results were

compared between the models and the benchmark buy&hold strategy. Several performance metrics

were used. The authors concluded that the ARIMA-SGARCH model performed the best, followed

by ARIMA which performed better than the benchmark.

Senneset and Gultvedt (2020) uses ARIMA and LSTM together to increase their portfolio stability.

They used several stocks from the Oslo Stock Exchange for 14 years. The authors used the residual

values from ARIMA as an input and the performance was compared using the RMSE and MAE

error metrics. During the research, two hybrid models were created: ARIMA-RandomForest and

ARIMA-LSTM. The results concluded that ARIMA-RandomForest outperformed all the strategies,

while ARIMA-LSTM outperformed just the benchmark strategy.

LSTM-ARIMA was also considered in the approach to forecasting the wind speed by Bali et al.

(2020). A few wind parameters such as wind speed, temperature, pressure, etc were used as inputs

for LSTM. The authors compared the LSTM-ARIMA model with LSTM and the support vector

machine (SVM) using the RMSE. They concluded that the LSTM-ARIMA was the most accurate

model compared to LSTM and SVM.

Arnob et al. (2019) forecasted the Dhaka stock exchange (DSE), using the hybrid ARIMA-LSTM

approach. The aim was to forecast the correlation coefficient between the assets. They used fifteen

companies from DSE to forecast. Several ARIMA orders were chosen using the ACF and PACF

plots; however, the best order was chosen based on the lowest AIC. The data was divided into

three parts: train, test1, and test2, and the performance was measured using MSE and MAE. The

researchers concluded that ARIMA-LSTM performed better than the ARIMA model.

Karim et al. (2022) predicted the stock price of NIFTY-50 stock using a bidirectional LSTM and

GRU network hybrid model (Bi-LSTM-GRU). The hybrid model was compared with each model

being trained individually and the one with the highest precision was marked as the best. The

authors concluded that their proposed hybrid approach outperformed the models individually.

Oyewola et al. (2024) present an approach to stock price prediction within the oil and gas sector,

an industry with complex market dynamics and diverse external influences. The study introduces

three models: Deep Long Short-Term Memory Q-Learning (DLQL), Deep Long Short-Term Memory

Attention Q-Learning (DLAQL), and the state-of-the-art Long Short-Term Memory (LSTM) model.

Historical stock prices of CVE, MPLX LP, LNG, and SU are utilized for training and evaluation.
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The reinforcement learning technique employed is the Markov Decision Process (MDP) framework.

Results indicate that the DLAQL model outperforms all the others in decision-making capabilities,

risk management, and most importantly, the profitability, positioning it as a robust choice for stock

price prediction in the oil and gas sector.

To summarize, the ARIMA model has been extensively used for financial time series forecasting.

Studies show this model’s capabilities in predicting stock prices from various exchanges. The results

vary based on the statistical criteria chosen such as AIC and BIC. Other methods were also explored

such as Vector Autoregression (VAR) or Vector Error Correction Models (VECM) for stock price

modeling purposes. Furthermore, deep learning techniques such as the Long Short-Term Memory

model (LSTM), have gained traction for time series forecasting. LSTM is a model designed to

address issues like vanishing gradients in traditional Recurrent Neural Networks (RNN) and shows

superior performance when compared to ARIMA. Other deep learning techniques, including Support

Vector Machines (SVM) or Random Forest (RF), have also been investigated and demonstrated

improved predictive capabilities compared to traditional models like ARIMA.

Based on the summary provided, we propose that combining the two top-performing models,

namely ARIMA and LSTM, could help overcome the limitations of each model. ARIMA excels at

capturing short-term time series patterns, while LSTM is adept at modeling long-term dependencies.

By integrating these models, we anticipate outperforming their capabilities and potentially gaining

an edge in beating the market.

3. Data Description

We consider three equity indices in our research and the data is taken from Yahoo Finance using

their yfinance API for Python. Table 1 presents the descriptive statistics of the chosen assets. Please

note that the difference in the count value may arise due to the difference in the number of trading

days in a year in each country.

Table 1: Descriptive Statistics for the closing price series.

Count Mean Standard Deviation Min 25% 50% 75% Max

S&P 500 5953 1939 1027 677 1190 1449 2486 4797
FTSE 100 5975 6057 1050 3287 5332 6150 6867 8014
CAC 40 6049 4714 1118 2403 3798 4570 5476 7577

Note: The descriptive statistics for S&P 500, FTSE 100, and CAC 40 are calculated on the closing price in the period from
2000-01-03 for S&P 500 and CAC 40 and 2000-01-04 for FTSE 100 until 2023-08-31.
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Figure 1 presents the prices of tested assets and their volatilities. For the S&P 500 equity index,

we use the CBOE’s VIX as the measure of volatility and for the FTSE 100 and CAC 40 equity index

we use the annualized realized volatility with a historical window of 21 days, which is calculated

using the following formula:

annRV =

√∑N
i=21 R2

t

N
×

√
252 (1)

where:

Rt - the daily returns

t - the counter representing each trading day

N - the number of trading days in our time frame

Figure 1: Index Prices and their Volatilities.
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Note: Each plot on the left shows the behavior of the index based on their closing price and each plot on the right represents the
volatility for the corresponding index. Note that for S&P 500, CBOE’s VIX has been used as a measure of volatility, and for the
FTSE 100 and CAC 40, the realized volatility was used with a window of 21 trading days.
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4. Methodology

4.1. ARIMA

Autoregressive Integrated Moving Average model (ARIMA), is an econometric model used for

forecasting time series data based on some historical data. The model was introduced by George

Box and Gwilym Jenkins in 1976, and they initially used it to model changes in financial time series

data. The model consists of three parts: Autoregressive (AR), Integrated (I), and Moving Average

(MA), where each component has its order. Let’s denote p, an order for AR component, d, an order

for I component, and q, an order for MA component. Denoting this we can then write the model as

ARIMA(p,d,q). The respective orders determine the following properties of the model:

• p - the number of lagged observations

• d - the number of times the data was differenced

• q - the order of the MA process

In terms of stock forecasting, order d is usually set to 1 when we model the prices and 0 when we

model the returns as the data is already stationary, and then we have ARMA(p,q). Figure 2 presents

the difference between the non-stationary data set which is the closing prices and the stationary

data set which are the first differences of prices.

Figure 2: Non-stationary data set compared to stationary data set of S&P 500.
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Note: The plot on the left side shows an actual plot of S&P 500 closing price and the plot on the left side shows the differentiated
closing price.

Let’s now look at the formal side of an ARIMA model. ARIMA generally is an extension of the

ARMA model. The AR(p) can be denoted with the following equation:

AR(p) : yt = ϕ1yt−1 + ϕ2yt−2 + ... + ϕpyt−p + ϵt (2)
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where:

yt - the value of the time series at a time t

ϵt - the error term

ϕ - the coefficients that capture the relationship between the current observation and previous

observations at a lag of p

The autoregressive component is responsible for forecasting the chosen variable using the past value

of the variable automatically.

The AR(p) model can be written as:

AR(p) : (1 −
p∑

i=1
ϕiL

i)yt = c + ϵt (3)

The second component that is responsible for differencing can be denoted as I(d) and presented as:

I(d) : (1 − L)d = µ + ϵt (4)

The third component, moving average, looks as follows:

MA(q) : yt = µ + ϵt + θ1ϵt−1 + ... + θqϵt−q (5)

where:

µ - the mean of the given series

θ1...θq - the respective weights for each error term ϵt−1...ϵt−q.

