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LLM Post-Training: A Deep Dive into Reasoning
Large Language Models

Komal Kumar∗, Tajamul Ashraf∗, Omkar Thawakar, Rao Muhammad Anwer, Hisham Cholakkal,
Mubarak Shah, Ming-Hsuan Yang, Phillip H.S. Torr, Fahad Shahbaz Khan, Salman Khan

Abstract—Large Language Models (LLMs) have transformed the natural language processing landscape and brought to life diverse
applications. Pretraining on vast web-scale data has laid the foundation for these models, yet the research community is now
increasingly shifting focus toward post-training techniques to achieve further breakthroughs. While pretraining provides a broad
linguistic foundation, post-training methods enable LLMs to refine their knowledge, improve reasoning, enhance factual accuracy, and
align more effectively with user intents and ethical considerations. Fine-tuning, reinforcement learning, and test-time scaling have
emerged as critical strategies for optimizing LLMs performance, ensuring robustness, and improving adaptability across various
real-world tasks. This survey provides a systematic exploration of post-training methodologies, analyzing their role in refining LLMs
beyond pretraining, addressing key challenges such as catastrophic forgetting, reward hacking, and inference-time trade-offs. We
highlight emerging directions in model alignment, scalable adaptation, and inference-time reasoning, and outline future research
directions. We also provide a public repository to continually track developments in this fast-evolving field:
https://github.com/mbzuai-oryx/Awesome-LLM-Post-training.

Index Terms—Reasoning Models, Large Language Models, Reinforcement Learning, Reward Modeling, Test-time Scaling
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1 Introduction

Contemporary Large Language Models (LLMs) exhibit
remarkable capabilities across a vast spectrum of tasks,

encompassing not only text generation [1, 2, 3] and question-
answering [4, 5, 6, 7], but also sophisticated multi-step reason-
ing [8, 9, 10, 11]. They power applications in natural language
understanding [12, 13, 14, 15, 16, 17], content generation [18,
19, 20, 21, 22, 23, 24, 25], automated reasoning [26, 27, 28, 29],
and multimodal interactions [30, 31? , 33]. By leveraging vast
self-supervised training corpora, these models often approxi-
mate human-like cognition [34, 35, 36, 37, 38], demonstrating
impressive adaptability in real-world settings.

Despite these impressive achievements, LLMs remain prone
to critical shortcomings. They can generate misleading or
factually incorrect content (commonly referred to as “hal-
lucinations”) and may struggle to maintain logical consis-
tency throughout extended discourse [41, 42, 43, 44, 45, 46].
Moreover, the concept of reasoning in LLMs remains a topic
of debate. While these models can produce responses that
appear logically coherent, their reasoning is fundamentally
distinct from human-like logical inference [47, 34, 48, 49].
This distinction is crucial, as it helps explain why LLMs can
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Fig. 1: A taxonomy of post-training approaches for LLMs
(LLMs), categorized into Fine-tuning, Reinforcement Learn-
ing, and Test-time Scaling methods. We summarize the key
techniques used in recent LLM models, such as GPT-4 [39],
LLaMA 3.3 [13], and Deepseek R1 [40].

produce compelling outputs while still stumbling on relatively
simple logical tasks. Unlike symbolic reasoning that manipu-
lates explicit rules and facts, LLMs operate in an implicit and
probabilistic manner [50, 42, 51]. For the scope of this work,
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‘reasoning’ in LLMs refers to their ability to generate logically
coherent responses based on statistical patterns in data rather
than explicit logical inference or symbolic manipulation. Ad-
ditionally, models trained purely via next-token prediction
can fail to align with user expectations or ethical standards,
especially in ambiguous or malicious scenarios [4, 52]. These
issues underscore the need for specialized strategies that ad-
dress reliability, bias, and context sensitivity in LLM outputs.

LLMs training can be broadly categorized into two stages:
pre-training, which generally relies on a next-token prediction
objective over large-scale corpora, and post-training, encom-
passing multiple rounds of fine-tuning and alignment. Post-
training mechanisms aim to mitigate LLMs limitations by
refining model behavior and aligning outputs with human
intent, mitigating biases or inaccuracies [53].

Adapting LLMs to domain-specific tasks often involves
techniques like fine-tuning [54, 55, 56], which enables task-
specific learning but risks overfitting and incurs high com-
putational costs. To address these challenges, approaches
such as Reinforcement Learning (RL) [57, 58, 59] en-
hance adaptability by leveraging dynamic feedback and op-
timizing sequential decision-making. Additionally, advances
in scaling techniques, including Low-Rank Adaptation
(LoRA) [60], adapters [365? ], and Retrieval-Augmented Gen-
eration (RAG) [61, 62, 63], improve both computational effi-
ciency and factual accuracy. These strategies, coupled with
distributed training frameworks, facilitate large-scale deploy-
ment and further boost the usability of LLMs across diverse
applications (Figure 1). Through these targeted post-training
interventions, LLMs become better aligned with human intent
and ethical requirements, ultimately enhancing their real-
world applicability. Below, we summarize key post-training
stages.
a) Fine-Tuning in LLMs: Fine-tuning adapts pre-trained
LLMs to specific tasks or domains by updating parameters on
curated datasets [64, 65, 66, 54, 55, 67, 56]. While LLMs gen-
eralize well after large-scale pretraining, fine-tuning enhances
performance in tasks like sentiment analysis [68, 69], question
answering, and domain-specific applications such as medical
diagnosis [70, 71, 72]. This process, typically supervised,
aligns models with task requirements but poses challenges like
overfitting, high computational costs, and sensitivity to data
biases [56, 31, 16]. To this end, parameter-efficient techniques
like LoRA [60] and adapters learn task-specific adaptation by
updating explicit parameters, significantly reducing compu-
tational overhead. As models specialize, they may struggle
with out-of-domain generalization, underscoring the trade-off
between specificity and versatility.

Fine-tuning tailors LLMs for specific tasks,
improving performance but risking overfitting,
high compute costs, and reduced generalization.

b) Reinforcement Learning in LLMs: In conventional RL,
an agent interacts with a structured environment, taking
discrete actions to transition between states while maximiz-
ing cumulative rewards [73]. RL domains—such as robotics,
board games, and control systems—feature well-defined state-
action spaces and clear objectives [74, 75]. RL in LLMs differs
significantly. Instead of a finite action set, LLMs select tokens

from a vast vocabulary, and their evolving state comprises an
ever-growing text sequence [16, 59, 76, 57]. This complicates
planning and credit assignment, as the impact of token se-
lection may only emerge later. Feedback in language-based
RL is also sparse [77], subjective, and delayed, relying on
heuristic evaluations and user preferences rather than clear
performance metrics [78, 79, 58]. Additionally, LLMs must
balance multiple, sometimes conflicting, objectives, unlike
conventional RL, which typically optimizes for a single goal.
Hybrid approaches combining process-based rewards (e.g.,
chain-of-thought reasoning) with outcome-based evaluations
(e.g., response quality) help refine learning [8, 80, 81]. Thus,
RL for LLMs requires specialized optimization techniques to
handle high-dimensional outputs, non-stationary objectives,
and complex reward structures, ensuring responses remain
contextually relevant and aligned with user expectations.

Reinforcement in LLMs extends beyond con-
ventional RL as it navigates vast action spaces,
handles subjective and delayed rewards, and bal-
ances multiple objectives, necessitating special-
ized optimization techniques.

c) Test Time Scaling in LLMs: Test Time Scaling is optimiz-
ing model performance and efficiency without altering the core
architecture. It enables better generalization while minimizing
computational overhead. It is crucial for enhancing the perfor-
mance and efficiency of LLMs. It helps improve generalization
across tasks but introduces significant computational chal-
lenges [82, 83]. Balancing performance and resource efficiency
requires targeted strategies at inference. Techniques like
CoT [8] reasoning and Tree-of-Thought (ToT) [84] frameworks
enhance multi-step reasoning by breaking down complex
problems into sequential or tree-structured steps. Addition-
ally, search-based techniques[85, 86, 87, 88] enable iterative
exploration of possible outputs, helping refine responses and
ensure higher factual accuracy. These approaches, combined
with methods like LoRA [60], adapters, and RAG [61, 62, 89], op-
timize the model’s ability to handle complex, domain-specific
tasks at scale. RAG enhances factual accuracy by dynamically
retrieving external knowledge, mitigating limitations of static
training data [62, 24, 90]. Distributed training frameworks
leverage parallel processing to manage the high computational
demands of large-scale models. Test-time scaling optimizes
inference by adjusting parameters dynamically based on task
complexity [83, 91]. Modifying depth, width, or active layers
balances computational efficiency and output quality, making
it valuable in resource-limited or variable conditions. Despite
advancements, scaling presents challenges such as diminishing
returns, longer inference times, and environmental impact,
especially when search techniques are performed at test time
rather than during training [82]. Ensuring accessibility and
feasibility is essential to maintain high-quality, efficient LLM
deployment.

Test-time scaling enhances the adaptability
of LLMs by dynamically adjusting computational
resources during inference.
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1.1 Prior Surveys

Recent surveys on RL and LLMs provide valuable insights
but often focus on specific aspects, leaving key post-training
components underexplored [51, 92, 93, 94]. Many works ex-
amine RL techniques like Reinforcement Learning from Hu-
man Feedback (RLHF) [58], Reinforcement Learning from AI
Feedback (RLAIF) [95], and Direct Preference Optimization
(DPO) [57], yet they overlook fine-tuning, scaling, and critical
benchmarks essential for real-world applications. Further-
more, these studies have not explored the potential of RL even
without human annotation supervised finetuning in various
frameworks such as DeepSeek R1 with GRPO [59]. Other sur-
veys explore LLMs in traditional RL tasks, such as multi-task
learning and decision-making, but they primarily classify LLM
functionalities rather than addressing test-time scaling and
integrated post-training strategies [96, 97]. Similarly, studies
on LLM reasoning [98, 99, 100, 55, 101, 102, 103, 104] discuss
learning-to-reason techniques but lack structured guidance
on combining fine-tuning, RL, and scaling. The absence of
tutorials, along with reviews of software libraries and imple-
mentation tools, further limits their practicality. In contrast,
this survey offers a comprehensive view of LLM post-training as
shown in Figure 1 by systematically covering fine-tuning, RL,
and scaling as interconnected optimization strategies. We offer
practical resources—benchmarks, datasets, and tutorials—to
aid LLM refinement for real-world applications.

1.2 Contributions

The key contributions of this survey are as follows:
• We provide a comprehensive and systematic review of

post-training methodologies for LLMs, covering fine-
tuning, RL, and scaling as integral components of model
optimization.

• We offer a structured taxonomy of post-training tech-
niques, clarifying their roles and interconnections, and
present insights into open challenges and future research
directions in optimizing LLMs for real-world deployment.

• Our survey provides practical guidance by introducing
key benchmarks, datasets, and evaluation metrics
essential for assessing post-training effectiveness, ensur-
ing a structured framework for real-world applications.

2 Background
The LLMs have transformed reasoning by learning to predict
the next token in a sequence based on vast amounts of text
data [105, 4] using Maximum Likelihood Estimation (MLE)
[106, 3, 107], which maximizes the probability of generating
the correct sequence given an input. This is achieved by
minimizing the negative log-likelihood:

LMLE = −
T∑

t=1

log Pθ(yt | y<t, X).

Here, X represents the input, such as a prompt or context.
Y = (y1, y2, ..., yT ) is the corresponding target output se-
quence, and Pθ(yt | y<t, X) denotes the model’s predicted
probability for token yt, given preceding tokens.

Token-wise training can ensure fluency but
may cause cascading errors due to uncorrected
mistakes in inference.

As these models scale, they exhibit emergent reasoning
abilities, particularly when trained on diverse data that in-
clude code and mathematical content [108, 8]. However, de-
spite their impressive capabilities, LLMs struggle to maintain
coherence and contextual relevance over long sequences. Ad-
dressing these limitations necessitates a structured approach
to sequence generation, which naturally aligns with RL.

Since LLMs generate text autoregressively—where each to-
ken prediction depends on previously generated tokens—this
process can be modeled as a sequential decision-making prob-
lem within a Markov Decision Process (MDP) [109]. In this set-
ting, the state st represents the sequence of tokens generated
so far, the action at is the next token, and a reward R(st, at)
evaluates the quality of the output. An LLM ’s policy πθ is
optimized to maximize the expected return:

J(πθ) = E
[ ∞∑

t=0

γtR(st, at)
]
,

where γ is the discount factor that determines how strongly
future rewards influence current decisions. A higher γ places
greater importance on long-term rewards. The primary ob-
jective in RL is to learn a policy that maximizes the ex-
pected cumulative reward, often referred to as the return.
This requires balancing exploration—trying new actions to
discover their effects—and exploitation—leveraging known
actions that yield high rewards. While LLMs optimize a like-
lihood function using static data, RL instead optimizes the
expected return through dynamic interactions. To ensure that
LLMs generate responses that are not only statistically likely
but also aligned with human preferences, it is essential to go
beyond static optimization methods. While likelihood-based
training captures patterns from vast corpora, it lacks the
adaptability needed for refining decision-making in interactive
settings. By leveraging structured approaches to maximizing
long-term objectives, models can dynamically adjust their
strategies, balancing exploration and exploitation to improve
reasoning, coherence, and alignment [110, 111, 49, 48].

LLMs exhibit emergent abilities due to scale,
while RL refines and aligns them for better rea-
soning and interaction.