This represents the moving average procedure with order q. Unlike AR(p), the MA(q) uses the

previous error terms for the regression. And using the lag operator, MA(q) may be denoted as:

MA(q) : yt = µ + (1 +
q∑

i=1
θiL

i)ϵt (6)

Using the two components explained previously, we can find the ARIMA(p,0,q) model which is also

known as ARMA(p,q) model. The equation of ARMA(p,q) looks as follows:

ARMA(p, q) : yt = ϕ1yt−1 + ϕ2yt− + ... + ϕpyt−p + ϵt − θ1ϵt−1 + ... − θqϵt−q (7)
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The final ARIMA(p,d,q) can be written as:

ARIMA(p, d, q) : (1 −
p∑

i=1
ϕiL

i)(1 − L)dyt = c + (1 +
q∑

i=1
θiL

i)ϵt (8)

where:

d - the number of times the series was differenced.

4.2. RNN

According to Turing (2023), a job platform, a recurrent neural network (RNN) is a variation of

artificial neural networks (ANN). RNN may be used to address various problems such as speech

recognition or image captioning. What differentiates RNN from ANN is that ANN just takes the

inputs and generates outputs; however, RNN learns from the previously generated outputs to provide

results for the next time stamp. Another advantage of RNN is that it has a memory cell that

continues the calculations and if the forecast is inaccurate the network auto-learns and executes

backpropagation to get the correct result. RNN is very effective for time series forecasting due to

its ability to recollect previous inputs. This is where the Long-Short-term memory (LSTM) model

comes in.

4.2.1. LSTM

LSTM is a special type of RNN. Its main character is the ability to handle long-term data

dependencies and push the outcome to the succeeding node more efficiently. It also addresses the

vanishing gradient problem, a known issue with RNN, which is tackled by disregarding nugatory

information using its forget gate. LSTM also deals well with long-term dependencies i.e. with

problems where the output is dependent on the historical inputs. LSTM consists of multiple gates,

each having an essential task to be done to have positive results.

Figure 3 presents LSTM which has four gates: input, output, forget, and change. For a sequence

in time xt − (x1, x2, ..., xn) the forget gate ft takes the xt and the hidden state ht−1 and produces

a binary output 0 and 1 through a sigmoid function and identifies which information should be

discarded from the memory cell ct−1. The value equal to 1 is forwarded to the cell with the value

equal to 0 and all the other information is forgotten. The input gate it identifies what to update

from the change gate ĉt and the output gate ot decides which information should be taken from

the current cell. From the sequence X, two sequences x and y are created, where x is the input

sequence and y is the next day closing price. Furthermore, it’s worth noting that the memory cell is
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responsible for long-term memory and it updates the input gate, forget gate and the change gate.

On the other hand, the hidden state is responsible for the short-term memory and is updated by the

output gate and the memory cell. The explanation above was influenced by Bhandari et al. (2022)

research on ‘Predicting stock market index using LSTM’.

Figure 3: The architecture of Long-Short-term memory.

Note: The architecture of LSTM, source: https://www.sciencedirect.com/science/article/pii/S2666827022000378.

The mathematical equations to the previously given terminologies look as follows:

it = σ(Wixt + Whiht−1 + bi) (9)

ft = σ(Wf xt + Whf ht−1 + bf ) (10)

ot = σ(Woxt + Whoht−1 + bo) (11)

ĉt = tanh(Wcxt + Whxht−1 + bc) (12)

ct = ft · ct−1 + it · ĉt (13)

ht = ot · tanh(ct) (14)

where:

W - weights

b - biases

xt - sequence of time t

ft - forget gate at time t
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ht−1 - hidden state at time t − 1

it - input gate at time t

ĉt - change gate at time t

ot - output gate at time t

4.3. LSTM-ARIMA

In this paper, we introduce a hybrid approach using the ARIMA and LSTM models collectively.

This model contains an LSTM input layer which is fed with the residuals of ARIMA predictions and

other inputs such as the closing price and the volatility. LSTM-ARIMA is a combination that helps

capture both the linear and non-linear properties of the data. Moreover, LSTM is known for its

outstanding capability to capture the long-term dependencies in time series data and ARIMA is

known for its outstanding capability to capture the short-term dependencies in time series data.

Additionally, ARIMA learns from data using statistical methods and LSTM learns by looking at the

pattern thanks to the neural networks. Considering all of the above strengths and weaknesses of

the models, we believe that collectively they may outperform the performance of both individually.

Generally, the process of using the LSTM-ARIMA approach for AIS in this paper can be summarized

in the following way:

1. Find the best-fitted ARIMA model using the set of orders based on the smallest Akaike

information criterion (AIC).

2. Get the residuals from ARIMA.

3. Perform feature engineering on LSTM, taking into consideration the residuals by ARIMA, the

closing price, and the realized volatility of the asset under consideration (in the case of the

S&P 500, take VIX).

4. Conduct a random search and choose the best set of hyperparameters based on the criteria

outlined in the subsequent sections.

5. Fit the best model and execute predictions for buy/sell signals generations.

6. Create the equity curve based on investment signals from the previous point and then compute

the performance metrics.

4.4. Walk Forward Optimization

Over-fitting is a big risk in machine learning algorithms, especially in financial time series

forecasting. Common cross-validation techniques like k-fold are not well suited for financial analysis

16



and adjusting the hyperparameters may result in over-fitting. Common cross-validation techniques

sometimes do not perform as well as intended. Therefore, to have a robust trading strategy it is

advised to use the walk-forward optimization (WFO) approach. Carta et al. (2021) stated that walk-

forward optimization is one of the most popular validation techniques used by financial researchers

to undergo decision-making for trading. There are two types of WFO: anchored, and non-anchored.

The difference lies that in anchored WFO each walk has a common beginning point; however, in the

non-anchored type each walk has a different starting point but the same length. In this research, we

considered the non-anchored type for training, validation, and testing as we believe its robustness is

higher than the anchored type. We set the in-sample (IS) window to 1250 trading days where the

training set is equal to 1000 trading and the validation set is equal to 250 trading days and we set

the out-of-sample (OOS) window to 250 trading days. This is visualized in Figure 4.

Figure 4: Walk forward optimization scheme with 5-years IS and 1-year OOS.

Note: The bars in green color represent the training data set, in yellow color represent the validation data set, in red color
represent the out-of-sample testing data set, and the bars in the dark-red color represent the total out-of-sample data. This plot
was designed by using the data for the S&P 500 equity index. However, it looks similar for the FTSE 100 and CAC 40 equity
indices. The training window is 1000 trading days, and validation and testing windows are 250 trading days each.
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4.5. Performance Metrics

To assess and evaluate the robustness of the trading strategies created in this paper, we calculated

the performance metrics based on Michańków et al. (2022) and Bui and Ślepaczuk (2021). The

details are presented:

Annualized Return Compounded (ARC), shows the rate of return that was annualized for the

given strategy during the period of (0, ..., T ). It is expressed in percentage.