2.1 RL based Sequential Reasoning.
The chain-of-thought reasoning employed in modern LLMs is
naturally framed as an RL problem. In this perspective, each
intermediate reasoning step is treated as an action contribut-
ing to a final answer. The objective function J(πθ) represents
the expected reward of the policy πθ, capturing how well
the model performs over multiple reasoning steps. The policy
gradient update is given by:

∇θJ(πθ) = Eτ

[
T∑

t=1

∇θ log πθ(xt | x1:t−1) A(st, at)

]
,
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where the advantage function A(st, at) distributes credit to
individual steps, ensuring that the overall reasoning process
is refined through both immediate and delayed rewards.
Such formulations, including step-wise reward decomposition
[112, 113], have been crucial for enhancing the interpretability
and performance of LLMs on complex reasoning tasks. In
traditional RL formulations, an agent has:

Value function: V (s) = E
[
future return | s

]
,

Action-value (Q-) function: Q(s, a) = E
[
future return | s, a

]
,

Advantage function: A(s, a) = Q(s, a)− V (s).

In words, A(s, a) measures how much better or worse it is to
take a specific action a in state s compared to what the agent
would normally expect (its baseline V (s)).

2.2 Early RL Methods for Language Modeling.
Here, we briefly overview pioneering methods that laid the
groundwork for applying RL to language generation tasks.
These initial efforts train a decision-making model (policy
(pθ)) by directly adjusting its parameters to maximize re-
wards. Some policy gradient approaches are explained below:
Policy Gradient (REINFORCE). The REINFORCE algo-
rithm [114, 115] is a method used to improve decision-making
by adjusting the model’s strategy (policy) based on rewards
received from its actions. Instead of directly learning the best
action for every situation, the algorithm refines how likely dif-
ferent actions are to be chosen, gradually improving outcomes
over time. At each step, the model updates its parameters (θ)
based on how well its past decisions performed:

θ ← θ + α
(

G− b
) T∑

t=1

∇θ log πθ(at | st).

Here: G represents the total reward the model accumulates
over an episode, b is a baseline value that helps reduce
variance, making learning more stable, ∇θ log πθ(at | st)
measures how much a small change in θ affects the probability
of choosing action at given state st, α is the learning rate,
controlling how much the policy updates at each step.

Optimizing actions based on long-term re-
wards, which account for the cumulative benefits
of a sequence of reasoning steps rather than just
immediate outcomes, is fundamental in recent
LLMs. This approach allows models to explore
multiple reasoning paths more effectively.

Curriculum Learning with MIXER.. Ranzato et al. [116]
introduces a gradual transition from maximum likelihood esti-
mation (MLE) to RL. The overall loss is a weighted combination:

L = λ(t)LMLE +
(
1− λ(t)

)
LRL,

where λ(t) decreases with training time. This curriculum
helps the model ease into the RL objective and mitigate the
mismatch between training and inference.
Self-Critical Sequence Training (SCST). SCST [117] re-
fines the policy gradient method by comparing the model’s
sampled outputs against its own best (greedy) predictions.
Instead of using an arbitrary baseline, SCST uses the model’s

own highest-scoring output, ensuring that updates directly
improve performance relative to what the model currently
considers its best response. The gradient update follows:

∇θJ(πθ) ≈
(

r(ys)− r(ŷ)
)
∇θ log πθ(ys),

where ys is a sampled sequence, ŷ is the greedy output, and
r(y) represents an evaluation metric such as BLEU [118] for
translation or CIDEr [119] for image captioning. Since the
learning signal is based on the difference r(ys) − r(ŷ), the
model is explicitly trained to generate outputs that score
higher than its own baseline under the evaluation metric.
If the sampled output outperforms the greedy output, the
model reinforces it; otherwise, it discourages that sequence.
This direct feedback loop ensures that training aligns with
the desired evaluation criteria rather than just maximizing
likelihood. By leveraging the model’s own best predictions
as a baseline, SCST effectively reduces variance and stabilizes
training while optimizing real-world performance metrics.
Minimum Risk Training (MRT). MRT [151] directly mini-
mizes the expected risk over the output distribution. Given a
task-specific loss ∆(y, y∗) comparing the generated output y
with the reference y∗, the MRT objective is defined as:

LMRT(θ) =
∑
y∈Y

pθ(y | x) ∆(y, y∗).

This formulation incorporates evaluation metrics (e.g., 1 −
BLEU) directly into training, enabling fine-grained adjust-
ments of the policy.
Advantage Actor-Critic (A2C/A3C). RL methods like
REINFORCE [114] rely solely on policy gradients, which suf-
fer from high variance, leading to unstable and inefficient
learning. Since the reward signal fluctuates across different
trajectories, updates may be noisy, causing slow or erratic
convergence. To mitigate this, Actor-Critic methods [152,
153, 154, 155] combine two components as follows: an actor
and a critic. The actor is a policy πθ(at | st) that selects
actions at at state st, while the critic is a value function
Vϕ(st) that evaluates the expected return of a state. The critic
provides a more stable learning signal, reducing variance in
policy updates and enabling efficient learning in continuous
action spaces. Actor updates are guided by the policy gradient
theorem, where the advantage function A(st, at) defined in
Sec. 2.1, determines how much better an action at is compared
to the expected value of state st. The policy with the learning
rate α is updated as:

θ ← θ + α A(st, at)∇θ log πθ(at | st).

Meanwhile, the critic is updated using temporal difference
learning, minimizing the squared error between its estimate
and the actual return:

ϕ← ϕ− β∇ϕ

(
Vϕ(st)−Gt

)2
.

where β is a learning rate for critic. To enhance stability
and efficiency, several improvements have been proposed.
Eligibility traces allow learning from recent states, enabling
faster convergence. Function approximation with neural net-
works ensures effective handling of high-dimensional inputs.
Advanced variants such as Natural Gradient methods [156]
adjust updates using the Fisher Information Matrix, improv-
ing convergence speed.
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RL Enhanced LLMs Developer Source # Params RL Methods Fine-Tuning Architecture Type Model TTS
DeepSeek-V2 [16] Deepseek Link 236B-A21B GRPO DPO + GRPO MoE Open ✓
GPT 4.5 [120] OpenAI Link - RLHF, PPO, RBRM SFT + RLHF MoE Closed ✓
Gemini [15] Google Link - RLHF SFT + RLHF Single Model Closed ✗
Claude 3.7 [121] Anthropic Link - RLAIF SFT + RLAIF Single Model Closed ✗
Reka [122] Reka Link 7B, 21B RLHF, PPO SFT + RLHF Single Model Closed ✗
DeepSeekR1 [40] Deepseek Link 240B-A22B GRPO DPO + GRPO MoE Open ✓
Nemotron-4 340B [123] NVIDIA Link 340B DPO, RPO DPO + RPO Single Model Closed ✗
Falcon [124] TII Link 40B - SFT Single Model Open ✗
GPT-4 [39] OpenAI Link - RLHF, PPO, RBRM SFT + RLHF MoE Closed ✓
Llama 3 [13] Meta Link 8B, 70B, 405B DPO SFT + DPO Single Model Open ✗
Qwen2 [125] Alibaba Link (0.5-72)B, 57B-A14B DPO SFT + DPO Single Model Open ✓
Gemma2 [14] Google Link 2B, 9B, 27B RLHF SFT + RLHF Single Model Open ✗
Starling-7B [26] Berkeley Link 7B RLAIF, PPO SFT + RLAIF Single Model Open ✗
Moshi [126] Kyutai Link 7B - - Multi-modal Open ✓
Athene-70B [127] Nexusflow Link 70B RLHF SFT + RLHF Single Model Open ✗
GPT-3.5 [39] OpenAI Link 3.5B, 175B RLHF, PPO SFT + RLHF MoE Closed ✓
Hermes 3 [128] Nous Link 8B, 70B, 405B DPO SFT + DPO Single Model Open ✗
Zed [129] Zed AI Link 500B RLHF RLHF Multi-modal Open ✓
PaLM 2 [130] Google Link - RLHF - Single Model Closed ✓
InternLM2 [131] SAIL Link 1.8B, 7B, 20B RLHF, PPO SFT + RLHF Single Model Closed ✗
Supernova [132] Nova AI Link 220B RLHF RLHF Multi-modal Open ✓
Grok3 [133] Grok-3 Link 175B - DPO Dense Open ✓
Pixtral [134] Mistral AI Link 12B, 123B - PEFT Multimodal Open ✓
Minimaxtext [135] MiniMax Link 456B - SFT Single Model Closed ✗
Amazonnova [136] Amazon Link - DPO, RLHF, RLAIF SFT Single Model Closed ✗
Fugakullm [137] Fujitsu Link 13B - - Single Model Closed ✗
Nova [138] Rubik’s AI Link - - SFT Proprietary Closed ✗
03 [139] OpenAI Link - RL through CoT RL through CoT Single Model Closed ✓
Dbrx [140] Databricks Link 136B - SFT Single Model Open ✗
Instruct-GPT [58] OpenAI Link 1.3B, 6B, 175B RLHF, PPO SFT + RLHF Single Model Closed ✗
Openassistant [141] LAION Link 17B - SFT Single Model Open ✗
ChatGLM [142] Zhipu AI Link 6B, 9B ChatGLM-RLHF SFT + RLHF Single Model Open ✗
Zephyr [143] Argilla Link 141B-A39B ORPO DPO + ORPO MoE Open ✓
phi-3 [17] Microsoft Link 3.8B, 7B, 14B DPO SFT + DPO Single Model Closed ✗
Jurassic [144] AI21 Labs Link - - SFT Proprietary Closed ✗
Kimi K1.5 [145] Moonshot AI Link 150B - RLHF Multi-modal Open ✓
Phi-4 [146] Microsoft Link 28B, 70B, 140B DPO SFT + DPO Single Model Closed ✗
Chameleon [147] Meta AI Link 34B - SFT Single Model Open ✗
Cerebrasgpt [148] Cerebras Link 13B - SFT Single Model Open ✗
Bloomberggpt [149] Bloomberg L.P. Link 50B - SFT Single Model Closed ✗
Chinchilla [150] DeepMind Link 70B RLHF, PPO SFT Single Model Closed ✗

TABLE 1: An overview of reinforcement learning-enhanced LLMs, where ’141B-A39B’ denotes a Mixture of Experts (MoE)
model with 141 billion total parameters, of which 39 billion are utilized during inference. TTS stands for Test-Time Scaling.

A notable early example is Barto’s Actor-Critic model
[157], where the critic uses a linear function Vϕ(st) and
the actor follows a linear policy. Modern methods like A2C
(Advantage Actor-Critic) [154] and A3C (Asynchronous Ad-
vantage Actor-Critic) [155] extend this approach by paralleliz-
ing training across multiple environments, leading to faster
and more stable learning. By leveraging the critic’s value
estimation, actor-critic methods stabilize learning, improve
sample efficiency, and accelerate convergence, making them
more effective for complex decision-making tasks.

Connection with Modern Methods. The aforemen-
tioned early RL methods—REINFORCE [114], MIXER [116],
SeqGAN [158], SCST [117], MRT [151], and actor-critic algorithms
established the mathematical foundations for sequential rea-
soning in LLMs. These methods provided initial solutions to
challenges such as exposure bias and high variance. Mod-
ern techniques such as large-scale RL from Human Feedback
(RLHF) using PPO [73] and advanced reward models, e.g.,
Group Relative Policy Optimization (GRPO) [159] build di-
rectly upon these ideas. By integrating sophisticated reward
signals and leveraging efficient policy updates, contemporary
LLMs achieve improved reasoning, safety, and alignment with
human values and pave the way for robust multi-step reason-
ing and improved quality of generated text. Table 1 provides
an overview of recent models, including their parameters,
architecture types, and the distilled RL methods employed,
along with links for easy access.

3 Reinforced LLMs
From a methodological perspective, the integration of RL into
LLM reasoning typically follows three core steps:

1) Supervised Fine-Tuning (SFT): Commences with a
pretrained language model that is subsequently refined
on a supervised dataset of high-quality, human-crafted
examples. This phase ensures the model acquires a base-
line compliance with format and style guidelines.

2) Reward Model (RM) Training: Generated outputs
from the fine-tuned model are collected and subjected
to human preference labeling. The reward model is then
trained to replicate these label-based scores or rankings,
effectively learning a continuous reward function that
maps response text to a scalar value.

3) RL Fine-Tuning: Finally, the main language model is
optimized via a policy gradient algorithm most e.g PPO
to maximize the reward model’s output. By iterating this
loop, the LLM learns to produce responses that humans
find preferable along key dimensions such as accuracy,
helpfulness, and stylistic coherence.

4) Reward Modeling and Alignment: Sophisticated
reward functions are developed—drawing from human
preferences, adversarial feedback, or automated met-
rics—to guide the model toward outputs that are coher-
ent, safe, and contextually appropriate. These rewards
are critical for effective credit assignment across multi-
step reasoning processes.

Early approaches to aligning LLMs with human preferences
leveraged classical RL algorithms, such as PPO [73] and Trust
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Region Policy Optimization (TRPO) [160], which optimize a
policy by maximizing the expected cumulative reward while
enforcing constraints on policy updates via a surrogate ob-
jective function and KL-divergence regularization [161]. Im-
proved alternatives to these methods for scalable preference-
based optimization have emerged, such as Direct Preference
Optimization (DPO) [57, 162] and Group Relative Policy
Optimization (GRPO) [159, 59, 16], which reformulate the
alignment objective as a ranking-based contrastive loss func-
tion [163] over human-labeled preference data. Unlike PPO
and TRPO [160], which rely on explicit reward models and
critic networks, DPO and GRPO directly optimize the policy
by leveraging log-likelihood ratios and group-wise reward
comparisons, respectively, eliminating the need for explicit
value function approximation while preserving preference-
consistent learning dynamics. This transition from classical
RL-based alignment to preference-based direct optimization
introduces novel formulations such as contrastive ranking loss,
policy likelihood ratio regularization, and grouped advantage
estimation, which are explained in subsequent sections.