ARC = (
N∏

t=1
(1 + Rt))

252
N − 1 × 100% (15)

where:

Rt - the percentage rate of return

N - the sample size

Rt is calculated in the following way:

Rt = Pt − Pt−1
Pt−1

(16)

where:

Pt - the price at point t

Annualized Standard Deviation (ASD) is a risk measure.

ASD =
√

252 ×

√√√√ 1
N − 1

N∑
t=1

(Rt − R̄)2 × 100% (17)

where:

Rt - the percentage rate of return

R̄ - the mean rate of return

N - the sample size

R̄ is calculated in the following way:

R̄ = 1
N

N∑
t=1

Rt (18)

Maximum Drawdown (MD) gives us the maximum percentage drawdown throughout the invest-
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ment and is calculated as follows:

MD(T ) = max
τ∈[0,T ]

( max
t∈[0,τ ]

(Ri,T − Ri,τ )) × 100% (19)

Maximum Loss Duration (MLD) tells us about “the number of years between the previous local

maximum to the forthcoming local maximum” (Michańków et al. (2022)) and is calculated as follows:

MLD = max(mj − mi

S
) (20)

Information Ration (IR∗) describes the risk-adjusted return metric based on the relation between

ARC to its ASD and is calculated as follows:

IR∗ = ARC

ASD
× 100% (21)

Modified Information Ratio (IR∗∗) is another more complex and comprehensive risk-adjusted

return metric which we regard as the most important metric for the evaluation of strategies in

this research and is calculated as follows:

IR∗∗ = IR∗ × ARC × sign(ARC)
MD

% (22)

4.6. Research Description

In this study, we use a random search for hyperparameter tuning conducted at each walk of

WFO. The steps of the research are presented below:

1. Select the asset and download the data for 1-day frequency using the yfinance Python API.

2. Perform data cleansing and prepare the data for feature engineering.

3. Create a code that supports the whole study including the sensitivity analysis.

4. Select the base model scenario for each model.

5. Run a random search and test the strategies.

6. Generate a prediction and take a position based on the criteria presented in the next section.

7. Create equity curves and calculate the performance metrics.

8. Conduct a sensitivity analysis.

9. Summarize the study with the best parameters.
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In Diagram 1, the steps can be visually represented to provide a clearer understanding.

Diagram 1: Research Description Flow Chart.

Note: The diagram presents the process of research done in this study.

4.7. Best Set of Hyperparameters Criteria

In our research, we employ random search as a method of hyperparameter tuning. During random

search, we select five models with the lowest validation loss. Then we calculate the IR2 on the

training data set and the validation data set and then calculate the absolute value of their difference.

The best model is the one with the lowest absolute value of the difference and where the IR2 for the

validation data set was NOT equal to zero.
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4.8. Strategy

During this research, we considered two kinds of strategies to be evaluated: Long-Only and

Long-Short. Long-Only is where we allow to open either a long position (1) or hold no position (0).

Long-Short is where we allow to open either a long position (1) or a short position (-1). The change

for a Long position in both strategies happens whenever the predicted price of t + 1 is higher than

the price at time t and we take a Short position or hold no position whenever the predicted price

of t + 1 is lower than the price at time t. Note that at this step we already have the prediction

generated and we use them to test the algorithm. Below we present the mathematical notation of

the Long-Only and Long-Short strategies:

Long − Only :


Signal = 1 if Pt+1 > Pt

Signal = 0 if Pt+1 < Pt

(23)

Long − Short :


Signal = 1 if Pt+1 > Pt

Signal = −1 if Pt+1 < Pt

(24)

where:

Pt+1 - the closing price at t + 1

Pt - the closing prices at t

4.9. Hyperparameter Tunning

In this section, we present to you the set of parameters that we use to employ random search.

Out of all combinations we conduct 20 trials on a randomly chosen set. We perform the experiments

in python 3.8.15 using the Tensorflow library. For ARIMA, the whole process from model training,

including all WFO walks, to generating the predictions for a single asset took us approximately 3

minutes, for LSTM approximately 3 hours, and for LSTM-ARIMA approximately 4 hours. Note

that for all models, the IS window is equal to 1250 trading days and the OOS window is equal to

250 trading days. By default, we have set the number of epochs to 100. However, using the Keras

EarlyStop function we optimize the number of epochs based on the validation loss while setting the

patience to 10 epochs.

4.9.1. ARIMA

The range of parameters that were selected keeping the other constant are:
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• AR degree (p): from 0 to 6

• Integrated degree (d): 1, as we perform model training on closing prices

• MA degree (p): from 0 to 6

The models are chosen based on the Akaike Information Criterion (AIC). The objective of AIC

is to find a balanced model that does not lose a lot of information and is also accurate. AIC also

penalizes the models with more beta parameters. Therefore, the model with the lowest AIC is

chosen. Based on Al-Gounmeein and Ismail (2020), AIC is calculated in the following way,

AIC = −2ln(l̂) + 2k (25)

where:

k - the number of the parameters to be estimated

l - the likelihood for the respective model

4.9.2. LSTM

The set of hyperparameters chosen to perform a random search, keeping the other constant, are

the following:

• Neurons: [25, 50, 75, 100, 250, 500]

• Number of hidden layers: [1, 2]

• Dropout rate: 0.075

• Optimizer: [Adam, Nadam, Adagrad]

• Learning rates: [0.01, 0.0001]

• Loss Function: Mean Square Error

• Batch size: 32

• Sequence Length: [7, 14, 21]

• Input Layer Activation Function: sigmoid

• Output Layer Activation Function: tanh

The following features were used to predict the closing price at time t + sequence_length:

• Closing price at time t

• Volatility at time t

• Trading volume at time t
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4.9.3. LSTM-ARIMA

The hyperparameters for the LSTM-ARIMA hybrid model are the same as those utilized for

the individual ARIMA and LSTM models. Random search serves as the search algorithm to tune

these hyperparameters. Initially, ARIMA generates predictions, which are subsequently incorporated

into the LSTM model. The input layer uses variables such as closing price, volatility t, trading

volume at time t, and residuals from the ARIMA model at time t to predict the closing price at

time t + sequence_length.

5. Empirical Results

5.1. Base case results

We evaluate the effectiveness of our investment algorithm using out-of-sample data. The S&P

500 equity index began trading on 2005-01-25, the FTSE 100 equity index on 2005-01-13, and the

CAC 40 equity index on 2004-12-28, with the trading period continuing until 2023-08-30. Our

primary performance evaluation metric is the Modified Information Ratio (IR∗∗), as outlined in

Eq. 20. This metric offers a comprehensive assessment, encompassing factors such as annualized

return compounded (ARC), return volatility (ASD), and the largest percentage loss experienced

by the asset from its peak value before reaching a new peak (MD). This approach allows us to not

only assess profitability but also the associated investment risk. For each equity index, we evaluate

three algorithms, namely ARIMA, LSTM, and LSTM-ARIMA, by comparing them both among

themselves and against the Buy&Hold strategy.

The intervals of the walk-forward optimization process are uniform for all equity indices since

they all involve daily frequency. The training period spans 1000 trading days, followed by 250 trading

days validation period and a subsequent 250 trading days testing period. Additionally, we consider

two strategies: Long-Only, where only long positions are allowed, and Long-Short, where both long

and short positions are permitted. The research flow is also detailed in section 4.6 for reference.
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Figure 5, presents the S&P 500 equity index equity curves of all the algorithms for both Long-Only

and Long-Short strategies respectively and Table 2 presents the performance metrics for S&P 500

equity index. Based on the evaluation of IR∗∗ metrics for both the Long-Only and Long-Short

strategies, it can be deduced that the LSTM-ARIMA algorithm outperformed the other algorithms.