3.1 Reward modeling
Let X be the space of possible queries (e.g., user prompts). For
each query x ∈ X , we collect one or more candidate responses
{yj}mx

j=1 where mx is the number of candidate responses for
query x. Typically, these responses are generated by a lan-
guage model or policy under different sampling or prompting
conditions. Human annotators provide preference judgments
for these responses. These can take various forms:

• Pairwise preference: For two responses yj and yk to
the same query x, an annotator indicates whether yj is
preferred to yk.

• Rankings: A partial or total ordering of the candidate
responses, e.g. yj1 ≻ yj2 ≻ · · · ≻ yjmx

.
We denote such human preference data by {rj} for each
response or pair, where rj might be a label, a rank, or an
index indicating preference level. The overall dataset D then
consists of N annotated examples:

D =
{

(xi, {yi
j}

mi

j=1, {preferencesi})
}N

i=1
.

In practice, a large number of queries x are sampled from
real or simulated user requests. Candidate responses {yj}mx

j=1
are generated by either sampling from a base language model
or using beam search or other decoding strategies. Human
annotators then provide pairwise or ranking feedback on
which responses are better (or worse) according to predefined
criteria (e.g., quality, correctness, helpfulness, etc). We train
a parametric model Reward Model (Rθ(x, y)), referred to as
the reward model, to map each (query, response) pair (x, y) to
a scalar score. The goal is for Rθ to reflect the alignment or
preference level, such that:

Rθ : X × Y → R.

Here Y is the space of all possible responses.
To train Rθ, we use the human preference labels in D to

define a suitable ranking-based loss, as explained below.
I. Bradley–Terry Model (Pairwise). For pairwise pref-

erences, Bradley-Terry model [164] is often used. Suppose the
dataset indicates that, for a given query x, human annotators

prefer yj to yk, we denote it as yj ≻ yk. Under Bradley–Terry,
the probability of yj being preferred over yk is given by:

P
(
yj ≻ yk | x; θ

)
=

exp
(
Rθ(x, yj)

)
exp
(
Rθ(x, yj)

)
+ exp

(
Rθ(x, yk)

) .

We train Rθ by maximizing the likelihood of observed prefer-
ences (or equivalently minimizing the negative log-likelihood):

LBT(θ) = −
∑

(x, yj ≻yk) ∈ D

log P
(
yj ≻ yk | x; θ

)
.

II. Plackett–Luce Model1 (Rankings). When full or
partial rankings of m responses are available, i.e.,

yj1 ≻ yj2 ≻ · · · ≻ yjm ,

the Plackett–Luce model [165] factorizes the probability of
this ranking as:

P
(
yj1 , . . . , yjm | x; θ

)
=

m∏
ℓ=1

exp
(
Rθ(x, yjℓ

)
)∑m

k=ℓ exp
(
Rθ(x, yjk

)
) .

Its negative log-likelihood is:

LPL(θ) = −
∑

(x, rank)∈D

m∑
ℓ=1

log

(
exp
(
Rθ(x, yjℓ

)
)∑m

k=ℓ exp
(
Rθ(x, yjk

)
)) .

In practice, one minimizes the sum (or average) of the chosen
ranking-based loss over all preference data:

L(θ) = 1
|D|

∑
(x, {yj}, prefs) ∈ D

Lranking

(
θ; x, {yj}, prefs

)
,

where Lranking could be either LBT or LPL. While the reward
model Rθ(x, y) provides a scalar reward signal reflecting
human preferences, this connects to common RL concepts,
especially the advantage function.

Reward modeling uses ranking-based losses
to learn a function from human preferences for
policy optimization.

Reward modeling Types. Rewards can be categorized into
explicit and implicit approaches.

3.1.1 Explicit Reward Modeling
Explicit reward modeling defines reward functions directly
based on predefined rules, heuristics, or human annotations.
This reward structure involves direct, numeric signals from
humans or from specialized AI modules trained to approx-
imate human judgments (e.g., ranking or pairwise compari-
son). This method can produce precise reward estimates but
may be time-consuming or costly at scale. Illustrative use
cases include ‘red-teaming’ exercises where experts rate the
severity of toxic outputs, or domain-specialist tasks in which
correctness must be validated by a subject matter expert.

1. https://hturner.github.io/PlackettLuce/

https://hturner.github.io/PlackettLuce/
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Fig. 2: Overview of Large Language Models (LLMs) reasoning methods, showcasing pathways for enhancing reasoning
capabilities through approaches like Chain-of-Thought (CoT) prompting, self-feedback, and episodic memory. The diagram
highlights multiple reinforcement learning-based optimization techniques, including GRPO, RLHF, DPO, and RLAIF, for fine-
tuning reasoning models with reward mechanisms and preference-based learning.

3.1.2 Implicit Reward Modeling
Implicit reward modeling infers rewards indirectly from ob-
served behaviors, interactions, or preference signals, often
leveraging machine learning techniques to uncover latent re-
ward structures. It derives its signals from user interaction
metrics such as upvotes, acceptance rates, click-through pat-
terns, or session engagement times. While it can accumulate
vast datasets with minimal overhead, this approach risks
fostering behaviors that exploit engagement heuristics at the
expense of content quality or veracity.
Reward Function. Defining a reward function for text gen-
eration tasks is an ill-posed problem [166, 167]. The existing
RL methods in LLMs either focus on the generation process
outcome (Outcome Reward Modeling) or the (Process Reward
Modeling), to shape LLM behaviors. We explain these two
reward modeling paradigms below.

3.1.3 Outcome Reward Modeling
Measures the end result (e.g., whether the final answer is
factually correct or solves the user’s query). This model
is straightforward to implement but may offer limited in-
sight into how the conclusion was reached. It is prevalent
in short-response tasks, where the user’s primary concern is
the correctness or succinctness of the final statement. For
long-response tasks, outcome based reward can lead to credit
assignment problem, i.e., which specific actions or states lead
to a particular reward outcome.

3.1.4 Process Reward Modeling
Assigns feedback at intermediate reasoning steps, incentiviz-
ing coherent, logically consistent, and well-structured chains
of thought. This approach is particularly valuable for tasks
involving mathematical derivations, legal arguments, or code

debugging, in which the path to the answer is as significant
as the final statement. In such problems, the reward assigned
in individual steps encourages transparency and robust step-
by-step reasoning. However, it requires a more complex anno-
tation process, e.g., requires “gold” reasoning steps or partial
credit scoring. Process rewards can be combined with outcome
rewards for a strong multi-phase training signal.

Policy Reward Modeling (PRM) with last-step ag-
gregation outperforms Outcome Reward Modeling
(ORM) by leveraging final-step evaluations to opti-
mize policy updates more effectively.

3.1.5 Iterative RL with Adaptive Reward Models

Adaptive Reward Models is a training methodology designed
to continuously improve the performance of LLMs by iter-
atively refining the reward models and the policy model.
This approach addresses the challenges of reward hacking and
reward model drift, which can occur when the reward model
becomes misaligned with the desired objectives during large-
scale RL training. The RL process is divided into multiple
iterations, where the model is trained in cycles. After each
iteration, the reward model is updated based on the latest
model behavior and human feedback. The reward model is
not static but evolves over time to better align with human
preferences and task requirements. This adaptation ensures
that the reward signals remain accurate and relevant as the
model improves. Repeat the iterative process until the model’s
performance plateaus or meets the desired benchmarks. The
reward model and policy model co-evolve, with each iteration
bringing them closer to optimal alignment.
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3.2 Policy Optimization
Once we have a trained reward model Rθ(x, y) that captures
human preferences, we can integrate it into a RL framework to
optimize a policy πϕ. In essence, we replace (or augment) the
environment’s native reward signal with Rθ(x, y) so that the
agent focuses on producing responses y that humans prefer for
a given query x.

In typical RL notation:
• Each state s here can be interpreted as the partial dia-

logue or partial generation process for the next token (in
language modeling).

• Each action a is the next token (or next chunk of text) to
be generated.

• The policy πϕ(a | s) is a conditional distribution over the
next token, parameterized by ϕ.

We seek to find ϕ that maximizes the expected reward under
Rθ. Concretely, let x be a user query, and let y ∼ πϕ(· | x) be
the generated response. We aim to solve:

max
ϕ

Ex∼X

[
Ey∼πϕ(· | x)

[
Rθ(x, y)

]]
.

This means that on average, over user queries x and responses
y drawn from the policy πϕ, we want the reward model’s score
Rθ(x, y) to be as high as possible.
Policy Gradient and Advantage. The modern algorithms
(e.g., PPO [73], GRPO [59], TRPO [160]) rely on policy gradients.
Figure 5 presents a structured comparison of the these main
RL frameworks. Each framework builds upon different princi-
ples for policy learning, reference modeling, and reward com-
putation. Recall that the advantage function A(s, a) quantifies
how much better an action a is than the baseline expected
return V (s). At a high level, we update the policy πϕ in the
direction that increases πϕ(a | s) for actions a with positive
advantage and decreases it for negative-advantage actions.
Formally, the advantage At at time t can be written as:

At = Q(st, at) − V (st),

where Q(st, at) is the expected future return (sum of future
rewards, including Rθ) starting from st when taking action at.

When using the reward model Rθ:
1) We interpret Rθ(x, y) as the immediate or terminal re-

ward for the generated response y.
2) The policy’s future returns thus factor in how likely

subsequent tokens are to be positively scored by Rθ.
3) The advantage function still captures how much better

a particular generation step is compared to the baseline
performance V (st).

The reward model learns relative preferences
rather than absolute scores. This avoids the need
for calibrated human ratings and focuses on pair-
wise comparisons.

3.2.1 Odds Ratio Preference Optimization (ORPO)
The simplest method is ORPO [168] which directly optimizing
a policy from pairwise human preferences. Instead of first
learning a separate reward model and then running standard
RL, ORPO updates the policy to increase the likelihood of

preferred responses (according to human labels) relative to
dispreferred ones. The key idea is to look at the odds ratio:

πϕ(yj | x)
πϕ(yk | x) ,

where yj is the preferred response and yk is the less-preferred
response for a given query x.

Pairwise Preference Probability. In many direct pref-
erence approaches (e.g., Bradley–Terry style), one writes

Pϕ

(
yj ≻ yk | x

)
= σ

(
ln πϕ(yj | x)

πϕ(yk | x)

)
= 1

1 + exp
(

ln πϕ(yk|x)
πϕ(yj |x)

) ,

where σ(·) is the logistic (sigmoid) function. Intuitively, if the
policy πϕ assigns higher probability to yj than to yk, the odds
πϕ(yj |x)
πϕ(yk|x) exceed 1, making yj more likely to be the preferred
outcome under the model.

In ORPO, one typically defines a negative log-likelihood loss
for all pairs {(x, yj ≻ yk)} in the dataset:

LORPO(ϕ) = −
∑

(x, yj≻yk) ∈ D

log
(

Pϕ

(
yj ≻ yk | x

))
.

Substituting the logistic form gives:

LORPO(ϕ) = −
∑

(x, yj≻yk) ∈ D

log
( πϕ(yj | x)

πϕ(yj | x) + πϕ(yk | x)

)
,

which can also be interpreted as maximizing the log odds ratio
for the correct (preferred) label in each pairwise comparison.

Interpretation via Odds Ratios. By treating each
preference label (yj ≻ yk) as a constraint on the odds πϕ(yj |x)

πϕ(yk|x) ,
ORPO pushes the policy to increase its probability mass on yj

while decreasing it on yk. When viewed in logarithmic space:

ln
(

πϕ(yj |x)
πϕ(yk|x)

)
,

a higher value corresponds to a greater likelihood of selecting
yj over yk. Hence, minimizing LORPO(ϕ) aligns πϕ with the
human-labeled preferences.

. Odds Ratio Preference Optimization (ORPO)
is potentially less flexible for combining multi-
ple reward signals.

3.2.2 Proximal Policy Optimization (PPO) in LLMs
A popular method for policy optimization is PPO [73], a
strategy adapted to align LLMs with human feedback. Given
a policy πθ parameterized by θ and a reward function R,
PPO updates the policy by optimizing a clipped objective
that balances exploration and stability. Specifically, if rt(θ) =

πθ(at|st)
πθref (at|st) denotes the probability ratio for an action at in
state st, the clipped PPO objective is:

LPPO(θ) = Et

[
min

(
rt(θ) At, clip(rt(θ), 1− ϵ, 1 + ϵ) At

)]
,

where At is an estimator of the advantage function and ϵ is a
hyperparameter controlling the allowable deviation from the
previous policy. At is computed using Generalized Advantage
Estimation (GAE) [169] based on rewards and a learned value
function. The clipping objective of PPO restricts how dras-
tically the updated policy distribution can diverge from the
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original policy. This moderation averts catastrophic shifts in
language generation and preserves training stability.

Policy Optimization with KL Penalty. During RL fine-
tuning with PPO, the policy π is optimized to maximize reward
while staying close to the base model ρ. The modified reward
function includes a KL divergence penalty:

J(π) = E(x,y)∼D
[
r(x, y)− β KL

(
π(·|x) ∥ ρ(·|x)

)]
,

where β controls the penalty strength. The KL term KL(π ∥ ρ)
prevents over-optimization to the proxy reward r(x, y) (i.e.,
reward hacking).

The KL penalty is a regularization, which
ensure policy retains the base model’s linguistic
coherence and avoids degenerate outputs.

3.2.3 Reinforcement Learning from Human Feedback (RLHF)
RLHF [58] refines LLMs through direct human preference sig-
nals, making them more aligned with human expectations.
The process involves three main steps. First, SFT is performed
on a pretrained model using high-quality labeled data to
establish strong linguistic and factual capabilities. Second, a
reward function R is trained using human-annotated rankings
of generated responses, allowing it to predict preferences and
provide a scalar reward signal. Third, PPO is employed in the
RLHF [58] pipeline by using human-provided preference scores
(or rankings) to shape R and thereby guide the policy up-
dates. This ensures that the model prioritizes outputs aligned
with human-preferred behavior. The robust performance un-
der conditions of noisy or partial reward signals makes PPO
well-suited for text generation tasks, where large action spaces
and nuanced reward definitions are common.

3.2.4 Reinforcement Learning from AI Feedback (RLAIF)
RLAIF [95] is an alternative to RLHF that replaces human
annotation with AI-generated feedback. Instead of relying
on human-labeled preferences, RLAIF employs a secondary,
highly capable language model to generate preference labels,
which are then used to train a reward model. This reward
model guides reinforcement learning-based fine-tuning of the
target model. RLAIF reduces the cost and time required for
data collection by eliminating the need for human annota-
tors. It enables large-scale model alignment without requiring
extensive human intervention while maintaining high perfor-
mance and alignment. Empirical studies indicate that RLAIF
[95, 170] is a scalable and efficient alternative to RLHF, making
it a promising direction for reinforcement learning-driven
language model optimization.

The clipping mechanism constrains policy
updates to remain within a safe trust region,
which is crucial when dealing with complex, high-
dimensional action spaces.

3.2.5 Trust Region Policy Optimization (TRPO)
TRPO [160] is another widely used policy optimization method,
preceding PPO and sharing its fundamental goal: improving
stability in reinforcement learning updates. TRPO optimizes

policy updates while ensuring they remain within a con-
strained trust region, measured by KL divergence.

Instead of using a clipped objective like PPO, TRPO enforces
a hard constraint on policy updates by solving the following
optimization problem:

max
θ

Et

[
πθ(at | st)

πθold(at | st)
At

]
subject to the constraint:

Et [DKL (πθold(· | st)∥πθ(· | st))] ≤ δ.

where δ is a hyperparameter that controls how much the new
policy can diverge from the old one.

Unlike PPO, which approximates this constraint using clip-
ping, TRPO directly solves a constrained optimization problem,
ensuring each update does not move too far in policy space.
However, solving this constrained problem requires computa-
tionally expensive second-order optimization techniques like
conjugate gradient methods, making TRPO less efficient for
large-scale models like LLMs. In practice, PPO is preferred
over TRPO due to its simplicity, ease of implementation, and
comparable performance in large-scale applications like RLHF.
However, TRPO remains an important theoretical foundation
for stable policy optimization in deep reinforcement learning.

3.2.6 Direct Preference Optimization (DPO)

DPO [162] is a recently proposed method for training LLMs
from human preference data without resorting to the tradi-
tional RL loop (as in RLHF with PPO). Instead of learning a
separate reward function and then running policy-gradient
updates, DPO directly integrates human preference signals into
the model’s training objective. So instead of the above PPO
objective, DPO instead constructs an objective that directly
pushes up the probability of a chosen (preferred) response
(y+) while pushing down the probability of a less-preferred
response (y−), all within a single log-likelihood framework.
Rather than bounding policy changes with clip, the DPO loss
uses the difference between log probabilities of ‘winning’ vs.
‘losing’ responses. This explicitly encodes the user’s preference
in the updated parameters.

Here, πθ is the learnable policy, πref is a reference policy
(often the SFT-trained model), σ(·) is the sigmoid function,
β is a scaling parameter, and Dtrain is a dataset of triplets
(x, y+, y−) where y+ is the preferred output over y−.

LDPO(θ) = E((x,y+),y−)∼Dtrain

[
σ
(

β log πθ(y+ | x)
πref(y+ | x)

−β log πθ(y− | x)
πref(y− | x)

)]
.

The key insight is that an LLM can be treated as a “hidden
reward model”: we can reparameterize preference data so that
the model’s own log probabilities reflect how preferable one re-
sponse is over another. By directly adjusting the log-likelihood
of more-preferred responses relative to less-preferred ones,
DPO sidesteps many complexities of RL-based methods (e.g.,
advantage functions or explicit clipping).
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The advantage function Aϕ = Vϕ(st+1) − Vϕ(st)
quantifies per-step contributions, critical for
identifying key reasoning errors. This granularity
is lost in DPO, which treats entire trajectories
uniformly.

Perplexity Filtering for Out-of-Distribution Data. To
ensure DPO training data is on-distribution (aligned with ρ),
responses are filtered using perplexity. The perplexity of a
response y = (y1, y2, . . . , yT ) is defined as:

PP(y) = exp

(
− 1

T

T∑
i=1

log Pρ(yi | y<i)

)
,

where yi is the i-th token. Only responses with perplexity
below a threshold (e.g., the 95th percentile of ρ-generated
responses) are retained.

The advantage function remains a core con-
cept to determine which actions (token choices)
are better than the baseline at each step.

3.2.7 Offline Reasoning Optimization (OREO)

OREO [171] is an offline reinforcement learning method de-
signed to enhance LLMs’ multi-step reasoning by optimizing
the soft Bellman equation [109]. Unlike DPO, which relies
on paired preference data, OREO uses sparse rewards based
on final outcomes (e.g., correctness of reasoning chains) and
jointly trains a policy model πθ and a value function Vϕ for

fine-grained credit assignment. The core objective minimizes
the inconsistency in the soft Bellman equation:

Vϕ(st)− Vϕ(st+1) = r(st, at)− β log πθ(at | st)
πref(at | st)

,

where st+1 = f(st, at) is the next state, r is the sparse reward,
and β controls KL regularization. The policy and value losses
are:

LV (ϕ) = 1
T

T −1∑
t=0

(
Vϕ(st)−Rt + β

∑
i≥t

log πθ(ai | si)
πref(ai | si)

)2

,

Lπ(θ) = 1
T

T −1∑
t=0

(
Vϕ(st)−Rt + β log πθ(at | st)

πref(at | st)

)2

+ αLreg,

where Lreg penalizes deviations from πref, and α balances
regularization.

OREO’s explicit value function enables test-
time beam search (e.g., selecting high-value rea-
soning steps) and iterative training, where failed
trajectories refine the policy. This contrasts with
DPO implicit value function, which lacks stepwise
credit assignment.

. OREO’s computational cost scales with trajec-
tory length and value-model training. While ef-
fective for math/agent tasks, its generalization
to broader domains (e.g., coding) requires vali-
dation. Iterative training also demands careful
data curation to avoid overfitting to failure
modes.

3.2.8 Group Relative Policy Optimization (GRPO)

GRPO [59] simplifies the PPO framework by eliminating the
need for a separate value function. Instead, GRPO estimates
the baseline from the average reward of multiple sampled
outputs for the same question. The primary contribution in
GRPO is that it removes the need for a separate value model
(critic model) and instead estimates the baseline reward from
a group of sampled LLM outputs. This significantly reduces
memory usage and stabilizes policy learning. The approach
also aligns well with how reward models are trained, i.e.,
by comparing different LLM-generated outputs rather than
predicting an absolute value.

For each question q, GRPO samples a group of outputs
{o1, o2, . . . , oG} from the old policy πold

θ . A reward model
is used to score each output in the group, yielding rewards
{r1, r2, . . . , rG}. The rewards are normalized by subtracting
the group average and dividing by the standard deviation:

r̄i = ri −mean(r)
std(r) .

The advantage Âi,t for each token in the output is set as the
normalized reward r̄i.
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GRPO first samples a question q ∼ P (Q) and then samples
G outputs {oi}G

i=1 from πold
θ (O | q). Define the per-output

objective as

J(oi, θ, q) = 1
|oi|

|oi|∑
t=1

(
min

{
rratio,i,t Âi,t,

clip
(
rratio,i,t, 1− ϵ, 1 + ϵ

)
Âi,t

}
− β DKL

[
πθ ∥πref

])
.

Then, the GRPO objective becomes

JGRP O(θ) = Eq∼P (Q)

[
1
G

G∑
i=1

J(oi, θ, q)

]
,

where the probability ratio is defined as

rratio,i,t ≜
πθ(oi,t | q, oi,<t)

πold
θ (oi,t | q, oi,<t)

.

where ϵ is a clipping hyperparameter akin to PPO, and β
adjusts the KL-divergence penalty encouraging the new policy
πθ not to deviate excessively from a reference policy πref ,
which is typically the initial supervised fine-tuned (SFT)
model [172, 173]. GRPO can be applied in two modes: outcome
supervision and process supervision.

Outcome Supervision: Provides a reward only at the
end of each output. The advantage Âi,t for all tokens in the
output is set as the normalized reward r̄i.

r̄i = ri −mean(r)
std(r) .

Process Supervision: Provides a reward at the end of
each reasoning step. The advantage Âi,t for each token is
calculated as the sum of the normalized rewards from the
following steps:

Âi,t =
∑

index(j)≥t

r̄i,index(j),

where index(j) is the end token index of the j-th step.
Overall, GRPO serves as an efficient alternative to classic actor-
critic frameworks in DeepSeekR1 [40] by leveraging group-
level advantages, thereby reducing training costs without
sacrificing the capacity to distinguish fine-grained differences
among candidate responses.

Fine-grained per-step rewards enable the
model to effectively identify and reinforce high-
quality responses, boosting overall performance
in complex, multi-step reasoning tasks.

3.2.9 Multi-Sample Comparison Optimization
Instead of relying solely on single-pair comparisons, multi-
sample comparison optimization [174] approach compares
multiple responses simultaneously to promote diversity
and mitigate bias. Specifically, given a set of responses
{y1, y2, . . . , yn} for a query x, the probability of observing the
ranking y1 > y2 > · · · > yn is determined by the product

P (y1 > y2 > · · · > yn) =
∏

i

eR(x,yi)∑
j eR(x,yj) .

In this formulation, each response yi is jointly evaluated in the
context of all other responses, ensuring that comparisons are
not isolated pairwise events but rather part of a broader rank-
ing framework that helps capture more nuanced preferences
and reduces potential biases.

3.3 Pure RL Based LLM Refinement
The work from Guo et al. (2025) [40] introduces two main
models: DeepSeek-R1-Zero and DeepSeek-R1.

• DeepSeek-R1-Zero operates with a purely Reinforce-
ment Learning approach, excluding any SFT.

• DeepSeek-R1 incorporates cold-start data and applies
a multi-stage training pipeline.

The methodology encompasses several steps (See Figure 2
in GRPO for main steps): collecting cold-start data, perform-
ing RL training, carrying out SFT, using distillation to transfer
knowledge to smaller models, and addressing specific chal-
lenges such as language mixing and readability. This multi-
stage pipeline ensures robustness and alignment with human
preferences, while distillation enables efficient deployment of
smaller models without significant performance loss.

3.3.1 Cold-Start RL Phase
The process begins with a cold-start RL phase, where a small
amount of curated data is gathered to fine-tune an initial, or
base, model. Following this preliminary fine-tuning, RL is con-
ducted—often via algorithms like GRPO until convergence. The
cold-start phase is critical for stabilizing the model before full
RL training, preventing instability that can arise from purely
RL-driven updates. The cold-start data preparation focuses
on capturing human-readable reasoning patterns to prevent
instability from purely RL-driven updates. This step generates
CoT-style examples with consistent < reasoning_process >
and < summary > fields, usually involving thousands of
carefully curated samples. Structured CoT formats and con-
sistent fields ensure clarity and robustness in the model’s rea-
soning outputs, reducing errors and improving interpretabil-
ity [8, 175, 176, 177].

Providing CoT reasoning traces before RL train-
ing establishes a stronger foundation for reason-
ing tasks, enhancing both robustness and inter-
pretability of outputs.

3.3.2 Rejection Sampling and Fine-tuning
This concept is also used in WebGPT [81]. Once RL stabilizes,
a rejection sampling mechanism is employed to generate high-
quality responses that are subsequently filtered for correct-
ness, clarity, and other quality metrics. These filtered re-
sponses are then blended with additional datasets to produce
a new, larger corpus for Supervised Fine-Tuning. Rejection
sampling ensures that only high-quality outputs are used for
further training, enhancing the model’s overall performance
and reliability. After RL converges for high-stakes reasoning
tasks, rejection sampling is used to filter a large number of
generated outputs, expanding the training set. These newly
generated reasoning examples (potentially up to hundreds of
thousands in quantity) are mixed with existing SFT data to
create a combined dataset of substantial size (often around
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Fig. 4: This Venn diagram illustrates the interplay between Sys-
tem, Data, and Model for efficient finetuning and deployment.
It covers strategies like accelerators (Groq, vLLM), adaptation
(LoRA, PEFT), co-optimized architectures (FlashAttention), data
compression (TokenMerging), scaling laws (Chinchilla), and
model compression (GPTQ) to boost performance and scalability.

800k samples). Rejection sampling and dataset expansion
significantly enhance the model’s coverage of general tasks
while preserving its reasoning proficiency.

3.3.3 Reasoning-Oriented RL
The reasoning-oriented RL leverages GRPO [59], which samples
a group of outputs from the current policy and computes
rewards and advantages for each output. Rewards may be
computed via rule-based checks, e.g., ensuring correct solu-
tions in math or code tasks, enforcing structured CoT tags,
and penalizing undesired language mixing. GRPO group-based
sampling and reward computation ensure that the model
prioritizes high-quality, structured outputs, enhancing its rea-
soning capabilities.