Additionally, it is noteworthy that all algorithms demonstrated robust performance during the

economic downturn of 2008. Furthermore, a remarkable surge in performance is observed during

the COVID-19 period in the Long-Short strategy, especially when employing the LSTM-ARIMA

algorithm.

Figure 5: The Long-Only and Long-Short Strategy on S&P 500
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Note: S&P 500 is the Buy&Hold Strategy. The first plot presents the equity curve for the Long-Only strategy and the second
plot presents the equity curve for the Long-Short strategy. The trading starts from 2005-01-25. Each equity curve consists of
daily frequency data. The transaction costs are 0.1%.

Table 2: Performance metrics for S&P 500

ARC(%) ASD(%) MD(%) MLD IR*(%) IR**(%)

Long Only
S&P 500 7.52 19.58 56.78 1.65 38.43 5.09
ARIMA 1.89 14.45 46.73 8.45 13.07 0.53
LSTM 3.26 13.14 41.83 9.8 24.83 1.94
LSTM-ARIMA 4.32 11.14 28.95 1.67 38.79 5.79

Long Short
S&P 500 7.52 19.58 56.78 1.65 38.43 5.09
ARIMA 8.66 19.19 54.81 8.44 45.11 7.13
LSTM 6.71 19.59 59.44 13.16 34.27 3.87
LSTM-ARIMA 8.92 19.58 56.62 3.44 45.56 7.18

Note: S&P 500 represents the benchmark Buy&Hold Strategy. Trading starts from 2005-01-25. The transaction costs are 0.1%.
The best strategy is the one that holds the highest Modified Information Ratio (IR∗∗). Columns with the best corresponding
values are denoted in bold.
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Figure 6 presents the equity curve of FTSE 100 equity index and Table 3 presents the performance

metrics for FTSE 100 equity index. Based on the evaluation of IR∗∗ metrics for both the Long-Only

and Long-Short strategies, it can be deduced that the LSTM-ARIMA algorithm outperformed the

other algorithms for the FTSE 100 equity index. Both the Long-Only and Long-Short strategies,

when executed with the LSTM-ARIMA algorithm, display a substantial peak in performance after

the year 2020.

Figure 6: The Long-Only and Long-Short Strategy on FTSE 100
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Note: FTSE 100 represents the benchmark Buy&Hold Strategy. The first plot presents the equity curve for the Long-Only
strategy and the second plot presents the equity curve for the Long-Short strategy. The trading starts from 2005-01-13. Each
equity curve consists of daily frequency data. The transaction costs are 0.1%.

Table 3: Performance metrics for FTSE 100

ARC(%) ASD(%) MD(%) MLD IR*(%) IR**(%)

Long Only
FTSE 100 2.39 18.03 47.83 5.94 13.27 0.66
ARIMA -3.78 12.88 58.12 12.55 -29.38 -1.91
LSTM 2.68 14.32 34.93 3.61 18.75 1.44
LSTM-ARIMA 5.47 13.79 30.22 0.91 39.71 7.19

Long Short
FTSE 100 2.39 18.03 47.83 5.94 13.27 0.66
ARIMA 0.84 18.04 53.65 8.03 4.66 0.07
LSTM 2.28 18.03 42.92 11.3 12.67 0.67
LSTM-ARIMA 10.98 18.02 40.17 10.89 60.92 16.65

Note: FTSE 100 represents the benchmark Buy&Hold Strategy. Trading starts from 2005-01-13. The transaction costs are 0.1%.
The best strategy is the one that holds the highest Modified Information Ratio (IR∗∗). Columns with the best corresponding
values are denoted in bold.
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Figure 7 presents the equity curve of the CAC 40 equity index and Table 4 presents the performance

metrics for CAC 40 equity index. Based on the evaluation of IR∗∗ metrics for both the Long-Only

and Long-Short strategies, it can be deduced that the LSTM-ARIMA algorithm outperformed the

other algorithms for the CAC 40 equity index. Furthermore, we noticed that both Long-Only and

Long-Short strategies, when executed with the LSTM-ARIMA algorithm, achieved a high return

during the post-Covid time.

Figure 7: The Long-Only and Long-Short Strategy on CAC 40
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Note: CAC 40 represents the benchmark Buy&Hold Strategy. The first plot presents the equity curve for the Long-Only strategy
and the second plot presents the equity curve for the Long-Short strategy. The trading starts from 2004-12-28. Each equity curve
consists of daily frequency data. The transaction costs are 0.1%.

Table 4: Performance statistics for CAC 40

ARC(%) ASD(%) MD(%) MLD IR*(%) IR**(%)

Long Only
CAC 40 3.52 21.44 59.16 14.04 16.43 0.98
ARIMA -4.38 15.14 65.53 16.5 -28.9 -1.93
LSTM 3.12 16.1 42.35 5.38 19.4 1.43
LSTM-ARIMA 5.02 15.43 53.65 8.33 32.52 3.04

Long Short
CAC 40 3.52 21.44 59.16 14.04 16.43 0.98
ARIMA -1.81 21.43 72.02 14.95 -8.45 -0.21
LSTM 3.56 21.44 60.73 9.01 16.59 0.97
LSTM-ARIMA 11.06 21.43 39.91 2.91 51.6 14.29

Note: CAC 40 represents the benchmark Buy&Hold Strategy. Trading starts from 2004-12-28. The transaction costs are 0.1%.
The best strategy is the one that holds the highest Modified Information Ratio (IR∗∗). Columns with the best corresponding
values are denoted in bold.
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5.2. Statistical Significance

While LSTM-ARIMA outperformed all the other algorithms for both Long-Only and Long-Short

strategies, it would be premature to conclude that the expected values of these strategies’ returns

distributions surpass those of the benchmarks. Hence, it is prudent to subject them to statistical

inference testing to validate their efficacy. We test it using a t-test for paired samples (Devore and

Berk (2012)) with the following hypotheses:


H0 : µd = µstrategy − µbenchmark = 0

H1 : µd > 0
(26)

where:

µstrategy - the expected value of the strategy

µbenchmark - the expected value of the benchmark

µd - the difference between the expected values of the strategy and benchmark returns

Table 5: P-values for the paired t-test

S&P 500 FTSE 100 CAC 40

Long-Only
ARIMA 0.0362 0.0152 0.0086
LSTM 0.1248 0.8964 0.6696
LSTM-ARIMA 0.2420 0.3911 0.9249

Long-Short
ARIMA 0.8730 0.7902 0.4455
LSTM 0.9046 0.9784 0.9961
LSTM-ARIMA 0.8569 0.1709 0.3310

Note: The table presents the p-values of the paired t-test. The significance level is set at 10%. P-values less than 0.1 are in
bold. Each strategy has been compared with the benchmark Buy&Hold strategy. S&P 500, FTSE 100, and CAC 40 represent the
benchmark Buy&Hold Strategy.