3.3.4 Second RL Stage for Human Alignment
A second RL stage further aligns the model with broader
human preferences (helpfulness, harmlessness, creativity, etc.)
by introducing additional reward signals and prompt distri-
butions. The second RL stage ensures the model aligns with
human values, making it more versatile and contextually
aware. After re-training the base model on this combined
dataset, a second round of RL can be conducted to align
the model more closely with human preferences (e.g., for
helpfulness and harmlessness). This RL stage fine-tunes the
model to better align with human values, ensuring outputs
are not only accurate but also contextually appropriate.

3.3.5 Distillation for Smaller Models
Finally, distillation techniques are used to transfer the refined
capabilities of the main model to smaller architectures, en-
abling more efficient deployments without sacrificing much
performance. It allows smaller models to inherit advanced
reasoning capabilities, making them competitive on challeng-
ing benchmarks without the computational costs of full-scale
RL training. Finally, distillation plays a pivotal role: the top-
performing model, DeepSeek-R1 [40], serves as a teacher to
smaller architectures (e.g., Qwen or Llama families, ranging
from 1.5B to 70B parameters). This transfer allows the smaller
models to inherit advanced reasoning capabilities, making
them competitive on challenging benchmarks without incur-
ring the computational costs of full-scale RL training.

Distillation democratizes advanced reasoning
capabilities, enabling smaller models to achieve
competitive performance with reduced compu-
tational overhead.

4 Supervised Finetuning in LLMs

As shown in Figure 2, finetuning forms a basic component of
LLM post-training recipes. In this section, we summarize the
different types of LLM fine-tuning mechanisms.

4.1 Instruction finetuning

In instruction finetuning, a model is trained on curated pairs
of instruction (prompt) and response (completion). The main
goal is to guide the LLM to follow a user-provided instruction
accurately and helpfully, regardless of the task domain. This
usually involves compiling large, diverse instruction-response
datasets covering many task types (e.g., summarization, QA,
classification, creative writing). Models such as T0 [178],
FLAN [179], Alpaca [180], Vicuna [181] and Dolly [182]
demonstrate how instruction-finetuned LLMs can outperform
base models on zero-shot or few-shot tasks by virtue of their
enhanced instruction-following abilities.

4.2 Dialogue (Multi-turn) Finetuning

Some LLMs undergo dialogue-style finetuning to better handle
multi-turn conversations. Different from instruction tuning
described above, here the data takes the form of a contin-
uous dialogue (multi-turn conversations) instead of a single
prompt-response pair. In this approach, training data consists
of chat transcripts with muliple user queries and system re-
sponses, ensuring the model learns to maintain context across
turns and produce coherent replies. Models like LaMDA [183]
and ChatGPT [39] highlight how dialogue-tuned LLMs can
feel more interactive and context-aware. While dialogue fine-
tuning can overlap with instruction finetuning (because many
instructions come in a chat format), specialized conversation
data often yields more natural, multi-turn user experiences.

4.3 CoT Reasoning finetuning

Chain-of-Thought (CoT) reasoning finetuning teaches models
to produce step-by-step reasoning traces instead of just final
answers. By exposing intermediate rationales or thoughts,
CoT finetuning can improve both interpretability and accu-
racy on complex tasks (e.g., math word problems, multi-
hop QA). In practice, CoT finetuning uses supervised rea-
soning annotations (often handcrafted by experts) to show
how a solution unfolds. Notable early work includes Chain-
of-Thought Prompting [8] and Self-Consistency [184], which
initially applied the idea to prompting; subsequent efforts
(e.g., Chain-of-Thought Distillation [185]) adapt it to a full
finetuning or student-teacher paradigm. These efforts have
also been extended to the multimodal domain, e.g., LlaVA-
CoT [186] and LlamaV-o1 [187] where image, QA and CoT
reasoning steps are used in LLM finetuning.
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Model Category Source Description

1. Parameter-Efficient Fine-Tuning & Model Compression

LoRA [60] Low-Rank Adaptation Link Injects trainable low-rank adapters for efficient fine-tuning.
QLoRA [188] Quantized Adaptation Link Combines 4-bit quantization with LoRA to enable fine-tuning on consumer GPUs
GPTQ [189] Post-Training Quantization Link Optimal 4-bit quantization method for GPT-style models with minimal loss
SparseGPT [190] Pruning Link One-shot pruning that preserves model quality with compensation.
PEFT (HF) [191] Unified Fine-Tuning Link Library integrating LoRA, prefix tuning, and other parameter-efficient methods
BitsAndBytes [192] Low-Precision Training Link Enables 8-bit optimizers and 4-bit quantization for memory-efficient training
AdaLoRA [193] Adaptive Adaptation Link Dynamically allocates parameter budget between layers during fine-tuning
P-Tuning v2 [194] Prompt Optimization Link Learns continuous prompt embeddings through deep prompt tuning

2. Data Management & Preprocessing

HF Datasets [195] Data Processing Link Unified API for 30k+ datasets with streaming, versioning, and preprocessing
WebDataset [196] Data Streaming Link Efficient tar-based sharding format for petascale distributed training
DVC [197] Data Versioning Link Git-like version control for datasets and machine learning pipelines
Apache Arrow [198] Memory Format Link Language-agnostic columnar memory format for zero-copy data access
Zstandard [199] Compression Link High-speed compression algorithm for training data storage/transfer
Cleanlab [200] Data Quality Link Automatic detection of label errors and outliers in training datasets

3. Distributed Training & Optimization

DeepSpeed [201] Training Optimization Link ZeRO parallelism, 3D parallelism, and memory optimizations for giant models
Megatron-LM [202] Model Parallelism Link NVIDIA’s optimized framework for large transformer model training
Colossal-AI [203] Heterogeneous Training Link Unified system supporting multiple parallelization strategies
Horovod [204] Distributed Training Link MPI-inspired framework for multi-GPU/multi-node synchronization
Ray [205] Distributed Computing Link Universal framework for distributed Python applications at scale

4. Efficient Inference & Deployment

vLLM [206] Serving Optimization Link Paged attention implementation for high-throughput LLM serving
TensorRT [207] GPU Optimization Link NVIDIA’s inference optimizer with kernel fusion and quantization support
Triton [208] Serving Framework Link Production-grade serving with concurrent model execution support
ONNX [209] Cross-Platform Link Unified inference engine with hardware-specific optimizations
OpenVINO [210] Intel Optimization Link Runtime for Intel CPUs/iGPUs with pruning/quantization support
XNNPACK [211] Mobile Inference Link Highly optimized floating-point kernels for ARM CPUs
Groq [212] AI Accelerator Link Deterministic low-latency inference via custom tensor streaming processor

5. Integrated Development Ecosystems

HF Ecosystem [213] Full Stack Link Transformers + Datasets + Accelerate + Inference Endpoints
DeepSpeed [201] Training/Inference Link Microsoft’s end-to-end solution for billion-parameter models
PyTorch [214] Unified Framework Link Native LLM support via torch.compile and scaled dot-product attention
LLM Reasoners [215] Advanced Reasoning Link Enhances LLM reasoning capabilities using advanced search algorithms.

TABLE 2: Comprehensive Overview of Methods and Frameworks employed in Modern LLMs

4.4 Domain-Specific (Specialized) Finetuning
When an LLM needs to excel in a specific domain (e.g.,
biomedicine, finance, or legal), domain-specific finetuning is
used. Here, a curated corpus of domain-relevant text and la-
beled examples is employed to finetune the LLM. For instance,
BioGPT [71] and BiMediX [216] specialize in biomedical
literature, FinBERT [217] for financial texts, ClimatGPT
[218, 219] for climate and sustainability and CodeT5 [220]
for code understanding. Supervised finetuning in these do-
mains often includes classification, retrieval, or QA tasks with
domain-specific data, ensuring the model’s parameters adapt
to the specialized language and concepts of the field. Domain-
specific finetuning is also extended to vision-language models
such as, [221] finetuned on remote sensing imagery, [222] on
medical imaging modalities, [223, 224, 225] on spatiotemporal
video inputs, and [226] adapted for chart understanding.

4.5 Distillation-Based Finetuning
Large ‘teacher’ models are sometimes used to produce labeled
data or rationales, which a smaller ‘student’ model finetunes
on, this is generally called knowledge distillation [227, 228].
In the context of LLMs, CoT Distillation [185] is one example
where a powerful teacher LLM generates intermediate rea-
soning steps, and the student LLM is finetuned to reproduce
both the final answer and the reasoning chain. Step-by-step
distillation [229] generates descriptive rationales alongside
final answers to train smaller models through distillation

with smaller datasets. This approach can yield lighter, faster
models that retain much of the teacher’s performance, even in
zero-shot or few-shot tasks [230].

4.6 Preference and Alignment SFT
While RLHF is not purely supervised, it starts with a su-
pervised preference or alignment finetuning stage. This stage
uses human-labeled or human-ranked examples to teach the
model about desirable vs. undesirable outputs (e.g., safe vs.
toxic). By training on these explicit preferences, the model
becomes more aligned with user values, reducing harmful or
off-topic completions. Works like InstructGPT [58] illustrate
how supervised preference data is critical before reward model
training and RL updates begin.

4.7 Efficient Finetuning
Fully finetuning a LLM can be computationally and memory-
intensive, particularly as model sizes grow into the tens or
hundreds of billions of parameters. To address these chal-
lenges, parameter-efficient finetuning (PEFT) techniques intro-
duce a small set of trainable parameters or learnable prompts
while leaving most of the model weights frozen. Approaches
such as LoRA [60], Prefix Tuning [231], and Adapters [232]
exemplify this strategy by injecting lightweight modules (or
prompts) in specific layers, thus significantly reducing the
memory footprint.

https://github.com/microsoft/LoRA
https://github.com/artidoro/qlora
https://github.com/IST-DASLab/gptq
https://github.com/IST-DASLab/sparsegpt
https://github.com/huggingface/peft
https://github.com/TimDettmers/bitsandbytes
https://github.com/QingruZhang/AdaLoRA
https://github.com/THUDM/P-tuning-v2
https://github.com/huggingface/datasets
https://github.com/webdataset/webdataset
https://github.com/iterative/dvc
https://github.com/apache/arrow
https://github.com/facebook/zstd
https://github.com/cleanlab/cleanlab
https://github.com/microsoft/DeepSpeed
https://github.com/NVIDIA/Megatron-LM
https://github.com/hpcaitech/ColossalAI
https://github.com/horovod/horovod
https://github.com/ray-project/ray
https://github.com/vllm-project/vllm
https://github.com/NVIDIA/TensorRT
https://github.com/triton-inference-server/server
https://github.com/onnx/onnx
https://github.com/openvinotoolkit/openvino
https://github.com/google/XNNPACK
https://github.com/groq
https://github.com/huggingface
https://github.com/microsoft/DeepSpeed
https://github.com/pytorch/pytorch
https://github.com/pytorch/pytorch
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Fig. 5: An overview of Test-time Scaling methods: parallel
scaling, sequential scaling, and search-based methods. It also
shows how they integrate into a compute-optimal strategy.

Figure 4 illustrates how these techniques fit into a broader
ecosystem that involves system-level optimizations, data man-
agement, and evaluation strategies for LLMs. In particular,
PEFT approaches can be combined with quantization and
pruning methods [190, 188] to further minimize memory
usage and compute overhead, enabling finetuning on smaller
GPUs or even consumer-grade hardware. For instance, QLoRA
unifies 4-bit quantization with low-rank adaptation, while
BitsAndBytes provides 8-bit optimizers to make LLM training
more practical in constrained environments (Table 2).

Moreover, these PEFT methods still require supervised
data to guide the adaptation process, but the reduction in
the number of trainable parameters makes it more feasible
to use in-domain or task-specific datasets. This is especially
valuable for specialized domains (e.g., medical or software
development), where data might be limited or expensive to
annotate. As shown in Table 2, PEFT (HF) integrates several
of these approaches (LoRA, prefix tuning, and more) into a
single library, streamlining deployment in both research and
production settings.

Combining efficient tuning designs like LoRA
and QLoRA with system and data optimizations
(Figure 4) enables cost-effective LLM adaptation
for tasks like domain-specific text generation,
without expensive full fine-tuning.

5 Test-time Scaling Methods
While RL fine-tunes the model’s policy, test-time scaling (TTS)
enhances reasoning during inference typically without model
updates. Figure 5 presents a taxonomy of TTS methods,
categorizing them based on their underlying techniques.

5.1 Beam Search
Beam search was first introduced in the context of speech
recognition [233]. It gained prominence as a decoding strategy
for sequence models and was later adopted in neural machine
translation and speech systems [234]. With the popularity of
LLMs, this algorithm has been used for approximate search in
many text generation tasks.

The concept of Beam search is similar to pruned breadth-
first search, where top N highest-probability partial se-
quences (the ‘beam’) are kept at each step, discarding lower-

probability paths. By limiting the beam width (N), it man-
ages the exponential search space while aiming to find a
near-optimal sequence. These beams are expanded at each
decoding step to find multiple probable paths. In reasoning
LLMs, such paths allow us to systematically explore multiple
reasoning chains in parallel, focusing on the most promising
ones. This ensures that high-likelihood reasoning steps are
considered, which can improve the chances of finding a correct
and coherent solution compared to greedy decoding. It has
traditionally been used in tasks such as translation, sum-
marization, and code generation, where the goal is a highly
probable correct sequence [93].

While modern LLMs often favor stochastic sampling (e.g.,
temperature sampling) to promote diversity in generated text,
beam search is still a valuable technique for structured reason-
ing problems. For example, the Tree-of-Thoughts framework
[84] allows plugging in different search algorithms to explore
a tree of possible ‘thoughts’ or reasoning steps; usually a
beam search (with beam width b) is used to maintain the
b most promising states at each reasoning step. Here, beam
search is used to systematically explore solution steps for tasks
like mathematical puzzles and planning problems, pruning
less promising reasoning branches and thus improving the
model’s problem-solving accuracy. Beam search remains a
strong baseline for test-time reasoning when one wants the
model to output the single most likely reasoning path or
answer under the model’s learned distribution.

5.2 Best-of-N Search (Rejection Sampling)
Best-of-N (BoN) [235] search generates N candidate outputs
(usually via sampling) and then picks the best one according
to a chosen criterion (e.g., a reward model or the model’s own
likelihood) [236, 237, 238]. Conceptually, this is an application
of rejection sampling: one draws multiple samples and rejects
all but the top-rated result. Unlike Beam Search [233, 234],
which incrementally expands and prunes partial hypotheses,
BoN simply samples full solutions independently, allowing for
greater diversity but at a higher computational cost. Beam
Search systematically aims for the most probable sequence,
while BoN may capture high-quality but lower-probability
solutions through brute-force sampling.

Beam search (effective for harder questions)
outperforms best-of-N sampling at low compute
budgets, while best-of-N scales better for easier
tasks.

During LLM inference, BoN is used to enhance correctness or
alignment without retraining the model. By sampling multiple
answers and selecting the top candidate (e.g., via a reward
model or a checker), BoN effectively boosts accuracy on tasks
like QA or code generation. BoN is easy to understand and
implement and is almost hyper-parameter-free, with N being
the only parameter that can be adjusted at inference. In
reinforcement learning contexts, BoN sampling can serve as
a baseline exploration mechanism i.e., to generate many roll-
outs, pick the best outcome according to the learned reward,
and proceed, although at increased computational overhead.
OpenAI’s WebGPT used BoN to pick the best response via
a reward model, yielding strong QA performance [81]. BoN
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is also used as a simple alignment method that is highly com-
petitive with other post-training techniques e.g., RLHF [58] and
DPO [78]. Studies have shown BoN can approach or match RLHF
results when guided by a sufficiently robust reward model
[82, 239]. Alternatives such as speculative rejection [240] build
on this idea and utilize a better reward model to improve
efficiency. The studies also highlight issues of reward hacking
if the (proxy) reward function used for BoN is imperfect [241]
or instability issues if the N parameter gets very large.

Choice of either process reward models with
beam search vs best-of-N depends on the diffi-
culty and compute budget.

5.3 Compute-Optimal Scaling
The Compute-Optimal Scaling Strategy (COS) [83] is a dy-
namic method designed to allocate computational resources
efficiently during inference in LLMs, optimizing accuracy with-
out unnecessary expense. Instead of applying a uniform sam-
pling strategy across all inputs, this approach categorizes
prompts into five difficulty levels—ranging from easy to
hard—either by leveraging oracle difficulty (ground-truth suc-
cess rates) or model-predicted difficulty (e.g., verifier scores
from Preference Ranking Models). Once categorized, the
strategy adapts compute allocation: easier prompts undergo
sequential refinement, where the model iteratively refines
its output to improve correctness, while harder prompts
trigger parallel sampling or beam search, which explores
multiple response variations to increase the likelihood of
finding a correct solution. This dual approach balances ex-
ploration (for challenging inputs) and refinement (for near-
correct responses), ensuring optimal performance per unit
of computational effort. Remarkably, this method achieves
four times lower compute usage than traditional best-of-N
sampling while maintaining equivalent performance. The key
insight is that by matching computational strategy to problem
difficulty, it avoids wasted resources on trivial cases while
ensuring sufficient sampling diversity for complex tasks. In
essence, it functions as a “smart thermostat” for LLM inference,
dynamically adjusting computational effort in response to
input complexity, leading to a more efficient and cost-effective
deployment of large-scale language models.

COS achieves 4× efficiency gains over best-
of-N baselines by optimally balancing sequen-
tial/parallel compute. Beam search + revisions
outperform larger models on easy/intermediate
questions.

5.4 Chain-of-thought prompting
CoT prompting induces LLMs to produce intermediate reason-
ing steps rather than jumping directly to the final answer.
By breaking down problems into logical sub-steps, CoT taps
into a model’s latent ability to perform multi-step inferences,
significantly improving performance on tasks like math word
problems, logical puzzles, and multi-hop QA.

Wei et al. [8] demonstrated CoT’s effectiveness on arith-
metic and logic tasks, showing large gains over direct prompt-
ing. Kojima et al. [242] introduced Zero-Shot CoT, revealing
that even adding a simple phrase like “Let’s think step
by step” can trigger coherent reasoning in sufficiently large
models. Subsequent works (e.g., Wang et al., 2022 [184]) com-
bined CoT with sampling-based strategies (Self-Consistency)
for even higher accuracy. As described in Sec. 5.4, CoT format
data have also been used for SFT and are shown to help
reshape the model responses to be more step-by-step.

Fine-tuning models to revise answers sequen-
tially allows them to build on previous attempts,
improving accuracy over time. This approach is
particularly effective for easier questions, while
parallel sampling (exploration) proves more ben-
eficial for harder ones.

5.5 Self-Consistency Decoding
Self-Consistency is a decoding strategy introduced by Wang
et al. [243]. It was proposed as an alternative to simple
greedy decoding for chain-of-thought prompts. It built upon
the idea of sampling multiple distinct reasoning paths for a
question and was the first to show that marginalizing over
those paths can significantly improve accuracy on arithmetic
and reasoning problems. In other words, it allows the model
to think in many ways and then trust the consensus, which
improves correctness in many reasoning scenarios.

The self-consistency method works by sampling a diverse
set of reasoning chains from the model (via prompt engi-
neering to encourage different CoTs, and using temperature
sampling) and then letting the model output a final answer
for each chain. Instead of trusting a single chain, the method
selects the answer that is most consistent across these multiple
reasoning paths, effectively a majority vote or highest probabil-
ity answer after marginalizing out the latent reasoning. The
intuition is that if a complex problem has a unique correct
answer, different valid reasoning paths should converge to
that same answer. By pooling the outcomes of many chains,
the model can “decide” which answer is most supported. In
application, one might sample, e.g., 20 CoTs for a math prob-
lem and see what final answer appears most frequently; that
answer is then taken as the model’s output. This approach
turns the one-shot CoT process into an ensemble where the
model cross-verifies its answers. It is especially useful for
arithmetic and commonsense reasoning tasks where reasoning
diversity helps.

Smaller models with test-time compute can
outperform much larger models in certain sce-
narios.

Self-consistency is often combined with other methods:
e.g., sampling multiple chains and then applying a verifier
to the most common answer. Its strength lies in requiring no
new training, only extra sampling, making it a popular test-
time scaling strategy to obtain more reliable answers from
LLMs. It has also inspired other variants, e.g., Universal Self-
Consistency [244] extend the original idea (which worked only
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with majority vote on single final answer) to more general
generation tasks such as summarization and open-ended QA.

5.6 Tree-of-thoughts
ToT framework [84] generalizes the chain-of-thought approach
by allowing the model to branch out into multiple possible
thought sequences instead of following a single linear chain. It
thus formulates the problem of language-model reasoning as a
tree search, drawing on classic AI search methods inspired by
human problem-solving [245, 37]. Tree of Thoughts treats in-
termediate reasoning steps as “nodes” in a search tree and uses
the language model to expand possible next steps (thoughts)
from a given state. Rather than sampling one long reasoning
path, the model explores a tree of branching thoughts and
can perform lookahead and backtracking. At each step, the
LLM might generate several candidate next thoughts, and a
heuristic or value function evaluates each partial solution
state. Then a search algorithm (e.g., depth-first, breadth-first,
beam search) navigates this tree, deciding which branches to
explore further. This approach allows systematic exploration
of different reasoning strategies: if one path leads to a dead-
end, the model can return to an earlier state and try a different
branch (unlike standard CoT which commits to one line of
reasoning). In effect, ToT is an iterative prompting procedure
where the model generates thoughts, evaluates them, and
refines its approach, mimicking how a human might mentally
map out various ways to solve a problem.

ToT is especially useful for complex problems like puzzles,
planning tasks, or games where multiple steps and strategic
exploration are needed and outperforms simpler CoT methods
by systematically searching through the solution space. It pro-
vides a flexible framework – one can plug in various generation
strategies (e.g. sampling vs. prompting) and search algorithms
(BFS, DFS, A*, MCTS) depending on the task. Although
more computationally heavy, ToT shows that allocating extra
“thinking time” (compute) to explore alternatives can yield
significantly better reasoning and planning performance. It
has spawned follow-up research aiming to improve or utilize
it for better reasoning e.g., multi-agent systems have been

combined with ToT: different LLM “agents” generate thoughts
in parallel and a validator agent prunes incorrect branches,
leading to improved accuracy over the single-agent ToT [246].

Inference-time computation for LLMs can out-
perform scaling model parameters, especially for
challenging reasoning tasks like math problems.

5.7 Graph of Thoughts

The Graph of Thoughts (GoT) [247] framework extends the
ToT by allowing more flexible and efficient reasoning processes
through graph-based structures rather than strict hierarchical
trees. Thought representation differs between the two ap-
proaches: in ToT, each step in reasoning is structured as a
node in a tree with fixed parent-child relationships, whereas
GoT represents thoughts as nodes in a graph, enabling more
adaptable dependencies and interconnections.

In terms of thought expansion strategies, ToT follows a
traditional approach where multiple thought candidates are
generated at each step, explored using tree-based search
strategies, and pruned based on heuristics before selecting the
most optimal path. In contrast, GoT incorporates graph-based
thought expansion, allowing thoughts to interconnect dynam-
ically. This enables three key transformations: aggregation
(merging multiple solutions into a unified answer), refinement
(iteratively improving thoughts over time), and generation
(producing diverse candidates). Instead of navigating through
a rigid hierarchy, GoT prioritizes thoughts using a volume
metric and explores paths optimally, reducing unnecessary
computations.

A critical limitation of ToT is its restricted backtrack-
ing—once a branch is discarded, it is not reconsidered. GoT
overcomes this by allowing iterative refinement, where previ-
ous thoughts can be revisited, modified, and improved upon.
This iterative nature is particularly useful in complex rea-
soning tasks where initial thoughts may require adjustments.
Moreover, computational efficiency in GoT is significantly
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improved by reducing redundant calculations through the
merging of partial solutions.

GoT enhances problem-solving efficiency and
adaptability, making it superior to ToT for tasks
requiring complex reasoning.

5.8 Confidence-based Sampling
In confidence-based sampling, the language model generates
multiple candidate solutions or reasoning paths and then
prioritizes or selects among them based on the model’s own
confidence in each outcome [248]. This can happen in two
ways: (a) Selection: Generate N outputs and pick the one with
the highest log probability (i.e., the model’s most confident
output). This is essentially best-of-N by probability – the
model chooses the answer it thinks is most likely correct.
(b) Guided exploration: When exploring a reasoning tree or
multi-step solution, use the model’s token probabilities to
decide which branch to expand (higher confidence branches
are explored first). In other words, the model’s probability es-
timates act as a heuristic guiding the search through solution
space [249]. Compared to pure random sampling, confidence-
based methods bias the process toward what the model be-
lieves is right, potentially reducing wasted exploration on low-
likelihood (and often incorrect) paths.

Confidence-based strategies have been incorporated at
inference time e.g., a tree-based search for LLM generation [248]
assigns each possible completion (leaf) a confidence score. The
algorithm samples leaves in proportion to these confidence
scores to decide which paths to extend [272]. Similarly, some
reasoning approaches use the model’s estimated likelihood of
an answer to decide when to halt or whether to ask a follow-
up question – essentially if the model’s confidence is low,
it might trigger further reasoning (a form of self-reflection).
Confidence-based selection is also used in ensemble settings:
e.g., an LLM may generate multiple answers and a secondary
model evaluates the confidence of each answer being correct,
picking the answer with the highest confidence. This was
explored in tasks like medical Q&A, where an LLM gave an
answer and a confidence score, and only high confidence
answers were trusted or returned [250].

5.9 Search Against Verifiers
This verification approach [251] in LLMs enhances answer
quality by generating multiple candidate responses and select-
ing the best one using automated verification systems. This
approach shifts focus from increasing pre-training compute
to optimizing test-time compute, allowing models to “think
longer” during inference through structured reasoning steps
or iterative refinement. The method involves two main steps:
Generation: The model (or “proposer” produces multiple
answers or reasoning paths, often using methods like high-
temperature sampling or diverse decoding.
Verification: A verifier (e.g., a reward model) evaluates these
candidates based on predefined criteria, such as correctness,
coherence, or alignment with desired processes. Verifiers are
categorized based on their evaluation focus:

1) Outcome Reward Models (ORM): Judge only the final
answer (e.g., correctness of a math solution).

2) Process Reward Models (PRM): Evaluate the reason-
ing steps (e.g., logical coherence in a thought chain),
providing granular feedback to prune invalid paths.