Our significance level is set at 10%. If the p-value is lower than 0.1, we reject the null hypotheses;

otherwise, we have no grounds to reject it. Based on the p-values provided in Table 5, we infer

that the only statistically significant results we attain are observed for the ARIMA model with

the Long-Only strategy for all equity indices. In all other scenarios, our findings lack statistical

significance. Nonetheless, we opt to conduct an additional test. We formulate a linear regression

model as described in eq. 27 and subsequently carry out a right-sided t-test (Wooldridge (2015)) to

assess the significance of the intercept, as shown in eq. 28.
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Rstrategy = α + β × rbenchmark + ϵt (27)
H0 : α = 0

H1 : α > 0
(28)

Table 6: Simple Linear Regression results

α SE(α) tα pα α SE(α) tβ pβ

Long-Only
S&P 500

ARIMA -0.0001 0.0001 -0.9864 0.8380 0.5547 0.0071 77.9073 0.0000
LSTM 0.0000 0.0001 -0.0504 0.5201 0.4554 0.0072 63.1896 0.0000
LSTM-ARIMA 0.0001 0.0001 0.8697 0.1923 0.3274 0.0068 48.1206 0.0000

FTSE 100
ARIMA -0.0002 0.0001 -2.4608 0.9930 0.5146 0.0072 71.2718 0.0000
LSTM 0.0000 0.0001 0.5702 0.2843 0.6344 0.0070 91.1631 0.0000
LSTM-ARIMA 0.0002 0.0001 1.9299 0.0268 0.5894 0.0071 83.0157 0.0000

CAC 40
ARIMA -0.0002 0.0001 -2.5518 0.9946 0.5033 0.0072 70.1771 0.0000
LSTM 0.0000 0.0001 0.4595 0.3230 0.5647 0.0072 78.8092 0.0000
LSTM-ARIMA 0.0001 0.0001 1.2578 0.1043 0.5189 0.0072 71.8728 0.0000

Long-Short
S&P 500

ARIMA 0.0004 0.0002 2.0281 0.0213 0.1292 0.0142 9.0957 0.0000
LSTM 0.0004 0.0002 2.0726 0.0191 -0.1069 0.0145 -7.3498 1.0000
LSTM-ARIMA 0.0005 0.0002 2.6172 0.0044 -0.1448 0.0145 -10.0100 1.0000

FTSE 100
ARIMA 0.0001 0.0002 0.5591 0.2881 0.0301 0.0146 2.0670 0.0194
LSTM 0.0001 0.0002 0.6003 0.2742 0.3932 0.0134 29.3379 0.0000
LSTM-ARIMA 0.0005 0.0002 2.8736 0.0020 0.0115 0.0146 0.7874 0.2155

CAC 40
ARIMA 0.0000 0.0002 0.0855 0.4659 0.0079 0.0145 0.5432 0.2935
LSTM 0.0003 0.0002 1.3807 0.0837 -0.1596 0.0143 -11.1765 1.0000
LSTM-ARIMA 0.0005 0.0002 2.6859 0.0036 -0.0728 0.0144 -5.0480 1.0000

Note: The table presents the results of the linear regression as mentioned in eq. 28. The significance level is set at 10%.
P-values less than 0.1 are in bold. Each strategy has been compared with the benchmark Buy&Hold strategy. S&P 500, FTSE
100, and CAC 40 represent the benchmark Buy&Hold Strategy.

The findings from Table 6 details the outcomes of the simple linear regression analysis we

conducted.} Based on pα, statistically significant algorithms were observed at a significance level

of 10%. Specifically, for the Long-Only strategy, LSTM-ARIMA for the FTSE 100 equity index

exhibited statistical significance. Regarding the Long-Short strategy, all algorithms demonstrated

statistical significance for the S&P 500 equity index. For the FTSE 100 equity index, only LSTM-

ARIMA demonstrated statistical significance. Finally, in the case of the CAC 40 equity index, both

LSTM and LSTM-ARIMA exhibited statistical significance.
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5.3. Summary

Based on the results presented in Table 2, we see that our novel LSTM-ARIMA algorithm

outperformed all the other algorithms for both Long-Only and Long-Short strategies and all the

equity indices. In the case of the S&P 500 equity index, the Long-Only strategy for LSTM-

ARIMA algorithm obtained a modified information ratio (IR∗∗) of 5.79% and the Long-Short

strategy for LSTM-ARIMA algorithm of 7.18%. In the case of the FTSE 100 equity index,

the Long-Only strategy for LSTM-ARIMA algorithm obtained an IR∗∗ of 7.19% and the

Long-Short strategy for LSTM-ARIMA algorithm of 16.65%. Finally, in the case of the

CAC 40 equity index, the Long-Only strategy for LSTM-ARIMA algorithm obtained an

IR∗∗ of 3.04% and the Long-Short strategy for LSTM-ARIMA algorithm of 14.29%.

Furthermore, based on the results from the previous section, the paired t-test (Table 5) showed

that only statistically significant results were observed for the ARIMA model with the Long-Only

strategy for all the equity indices. However, summarizing the outcomes of the simple linear regression

analysis (Table 6), it becomes evident that the intercept of the LSTM-ARIMA algorithm with the

Long-Short strategy returns, significantly exceeded 0 when regressed against the returns from the

Buy&Hold strategy.
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6. Sensitivity Analysis

This section is specifically focused on addressing the third research question (RQ3 ). Its primary

objective is to investigate how changes in specific parameters and hyperparameters influence the

output. Through this assessment, we can evaluate the stability and reliability of our investment

algorithm. In the case of the ARIMA model, we alter the following parameters:

• The range of ARIMA model order: (p, d, q) = (0-3, 1, 0-3)

• The information criterion: Bayesian Information Criterion (BIC)

The following parameters are altered for LSTM and LSTM-ARIMA:

• the Dropout Rate: 0.05, 0.1

• the batch size: 16, 64

During the sensitivity analysis, only the parameters mentioned are changed and everything else is

kept as they were. We continue to use the modified information ratio (IR∗∗) as the main evaluation

metric. Additionally, this section is divided into three subsections by our algorithms.

6.1. ARIMA

Figure 8 and Table 7 present the sensitivity analysis results for S&P 500, FTSE 100, and CAC

40 equity indices. In the case of the S&P 500 equity index, based on the IR∗∗ metrics, the base

case outperforms all the other changes in parameters for the Long-Only strategy. However, under

the Long-Short strategy, we notice enhancements in the results when employing the Bayesian

Information Criterion (BIC) as the information criterion. In the case of the FTSE 100 equity index,

the performance of the ARIMA model appears to be poor. Albeit, for the Long-Short strategy,

improvements were seen when narrowing the range of the orders. The model’s performance benefited

from this adjustment, possibly suggesting that high-order configurations may have been predisposed

to overfitting. In the case of the CAC 40 equity index, the changes in the parameters do not yield

improved results. The Buy&Hold still outperforms the ARIMA model.

In summary, the results of the ARIMA model used in our algorithmic investment strategy exhibit

robustness to changes in the information criterion and the order range setting of the model.