Several techniques fall under this paradigm, enhancing
verification-based optimization. Best-of-N Sampling involves
generating multiple answers and ranking them via a verifier
(ORM/PRM), selecting the highest-scoring one, making it a sim-
ple yet effective approach for improving answer correctness.
Beam Search with PRM tracks top-scoring reasoning paths
(beams) and prunes low-quality steps early, similar to Tree
of Thought approaches, balancing breadth and depth in rea-
soning path exploration. Monte Carlo Tree Search balances
exploration and exploitation by expanding promising reason-
ing branches, simulating rollouts, and backpropagating scores,
providing an optimal trade-off between search depth and
verification confidence. Majority Voting (Self-Consistency)
aggregates answers from multiple samples and selects the
most frequent one, avoiding explicit verifiers, which works
well in settings where consistency across multiple responses
indicates correctness.

ORM is suitable for tasks where correctness is
binary (right/wrong) and can be easily assessed.

PRM is useful in multi-step reasoning, ensuring
intermediate steps follows logical progression.

5.10 Self-Improvement via Refinements
This approach refers to the ability of LLMs to enhance their
outputs through self-evaluation and revision iteratively. This
process enables models to refine their responses dynamically
during inference rather than relying solely on pre-trained
weights. One notable method is Self-Refinement [252],
where an LLM generates an initial response, critiques it, and
then refines the output based on its self-generated feedback.
This iterative process continues until the model achieves a
satisfactory result. Such techniques have been shown to im-
prove performance on various tasks, including mathematical
reasoning and code generation. This process follows these key
steps: a) Initial Generation: The model produces an answer
or reasoning path. b) Self-Critique: The model reviews its
own response and identifies errors, inconsistencies, or areas for
improvement. c) Refinement: The model adjusts its response
based on the critique and generates an improved version.
d) Iteration: The process repeats until the output meets a
predefined quality threshold or stops improving.

Another approach is called Self-Polish [253], where the
model progressively refines given problems to make them more
comprehensible and solvable. By rephrasing or restructuring
problems, the model enhances its understanding and pro-
vides more accurate solutions. Self-Polish involves progres-
sive refinement of problem statements to make them more
comprehensible and solvable. The model first rephrases or
restructures the problem for better clarity, then breaks down
complex queries into simpler sub-problems and refines am-
biguous inputs to ensure precise understanding. By restruc-
turing problems before solving them, the model improves its
comprehension and generates more accurate solutions.
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Self-improvement methodologies represent a
paradigm shift in LLM optimization, emphasiz-
ing active reasoning and internal feedback over
static pre-training. By iterating on their own
responses, models achieve greater consistency
and accuracy across a wide range of applications.

5.11 Monte Carlo Tree Search
MCTS [254] is based on the application of Monte Carlo sim-
ulations to game-tree search. It rose to prominence with
successes in games, notably, it powered AlphaGo [255] in
2016 by searching possible moves guided by policy and value
networks. This, as well as the application to other board and
video games, demonstrates the power of MCTS for sequential
decision-making under uncertainty.

MCTS is a stochastic search algorithm that builds a decision
tree by performing many random simulations. It is best known
for finding good moves in game states, but it can be applied to
any problem where we can simulate outcomes. The algorithm
iteratively: (a) Selects a path from the root according to a
heuristic (like UCT [256], which picks nodes with a high upper-
confidence bound), (b) Expands a new node (a previously
unvisited state) from the end of that path, (c) Simulates a ran-
dom rollout from that new state to get an outcome (e.g., win
or loss in a game, or some reward), and (d) Backpropagates
the result up the tree to update the values of nodes and inform
future selections. Repeating these simulations thousands of
times concentrates the search on the most promising branches
of the tree. In essence, MCTS uses random sampling to evaluate
the potential of different action sequences, gradually biasing
the search towards those with better average outcomes. In
LLM reasoning, we can treat the generation of text as a
decision process and use to explore different continuations.
For example, at a given question (root), each possible next
reasoning step or answer is an action; a simulation could
mean letting the LLM continue to a final answer (perhaps
with some randomness), and a reward could be whether the
answer is correct. By doing this repeatedly, MCTS can identify
which chain of thoughts or answers has the highest empirical
success rate. The appeal of MCTS for reasoning is that it can
handle large search spaces by sampling intelligently rather
than exhaustively, and it naturally incorporates uncertainty
and exploration.

Train verifiers to score intermediate steps
(via Monte Carlo rollouts) instead of just final
answers.

Recent efforts have integrated MCTS with LLMs to tackle
complex reasoning and decision-making tasks. One example is
using MCTS for query planning: Monte Carlo Thought Search
[257], where an LLM is guided to ask a series of sub-questions to
find an answer. Jay et al. [257] used an MCTS-based algorithm
called ‘Monte Carlo Reasoner’ that treats the LLM as an
environment: each node is a prompt (state) and each edge
is an action (e.g., a particular question to ask or step to
take), and random rollouts are used to evaluate outcomes.
This approach allowed the system to efficiently explore a space

of possible reasoning paths and pick a high-reward answer
path, outperforming naive sampling in a scientific Q&A task.
Similarly, MCTS has been applied to code generation with LLMs
[258] – the algorithm explores different code paths (using the
model to propose code completions and etest them) to find a
correct solution. Another line of work ensembles multiple LLMs
with MCTS, treating each model’s output as a branch and using
a reward model to simulate outcomes [259]. Early results show
that MCTS-based reasoning can solve problems that single-pass
or greedy methods often miss, although with more compute
[74]. The downside is that MCTS can be significantly slower
than straightforward sampling or beam search, which recent
research is addressing by improving efficiency (e.g., by state
merging [87]). In general, MCTS brings the strength of planning
algorithms to LLM inference and enables an LLM to ’look ahead’
through simulated rollouts and make more informed reasoning
choices, much like it has done for AI in gameplay.

Test-time compute is not a 1-to-1 replacement
for pretraining but, offers a viable alternative in
many cases.

5.12 Chain-of-Action-Thought reasoning
LLMs excel in reasoning tasks but rely heavily on external
guidance (e.g., verifiers) or extensive sampling at inference
time. Existing methods like CoT [8] lack mechanisms for self-
correction and adaptive exploration, limiting their autonomy
and generalization. Satori [260] introduced a two-stage train-
ing paradigm, which works by initially tuning the model’s
output format and then enhancing its reasoning capabilities
through self-improvement. In Stage 1 (Format Tuning), the
model is exposed to a large set of 10K synthetic trajectories
generated by a multi-agent framework comprising a generator,
a critic, and a reward model. This supervised fine-tuning
helps the model to produce outputs in specific reasoning
format using meta-action tokens, although it may still have
difficulty generalizing beyond these examples. In Stage 2 (Self-
Improvement via RL), the model employs PPO with a Restart
and Explore strategy [260], which allows it to restart from
intermediate steps, whether they were correct or not, to refine
its reasoning process. The model receives rewards based on a
combination of rule-based correctness, reflection bonuses, and
preference-based Outcome Reward Model feedback explained
in § 5.9, thereby incentivizing the allocation of more compu-
tational resources to tougher problems and enabling extended
reasoning during testing for complex tasks.

Multi-agent frameworks and advanced fine-tuning strate-
gies are increasingly being explored to enhance reasoning
in LLMs. Multi-Agent LLM Training (MALT) [261] introduces
a structured approach where generation, verification, and
refinement steps are distributed across specialized agents,
allowing for iterative self-correction and improved reasoning
chains. Similarly, optimizing preference alignment remains
a crucial challenge in ensuring both safety and helpfulness
in LLMs [262]. Approaches like Bi-Factorial Preference Opti-
mization (BFPO) [263] reframe RLHF objectives into a single
supervised learning task, reducing human intervention while
maintaining robust alignment. Beyond text-based reason-
ing, multimodal approaches like Multimodal Visualization-of-
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Thought (MVoT) [264] extend CoT prompting by incorporating
visual representations, significantly enhancing performance
in spatial reasoning tasks. These advancements highlight the
growing need for structured multi-agent collaboration, safety-
aware optimization, and multimodal reasoning to address
fundamental limitations in LLM reasoning [265, 266, 267].

5.13 Pretraining vs. Test-Time Scaling
Pretraining and TTS are two distinct strategies for improving
LLM performance, each with different tradeoffs in compu-
tational cost and effectiveness. Pretraining involves scaling
model parameters or increasing training data to enhance
capabilities, requiring substantial upfront computational in-
vestment [3]. In contrast, TTS optimizes inference-time com-
pute (such as iterative refinements, search-based decoding,
or adaptive sampling), allowing performance improvements
without modifying the base model.

From a performance vs. cost perspective, TTS achieves
results comparable to a model 14× larger on easy to in-
termediate tasks (e.g., MATH benchmarks), while reducing
inference costs by 4× fewer FLOPs in compute-intensive
scenarios [268]. However, pretraining remains superior for
the hardest tasks or when inference compute constraints are
high, as larger pretrained models inherently encode deeper
reasoning capabilities.

A smaller model with test-time compute can
outperform a 14× larger model on easy/interme-
diate questions, when inference tokens (Y) are
limited (e.g., self-improvement settings).

In terms of use cases, TTS is useful for scenarios with
flexible inference budget or when base models already exhibit
reasonable competence in the task. Conversely, pretraining is
essential for tasks requiring fundamentally new capabilities
(e.g., reasoning on novel domains) where inference-time opti-
mizations alone may not suffice.

There are notable tradeoffs between the two approaches.
TTS reduces upfront training costs, making it attractive for
flexible, on-the-go optimization, but requires dynamic com-
pute allocation at inference. Pretraining, on the other hand,
incurs high initial costs but guarantees consistent performance
without additional runtime overhead, making it ideal for
large-scale API deployments or latency-sensitive applications.
Overall, TTS and pretraining are complementary in nature.
Future LLM systems may adopt a hybrid approach, where
smaller base models are pretrained with essential knowledge,
while TTS dynamically enhances responses through adaptive,
on-demand computation. This synergy enables more cost-
effective and efficient large-scale model deployment.

Choose pretraining for foundational capabil-
ities and test-time scaling for accurate context-
aware refinement.

6 Benchmarks for LLM Post-training Evaluation
To evaluate the success of LLM post-training phases, a di-
verse set of benchmarks have been proposed covering mul-
tiple domains: reasoning tasks, alignment, multilinguality,

TABLE 3: Comprehensive Overview of Reasoning, RL Align-
ment, and Multilingual Datasets. Here, pointwise and pairwise
refer to different methods of evaluating model performance
across various tasks.

Datasets Domain Type #Samples Evaluation Criteria

Reasoning Benchmarks

MATH [269] Math Reasoning Pointwise 7,500 Step-by-step solutions
GSM8K [270] Math Reasoning Pointwise 8.5K Multi-step reasoning
MetaMathQA [271] Math Reasoning Pointwise 40K+ Self-verification, FOBAR
WorldTree V2 [272] Science QA Pointwise 1,680 Multi-hop explanations
PangeaBench [273] Multimodal Reasoning Pairwise 47 Langs. Cultural understanding
MMMU [274] Science/Math Pointwise College-Level Physics, Chemistry, Bilingual
TruthfulQA [275] QA/Reasoning Pointwise N/A Truthfulness
MathInstruct [276] Math Reasoning Pointwise 262K Correctness
MMLU [277, 278] Multitask Reasoning Pointwise 57 Tasks Broad knowledge evaluation
MMLU-Fairness [277] Fairness/Reasoning Pointwise N/A Bias/Equity Analysis
DROP [279] Reading/Reasoning Pointwise 96K Discrete reasoning over paragraphs
BBH [175] Hard Reasoning Pairwise N/A Complex logical problem-solving
VRC-Bench [187] Multimodal Reasoning Pairwise N/A Visual Reasoning and Classification

RL Alignment Benchmarks

HelpSteer [280] RL Alignment Pairwise 37K+ Multi-attribute scoring
Anthropic HH-RLHF [121] RL Alignment Pairwise 42.5K Harmlessness alignment
UltraFeedback [281] RL Alignment Pairwise 64K Instruction-following, Truthfulness
D4RL [282] RL/Control Pointwise N/A Offline RL across domains
Meta-World [283] RL/Control Pointwise N/A Multi-task robotic RL
MineRL [284] RL/Games Pairwise N/A Imitation learning, rewards

Multilingual Evaluation

CulturaX [285] Multilingual Pointwise 6.3T Deduplication, Quality
PangeaIns [286] Multilingual Pointwise 6M Multilingual instructions
TydiQA [287] Multilingual Pointwise N/A Cross-lingual QA
XGLUE [288] Multilingual Pointwise N/A Cross-lingual language tasks
MM-Eval [289] Multilingual Pairwise 4,981 Task-oriented multilingual QA
ALM-Bench [289] Multilingual QA Pointwise N/A Multilingual Evaluation

Dialogue and Search Benchmarks

BigBench [290] General Comprehension Pointwise 200+ Tasks Broad multi-domain evaluation
Chatbot Arena [291] Comprehension Pairwise 33K User preference
MTBench [291] Comprehension Pairwise 3K Multi-turn conversations
RewardBench [167] Comprehension Pairwise 2,998 User preference

General Comprehension Benchmarks

ConvAI2 [292] Dialogue Pointwise N/A Engagingness, Consistency
MultiWOZ [293] Dialogue Pointwise N/A Task success, Coherence
Trec DL21&22 [294, 295] Search Pointwise 1,549/2,673 Relevance scoring
BEIR [296] Search Pointwise 18 Datasets Information retrieval