30



Figure 8: ARIMA Sensitivity Analysis
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Note: The figure presents the equity curves for the sensitivity analysis performed on the ARIMA model. S&P 500, FTSE 100,
and CAC 40 represent the benchmark Buy&Hold strategy for each index respectively. The base case scenario utilizes the order
range (p,d,q)=0-6, 1, 0-6 and akaike information criterion (AIC). S&P 500 index trading starts on 2005-01-25, FTSE 100
equity index trading starts on 2005-01-13, and CAC 40 equity index trading starts on 2004-12-28. Each equity curve consists of
daily frequency data. The transaction costs are 0.1%. The best values are in bold and are bolded with respect to the base case
scenario.
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Table 7: ARIMA Sensitivity Analysis performance metrics

ARC(%) ASD(%) MD(%) MLD IR*(%) IR**(%)
S&P 500 7.52 19.58 56.78 1.65 38.43 5.09

Long Only Base Case 4.32 11.14 28.95 1.67 38.79 5.79
Order Range = {0-3,1,0-3} 2.47 14.45 46.73 8.45 17.11 0.91
Information Criterion = BIC 2.21 14.35 46.73 8.45 15.41 0.73

Long Short Base Case 8.92 19.58 56.62 3.44 45.56 7.18
Order Range = {0-3,1,0-3} 9.15 19.57 56.24 8.44 46.79 7.62
Information Criterion = BIC 9.52 19.57 58.85 14.18 48.62 7.86

FTSE 100 2.39 18.03 47.83 5.94 13.27 0.66

Long Only Base Case -3.78 12.88 58.12 12.55 -29.38 -1.91
Order Range = {0-3,1,0-3} -3.06 12.9 57.55 12.55 -23.71 -1.26
Information Criterion = BIC -3.02 12.9 57.55 12.55 -23.4 -1.23

Long Short Base Case 0.84 18.04 53.65 8.03 4.66 0.07
Order Range = {0-3,1,0-3} 2.46 18.04 53.65 8.03 13.66 0.63
Information Criterion = BIC 2.37 18.04 53.65 8.03 13.15 0.58

CAC 40 3.52 21.44 59.16 14.04 16.43 0.98

Long Only Base Case -4.38 15.14 65.53 16.5 -28.9 -1.93
Order Range = {0-3,1,0-3} -5.62 15.1 73.12 16.5 -37.24 -2.86
Information Criterion = BIC -4.95 15.07 69.27 16.5 -32.86 -2.35

Long Short Base Case -1.81 21.43 72.02 14.95 -8.45 -0.21
Order Range = {0-3,1,0-3} -4.35 21.43 82.97 14.95 -20.28 -1.06
Information Criterion = BIC -2.97 21.43 77.67 14.95 -13.86 -0.53

Note: The table shows the performance metrics for the sensitivity analysis performed on the ARIMA model. S&P 500, FTSE
100, and CAC 40 represent the benchmark Buy&Hold strategy for each index respectively. S&P 500 index trading starts on
2005-01-25, FTSE 100 equity index trading starts on 2005-01-13, and CAC 40 equity index trading starts on 2004-12-28. In the
base case scenario, the Dropout rate is set to 0.075 and the Batch Size is set to 32. The transaction costs are 0.1%. The best
values are in bold and are bolded with respect to the base case scenario.
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6.2. LSTM

Figure 9 and Table 8 present the results of a sensitivity analysis conducted on the S&P 500,

FTSE 100, and CAC 40 equity indices using the LSTM model. In the case of the S&P 500 equity

index (presented in Panel A and Panel C), it is observed that an increase in the dropout rate results

in a higher modified information ratio (IR∗∗) for both the Long-Only and the Long-Short strategy.

Additionally, as indicated in Panel B and Panel D, it is inferred that a smaller batch size yields

a higher IR∗∗ for the Long-Only strategy, whereas for the Long-Short strategy smaller batch size

made it significantly worse.

In the case of the FTSE 100 equity index, indicated in Panel E and Panel G, it is evident that

smaller dropout rates yield better results in the case of the Long-Only strategy, while higher dropout

rates are more effective for the Long-Short strategy. Furthermore, as indicated in Panel F and Panel

H, it is apparent that the Long-Short strategy exhibits higher IR∗∗ when using a smaller batch size,

while the Long-Only strategy achieves optimal performance when utilizing the base case scenario.

The results for the CAC 40 equity index, presented in Panel I and Panel K, indicate that a

smaller dropout rate leads to a higher IR∗∗ for the Long-Only strategy. However, this trend is

not observed for the Long-Short strategy, as the base case scenario continues to deliver the best

results. Furthermore, based on the observations in Panel J and Panel L, it is noticed that a higher

batch size results in higher annualized returns compounded (ARC) for both the Long-Only and the

Long-Short strategies. However, when considering the IR∗∗ metric, the improvement is only evident

in the Long-Short strategy, whereas the Long-Only strategy achieves a higher IR∗∗ with a smaller

batch size.
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Figure 9: LSTM Sensitivity Analysis for S&P 500
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Note: The figure presents the equity curves for the sensitivity analysis performed on the LSTM model. S&P 500, FTSE 100, and
CAC 40 represent the benchmark Buy&Hold strategy for each index respectively. S&P 500 index trading starts on 2005-01-25,
FTSE 100 equity index trading starts on 2005-01-13, and CAC 40 equity index trading starts on 2004-12-28. Each equity curve
consists of daily frequency data. The transaction costs are 0.1%. The best values are in bold and are bolded with respect to the
base case scenario.
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Table 8: LSTM Sensitivity Analysis performance metrics

ARC(%) ASD(%) MD(%) MLD IR*(%) IR**(%)
S&P 500 7.52 19.58 56.78 1.65 38.43 5.09

Long Only Base Case (Dropout = 0.075) 3.26 13.14 41.83 9.8 24.83 1.94
Panel A: Dropout Rate Dropout = 0.05 0.79 12.68 39.43 4.94 6.24 0.13

Dropout = 0.1 2.87 11.4 33.93 4.86 25.2 2.13

Panel B: Batch Size Base Case (Batch Size = 32) 3.26 13.14 41.83 9.8 24.83 1.94
Batch Size = 16 5.37 10.45 24.07 3.96 51.37 11.46
Batch Size = 64 2.42 10.94 38.72 11.77 22.14 1.39

Long Short Base Case (Dropout = 0.075) 6.71 19.59 59.44 13.16 34.27 3.87
Panel C: Dropout Rate Dropout = 0.05 5.42 19.59 70.44 6.8 27.66 2.13

Dropout = 0.1 12.0 19.59 47.23 3.4 61.26 15.57

Panel D: Batch Size Base Case (Batch Size = 32) 6.71 19.59 59.44 13.16 34.27 3.87
Batch Size = 16 0.72 19.59 65.51 9.57 3.67 0.04
Batch Size = 64 2.26 19.58 53.48 8.23 11.55 0.49

FTSE 100 2.39 18.03 47.83 5.94 13.27 0.66

Long Only Base Case (Dropout = 0.075) 2.68 14.32 34.93 3.61 18.75 1.44
Panel E: Dropout Rate Dropout = 0.05 2.85 13.1 27.53 2.45 21.78 2.26

Dropout = 0.1 2.78 11.99 30.44 4.77 23.17 2.12

Panel F: Batch Size Base Case (Batch Size = 32) 2.68 14.32 34.93 3.61 18.75 1.44
Batch Size = 16 2.03 13.84 37.95 5.86 14.66 0.78
Batch Size = 64 -0.59 14.09 58.72 15.68 -4.2 -0.04

Long Short Base Case (Dropout = 0.075) 2.28 18.03 42.92 11.3 12.67 0.67
Panel G: Dropout Rate Dropout = 0.05 4.96 18.03 63.39 13.7 27.49 2.15

Dropout = 0.1 5.96 18.05 44.81 6.09 33.0 4.39

Panel H: Batch Size Base Case (Batch Size = 32) 2.28 18.03 42.92 11.3 12.67 0.67
Batch Size = 16 6.53 18.03 43.77 10.2 36.23 5.4
Batch Size = 64 2.28 18.04 63.08 14.69 12.63 0.46

CAC 40 3.52 21.44 59.16 14.04 16.43 0.98

Long Only Base Case (Dropout = 0.075) 3.12 16.1 42.35 5.38 19.4 1.43
Panel I: Dropout Rate Dropout = 0.05 5.62 16.79 34.96 5.52 33.48 5.38

Dropout = 0.1 2.71 14.56 42.18 8.49 18.62 1.2

Panel J: Batch Size Base Case (Batch Size = 32) 3.12 16.1 42.35 5.38 19.4 1.43
Batch Size = 16 3.22 13.91 33.09 4.06 23.13 2.25
Batch Size = 64 3.69 16.98 40.42 3.6 21.74 1.99

Long Short Base Case (Dropout = 0.075) 3.56 21.44 60.73 9.01 16.59 0.97
Panel K: Dropout Rate Dropout = 0.05 -1.34 21.43 65.66 8.49 -6.26 -0.13

Dropout = 0.1 1.75 21.44 66.37 8.49 8.16 0.22

Panel L: Batch Size Base Case (Batch Size = 32) 3.56 21.44 60.73 9.01 16.59 0.97
Batch Size = 16 -1.5 21.46 55.1 12.72 -7.0 -0.19
Batch Size = 64 3.82 21.43 47.78 3.35 17.85 1.43

Note: The table shows the performance metrics for the sensitivity analysis performed on the LSTM model. S&P 500, FTSE
100, and CAC 40 represent the benchmark Buy&Hold strategy for each index respectively. S&P 500 index trading starts on
2005-01-25, FTSE 100 equity index trading starts on 2005-01-13, and CAC 40 equity index trading starts on 2004-12-28. In the
base case scenario, the Dropout rate is set to 0.075 and the Batch Size is set to 32. The transaction costs are 0.1%. The best
values are in bold and are bolded with respect to the base case scenario.
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6.3. LSTM-ARIMA

Figure 10 and Table 9 present the results of a sensitivity analysis conducted on the S&P 500,

FTSE 100, and CAC 40 equity indices using the LSTM-ARIMA model. The results reveal that the

highest values of the modified information ratio (IR∗∗) are achieved in the base case scenario for the

FTSE 100 and CAC 40 equity indices, as depicted in Panel E to Panel L.

However, in the case of the S&P 500 equity index, a higher IR∗∗ metric is attained for the

Long-Only strategy when the dropout rate is decreased (Panel A) and when the batch size is reduced

(Panel B). In contrast, for the Long-Short strategy, the base case scenario proves to be the most

effective in terms of the IR∗∗ metric.
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Figure 10: LSTM-ARIMA Sensitivity Analysis for S&P 500
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Note: The figure presents the equity curves for the sensitivity analysis performed on the LSTM-ARIMA model. S&P 500,
FTSE 100, and CAC 40 represent the benchmark Buy&Hold strategy for each index respectively. S&P 500 index trading starts
on 2005-01-25, FTSE 100 equity index trading starts on 2005-01-13, and CAC 40 equity index trading starts on 2004-12-28.
Each equity curve consists of daily frequency data. The transaction costs are 0.1%.

37



Table 9: LSTM-ARIMA Sensitivity Analysis performance metrics

ARC(%) ASD(%) MD(%) MLD IR*(%) IR**(%)
S&P 500 7.52 19.58 56.78 1.65 38.43 5.09

Long Only Base Case (Dropout = 0.075) 4.32 11.14 28.95 1.67 38.79 5.79
Panel A: Dropout Rate Dropout = 0.05 6.88 13.7 26.63 3.92 50.25 12.99

Dropout = 0.1 4.72 13.5 37.99 3.66 34.99 4.35

Panel B: Batch Size Base Case (Batch Size = 32) 4.32 11.14 28.95 1.67 38.79 5.79
Batch Size = 16 5.53 12.03 27.83 1.54 45.92 9.11
Batch Size = 64 1.19 14.44 52.99 7.54 8.23 0.18

Long Short Base Case (Dropout = 0.075) 8.92 19.58 56.62 3.44 45.56 7.18
Panel C: Dropout Rate Dropout = 0.05 2.63 19.6 71.5 6.8 13.4 0.49

Dropout = 0.1 -2.5 19.6 72.1 10.17 -12.73 -0.44

Panel D: Batch Size Base Case (Batch Size = 32) 8.92 19.58 56.62 3.44 45.56 7.18
Batch Size = 16 -6.58 19.58 79.19 15.19 -33.62 -2.79
Batch Size = 64 3.35 19.59 63.83 12.32 17.12 0.9

FTSE 100 2.39 18.03 47.83 5.94 13.27 0.66

Long Only Base Case (Dropout = 0.075) 5.47 13.79 30.22 0.91 39.71 7.19
Panel E: Dropout Rate Dropout = 0.05 2.66 13.36 34.18 9.02 19.9 1.55

Dropout = 0.1 2.85 10.94 31.62 8.88 26.1 2.35

Panel F: Batch Size Base Case (Batch Size = 32) 5.47 13.79 30.22 0.91 39.71 7.19
Batch Size = 16 2.88 13.63 36.25 0.73 21.15 1.68
Batch Size = 64 0.44 14.25 46.13 13.54 3.07 0.03

Long Short Base Case (Dropout = 0.075) 10.98 18.02 40.17 10.89 60.92 16.65
Panel G: Dropout Rate Dropout = 0.05 4.91 18.02 44.39 7.59 27.24 3.01

Dropout = 0.1 3.61 18.03 51.81 7.56 20.03 1.4

Panel H: Batch Size Base Case (Batch Size = 32) 10.98 18.02 40.17 10.89 60.92 16.65
Batch Size = 16 -0.63 18.03 60.17 14.14 -3.49 -0.04
Batch Size = 64 3.98 18.04 44.77 13.2 22.08 1.96

CAC 40 3.52 21.44 59.16 14.04 16.43 0.98

Long Only Base Case (Dropout = 0.075) 5.02 15.43 53.65 8.33 32.52 3.04
Panel I: Dropout Rate Dropout = 0.05 2.55 15.34 33.09 4.24 16.61 1.28

Dropout = 0.1 0.21 16.86 51.01 7.47 1.23 0.01

Panel J: Batch Size Base Case (Batch Size = 32) 5.02 15.43 53.65 8.33 32.52 3.04
Batch Size = 16 -0.61 17.15 56.9 15.95 -3.53 -0.04
Batch Size = 64 -0.95 15.78 45.06 16.98 -6.05 -0.13

Long Short Base Case (Dropout = 0.075) 11.06 21.43 39.91 2.91 51.6 14.29
Panel K: Dropout Rate Dropout = 0.05 8.64 21.44 32.86 3.09 40.31 10.6

Dropout = 0.1 5.7 21.44 39.43 7.27 26.57 3.84

Panel L: Batch Size Base Case (Batch Size = 32) 11.06 21.43 39.91 2.91 51.6 14.29
Batch Size = 16 2.4 21.46 48.23 9.01 11.19 0.56
Batch Size = 64 -0.89 21.44 65.76 12.72 -4.15 -0.06

Note: The table shows the performance metrics for the sensitivity analysis performed on the LSTM-ARIMA model. S&P 500,
FTSE 100, and CAC 40 represent the benchmark Buy&Hold strategy for each index respectively. S&P 500 index trading starts
on 2005-01-25, FTSE 100 equity index trading starts on 2005-01-13, and CAC 40 equity index trading starts on 2004-12-28. In
the base case scenario, the Dropout rate is set to 0.075 and the Batch Size is set to 32. The transaction costs are 0.1%. The
best values are in bold and are bolded with respect to the base case scenario.
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7. Ensembled AIS

We create an ensemble AIS to diversify the results of our investment algorithms among all the

financial instruments. The idea is that we invest 1 dollar in each financial instrument and then test

the Long-Only and Long-Short strategy. We assume that the instruments are perfectly divisible and

that we assign a weight of 1
3 to each equity index. The trading in this case starts on 2005-01-25

and goes until 2023-08-30. Figure 11 and Table 10 present the results for our ensemble AIS. When

we aggregate all the equity indices, there is a notable improvement in our results. We achieve a

significantly enhanced risk-adjusted return (IR∗∗). The LSTM-ARIMA model combined with the

Long-Short strategy outperforms all other approaches, yielding an impressive IR∗∗ of 70.54%.

Figure 11: The Long-Only and Long-Short Strategy of our ensemble AIS
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Note: The equity curves are a weighted average of the equity curves of all the equity indices. The weight is equal to 1/3. The
first plot presents the equity curve for the Long-Only strategy and the second plot presents the equity curve for the Long-Short
strategy. The trading lasts from 2005-01-25 until 2023-08-30. Each equity curve consists of daily frequency data. The transaction
costs are 0.1%.
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Table 10: Performance metrics for ensemble AIS

ARC(%) ASD(%) MD(%) MLD IR*(%) IR**(%)
Long Only

S&P 500 3.92 17.43 51.87 7.7 22.48 1.7
ARIMA -2.09 10.93 47.24 12.47 -19.09 -0.84
LSTM 3.21 11.61 27.14 4.0 27.65 3.27
LSTM-ARIMA 5.12 10.43 26.06 0.42 49.08 9.64

Long Short
S&P 500 3.92 17.43 51.87 7.7 22.48 1.7
ARIMA 3.51 12.7 36.79 8.02 27.68 2.64
LSTM 6.0 12.53 39.57 8.86 47.85 7.25
LSTM-ARIMA 11.82 11.96 16.57 1.87 98.86 70.54

Note: The trading lasts from 2005-01-25 until 2023-08-30. The transaction costs are 0.1%. The best strategy is the one that
holds the highest Modified Information Ratio (IR∗∗). Columns with the best corresponding values are denoted in bold.

8. Conclusion

This study aimed to create a strategy using LSTM-ARIMA that performs better than the

individual algorithms. To assess the performance of tested approaches, we created three algorithmic

investment strategies based on ARIMA, LSTM, and LSTM-ARIMA models. We conducted hyper-

parameter tuning using a random search. The walk-forward optimization was applied to perform

the model training and backtesting. The best model was chosen based on the conditions presented

in section 4.7. Next, we generated buy/sell signals using the condition explained in Section 4.8. The

algorithmic investment strategy was tested on three different equity indices: S&P 500, FTSE 100,

and CAC 40 on daily frequency data between the period of January 2000 and August 2023. The

algorithm predicted the next day’s closing price based on the historical data and was classified as a

regression problem.

According to our initial hypotheses, the LSTM-ARIMA model was expected to outperform other

algorithms in the majority of cases. The LSTM-ARIMA model indeed outperformed all the other

algorithms in all the cases, the summary can be read in section 5.2 where it is outlined which

strategy performed the best based on the IR∗∗ metric. Therefore, we conclude that we have no

grounds to reject our hypotheses. The answers to the research questions stated in the Introduction

are presented below:
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RQ1. Are the investment algorithms robust to changes in the asset?

Our hybrid model outperforms all the other models across all equity indices, though with

varying performance metrics. The varying performance metrics across different assets

indicate that our algorithms are not robust to changes in the asset. This suggests that

the algorithms’ performance is sensitive to the specific characteristics and dynamics of

each asset, requiring further modifications or adaptations to improve their effectiveness

across different assets.

RQ2. Does LSTM-ARIMA perform better than the models individually?

Based on the findings presented in Section 5.1 and the performance metrics provided in

Tables 2, 3, and 4, it can be concluded that LSTM-ARIMA outperforms the other models

examined.

RQ3. Are the algorithmic investment strategies robust to changes in the

model hyperparameters?

In section 6, it becomes apparent that modifications to the hyperparameters have an

impact on the results, indicating a lack of robustness. This implies that the model’s

performance is sensitive to the specific choices made for hyperparameter settings.

RQ4. Does the Long-Only or Long-Short strategy outperform the Buy&Hold?

Based on the analysis presented in Section 5.1 and the data provided in Tables 2, 3,

and 4, several findings can be observed. In the case of the S&P 500 equity index, it has

been observed that both the Long-Only and Long-Short strategies implemented with the

LSTM-ARIMA model, along with the Long-Short strategy implemented with the ARIMA

model outperform the Buy&Hold strategy. In the case of the FTSE 100 equity index, the

Long-Only and Long-Short strategies implemented with the LSTM-ARIMA and LSTM

model outperform the Buy&Hold strategy. In the case of the CAC 40 equity index, it has

been noticed that both the Long-Only and Long-Short strategies implemented with the

LSTM-ARIMA model, along with the Long-Only strategy implemented with the LSTM

model outperform the Buy&Hold strategy.

This study has made a valuable contribution to the existing literature by introducing a hybrid

approach that combines modern forecasting models, such as LSTM and ARIMA, for algorithmic

investment strategies. Previous research has explored this hybrid approach in various domains.

For instance, Bali et al. (2020) utilized LSTM-ARIMA to forecast wind speed, Fan et al. (2021)

optimized the hybrid model for well production forecasting, Dave et al. (2021) employed it to
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forecast exports in Indonesia, and Arnob et al. (2019) used the hybrid approach for forecasting the

Dhaka stock exchange (DSE). However, our study stands out by applying this model specifically to

algorithmic investment strategies, a relatively uncommon application for this hybrid approach.

In the base case scenario outlined in Section 5, our hybrid approach outperformed all the models,

aligning with our expectations. However, through the course of our sensitivity analysis, it became

apparent that there is room for further enhancements by adjusting the dropout rate and the batch

size.

There are several potential directions to expand upon this research. Firstly, it would be valuable

to investigate whether utilizing returns as inputs instead of the closing price impacts the outcomes.

Secondly, the sensitivity analysis revealed noteworthy improvements in the results by reducing the

dropout rate and the batch size S&P 500 equity index Long-Only strategy. Therefore, conducting a

more comprehensive sensitivity analysis by examining a broader range of dropout rates and sizes

would be beneficial. Thirdly, it is worth evaluating the changes in results when considering a binary

cross-entropy problem. Finally, it is important to explore the use of a specific threshold that indicates

when to change the position in both the Long-Only and Long-Short strategies.
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