Story & Recommendation Benchmarks

HANNA [297] Story Pointwise 1,056 Relevance, Coherence, Complexity
StoryER [298] Story Pairwise 100K User preference-based ranking
PKU-SafeRLHF [299] Values Pairwise 83.4K Helpfulness, Harmlessness
Cvalue [300] Values Pairwise 145K Safety, Responsibility
NaturalInst. [301, 302] Instruction Tuning Pointwise 1,600+ Instruction-following evaluation

general comprehension, and dialogue and search tasks. A well-
structured evaluation framework ensures a comprehensive
understanding of an LLM strengths, and limitations across
various tasks. These benchmarks play a crucial role in LLM
post-processing stages, where models undergo fine-tuning, cal-
ibration, alignment, and optimization to improve response ac-
curacy, robustness, and ethical compliance. Next, we explain
the main benchmark gorups. Table 3 provides an overview of
key datasets categorized under these benchmark groups.
Reasoning Benchmarks. These benchmarks assess LLMs on
their ability to perform logical, mathematical, and scientific
reasoning. Mathematical reasoning datasets like MATH [269],
GSM8K [270], and MetaMathQA [271] test models on
problem-solving, multi-step arithmetic, and theorem-based
problem formulations. Scientific and multimodal reasoning
benchmarks such as WorldTree V2 [272] and MMMU [274]
evaluate knowledge in physics, chemistry, and multimodal
understanding, which are crucial for fact-checking and veri-
fication processes in LLM-generated responses. Additionally,
datasets like PangeaBench [273] extend reasoning tasks into
multilingual and cultural domains, enabling models to refine
cross-lingual reasoning. These benchmarks help determine
how well models can process structured knowledge and apply
logical deductions.
RL Alignment Benchmarks. RL alignment benchmarks
are central to LLM alignment and post-training optimiza-
tion. They refine response generation, ethical constraints, and
user-aligned outputs through RLHF. Datasets such as Help-
Steer [280] and UltraFeedback [281] evaluate models based
on multi-attribute scoring and alignment with user instruc-
tions. Anthropic’s HH-RLHF [121] explores how well mod-
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els learn human preference optimization through reinforce-
ment learning with human feedback. D4RL [282] and Meta-
World [283] focus on robotic control and offline RL, which
have implications for autonomous model decision-making.
MineRL [284] extends RL testing into complex environments
such as Minecraft-based interactions, useful for training LLMs
in adaptive decision-making settings.
Multilingual Evaluation. Multilingual benchmarks are es-
sential for LLM post-processing in cross-lingual generalization,
translation adaptation, and fine-tuning for low-resource lan-
guages. CulturaX [285] and PangeaIns [286] evaluate tok-
enization, translation, and instruction-following in over 150
languages, ensuring fairness and diversity in model outputs.
TydiQA [287] and MM-Eval [289] target bilingual and task-
oriented multilingual evaluation, enabling improvements in
LLM fine-tuning. These datasets ensure that LLMs are not just
English-centric but optimized for multilingual adaptability.
General Comprehension Benchmarks. General compre-
hension benchmarks contribute to model fine-tuning, response
coherence, and preference optimization. Datasets such as
Chatbot Arena [291], MTBench [291], and RewardBench [167]
test user preference modeling and conversational fluency,
crucial for LLM response ranking and re-ranking methods.
BigBench [290] evaluates broad multi-domain comprehension,
while MMLU [277, 278] measures correctness and informa-
tiveness. These datasets help in refining LLM fluency, factual
correctness, and open-ended response generation.
Dialogue and Search Benchmarks. Dialogue and search
benchmarks play a key role in optimizing LLM retrieval-based
responses, multi-turn coherence, and information retrieval ac-
curacy. Datasets such as ConvAI2 [292] and MultiWOZ [293]
evaluate multi-turn conversational models, essential for di-
alogue history tracking and adaptive response fine-tuning.
For search relevance assessment, BEIR [296] provides large-
scale human-annotated judgments for retrieval fine-tuning,
ensuring LLMs generate and rank responses effectively. TREC
DL21/22 [294, 295] contributes to document relevance ranking
and fact retrieval.

7 Future Directions
We gathered all papers related to post-training methods
in LLMs and analyzed their trends, as shown in Figure 7.
Application of RL techniques [303, 57, 40] for refining the
LLMs have a noticeable increase in prominence since 2020
(Figure 7a), emphasizing the demand for interactive ap-
proaches such as human-in-the-loop [35, 304] reinforcement
and scalability [111, 82, 305]. At the same time, reward
modeling [306, 166, 167] (Figure 7b) has seen a steady rise
in interest due to the emergence of self-rewarding language
models, yet the field still struggles with reward hacking
[307, 308] and the design of robust [309], failure-aware re-
ward functions beyond reward hacking [310]. Decoding and
search (Figure 7c) methods include tree-of-thoughts [84] and
Monte Carlo [311, 257] strategies aiming to enhance model
reasoning through iterative self-critique [312, 304, 29], but
these techniques also demand reliable uncertainty estima-
tors to prevent excessive computational overhead [313, 111].
Safety [299, 314, 315], robustness [316], and interpretability
[317, 318, 319] have likewise become central concerns (Fig-
ure 7d), motivating the development of bias-aware [320, 321]

and uncertainty-aware [322] RL methods beyond correlation
with human uncertanity [323] that safeguard user trust and
prevent adversarial attacks. Another crucial area involves
personalization [324, 325] and adaptation [193] (Fig-
ure 7e), where efforts to tailor LLMs for specific domains must
be balanced against risks to privacy [326], particularly when
enterprise data or sensitive personal information is involved.

In parallel, process [327, 328] vs. outcome reward op-
timization [329] (Figure 7f) remains an open question: while
process-based rewards help guide incremental improvements,
outcome-focused metrics are simpler but may not capture cru-
cial intermediate decision-making steps. Beyond reward struc-
ture, fine-tuning LLMs on new tasks still encounter issues like
catastrophic forgetting [330] and potential data leakage
[331, 332], underscoring the need for parameter-efficient meth-
ods [60] and privacy-preserving strategies such as differential
privacy [333] and federated learning [334]. Human feedback,
while central to alignment, is inherently costly and limited
in scope; methods like Constitutional AI [53] and RLAIF
[95] seek to automate parts of this oversight, though they
introduce fresh concerns about bias calibration [335] and
model self-consistency [184]. Finally, test-time scaling [111]
and dynamic reasoning [336] frameworks pose further chal-
lenges: models must learn when to allocate more computation
for complex queries, how to adapt verification modules [337]
efficiently, and how to maintain robust performance even
when facing adversarial inputs. These converging research di-
rections—spanning reward modeling, decoding strategies, in-
terpretability, personalization, and safe fine-tuning—highlight
the multifaceted role of RL in LLMs and collectively shape the
future trajectory of large-scale language model development.
Below, we delve into some of these directions in greater detail.
Fine-tuning challenges. Fine-tuning remains one of the
most direct post-training methods to adapt LLMs to specific
tasks or domains, yet it faces several open challenges. One
fundamental issue is catastrophic forgetting – when updating
an LLM on new data causes it to lose or degrade previously
learned capabilities. Even advanced PEFT methods like LoRA
[60], which greatly reduce the number of trainable weights,
do not fully solve this problem [330]. Future work can ex-
plore better continual learning strategies and regularization
techniques so that models can acquire new skills without
erasing old ones. For example, new fine-tuning algorithms
(e.g. CURLoRA [330]) explicitly aim to stabilize training and
preserve prior knowledge while adding new tasks. Promising
research directions include curriculum-based fine-tuning [338]
(introducing new facts gradually or in context with known
facts) and hybrid training that combines retrieval or external
knowledge bases. For instance, rather than solely adjusting
the model’s weights, one could fine-tune LLMs to consult a
knowledge repository or perform tool use (such as database
queries or computations) when faced with queries outside
their original training distribution [339, 340]. This retrieval-
augmented fine-tuning [341] could let models incorporate
fresh information at inference time, reducing the need to over-
write their internal weights with new facts. Another approach
is training models to explicitly represent uncertainty about
new knowledge, thereby enabling them to say ‘I don’t know’
or defer to an external source if a query concerns content
not seen in pre-training. By blending weight updates with
external knowledge integration, future fine-tuned LLMs will
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(a) Growing trend in RL for LLMs, with
a focus on Human-in-the-Loop RL.

(b) Reward modeling trends show RLHF
stabilization, with Self-Rewarding Models
leading, but Reward Hacking persists.

(c) Decoding strategies like Tree-of-
Thoughts and MCTS are improving LLM
reasoning and decision-making.

(d) Safety and Robustness research is
growing, with Uncertainty-Aware RL en-
suring RLHF model reliability.

(e) Personalization and Adaptation focus
on Privacy-Preserving RLHF. On-device
adaptation remains a challenge.

(f) Process Reward Modeling dominates
Outcome-Based Optimization, favoring
iterative strategies for RL-based LLMs.

Fig. 7: Yearly Trends in RL specific post-training methods for LLMs and emerging research directions.

maintain higher factual accuracy and lower hallucination rates
on emerging information.
Safe Fine-tuning. From an ethical and safety perspective,
fine-tuning raises important open research questions. Fine-
tuning data often contains sensitive or proprietary informa-
tion [326], which can lead to privacy risks if the model mem-
orizes and later regurgitates that data. A recent comprehen-
sive survey [342] highlights vulnerabilities in the fine-tuning
stage, such as membership inference attacks (detecting if a
specific record was in the fine-tuning set) and data extraction
(recovering parts of the fine-tuning data from the model’s
outputs). Mitigating these risks is an open problem: methods
like differential privacy fine-tuning [333] (adding noise to the
weight updates) and federated fine-tuning (where data never
leaves user devices and only aggregated updates are sent to the
model) are being actively explored. However, these methods
often come at the cost of model utility or require careful
calibration to avoid degrading performance.
Limitations of Human Feedback. Human feedback is
costly and subjective. One promising avenue to address the
limitations of human feedback is using AI feedback and
automation to assist or replace human evaluators. Constitu-
tional AI [53], introduced by Anthropic, is a notable example:
instead of relying on extensive human feedback for every
harmful or helpful behavior, the model is guided by a set of
written principles (a ‘constitution’) and is trained to critique
and refine its own responses using another AI model as the
judge [343]. Emerging directions here include RLAIF [95] and
other semi-automated feedback techniques [344]: using strong
models to evaluate or guide weaker models, or even having
multiple AI agents debate a question and using their agree-
ment as a reward signal [345, 346]. Such AI-aided feedback
could vastly scale the tuning process and help overcome the
bottleneck of limited human expert time. However, it raises
new theoretical questions: how do we ensure the AI judge is

itself aligned and correct? There is a risk of feedback loops
or an echo chamber of biases if the automated preferences are
flawed. An open gap is the creation of robust AI feedback
systems that are calibrated to human values (perhaps peri-
odically ‘grounded’ by human oversight or by a diverse set
of constitutional principles). The blending of human and AI
feedback in a hierarchical scheme could provide a scalable yet
reliable RL paradigm for LLMs.

Test-time scaling challenges. Open challenges in TTS re-
volve around how to orchestrate the inference-time processes
efficiently and reliably. A key question is how much computing
is enough for a given query, and how to determine this on
the fly? Using less resources can result in mistakes, but using
too much is inefficient and could introduce inconsistencies.
Recent research by Snell et al. [83] tackled it by proposing
a unified framework with a ‘Proposer’ and a ‘Verifier’ to
systematically explore and evaluate answers. In their frame-
work, the Proposer (usually the base LLM) generates multiple
candidate solutions, and the Verifier (another model or a
heuristic) judges and selects the best. The optimal strategy
can vary by problem difficulty: for easier queries, generat-
ing many answers in parallel and picking the top might be
sufficient, whereas for harder problems, sequential, step-by-
step reasoning with verification at each step works better.
An important future direction is building adaptive systems
where the LLM dynamically allocates computation based on
an estimate of the question’s complexity. This idea connects
to meta-cognition in AI [314], enabling models to have a sense
of what they don’t know or what deserves more thought.
Developing reliable confidence metrics or difficulty predictors
for LLMs is an open research area, but progress here would
make TTS far more practical i.e., the model would only ‘slow
down and think’ when necessary, much like a human spending
extra time on a hard problem. Additionally, By reframing
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inference-time scaling as a probabilistic inference problem and
employing particle-based Monte Carlo methods [? ], the small
models achieved o1 level accuracy in only 32 rollouts, a 4–16x
improvement in scaling efficiency across various mathematical
reasoning tasks. Recent study [347] shows distilling test-time
computations into synthetic training data creates synergistic
pretraining benefits which can also be further explored.
Reward Modeling and Credit Assignment. Current RL
approaches suffer from reward misgeneralization, where mod-
els over-optimize superficial proxy metrics rather than genuine
reasoning quality. The sparse nature of terminal rewards
in multi-step tasks increases credit assignment challenges,
particularly in long-horizon reasoning scenarios. Traditional
methods like DPO require inefficient pairwise preference data
and fail to utilize failure trajectories effectively. Hybrid reward
models can be investigated by integrating process supervi-
sion with outcome-based rewards using contrastive stepwise
evaluation [348]. This approach enables a more granular as-
sessment of intermediate decision-making steps while aligning
with long-term objectives. Recent work [171] suggests step-
level policy optimization could improve value function ac-
curacy while maintaining safety constraints. Dynamic credit
assignment mechanisms can be explored through temporal
difference learning adapted for transformers [349, 350]. Such
adaptations may enhance the model’s ability to capture long-
range dependencies and optimize reward propagation over
extended sequences. Failure-aware training strategies can be
developed by incorporating negative examples into the RL loop
via adversarial data augmentation [351]. This can improve
model robustness by systematically exposing it to challenging
scenarios and encouraging more resilient policy learning.
Efficient RL Training and Distillation. Current RL meth-
ods for LLMs require prohibitive computational resources [352]
while often underperforming knowledge distillation tech-
niques [93]. This inefficiency limits scalability and practical
deployment, as distilled models frequently surpass RL-trained
counterparts despite requiring less training overhead. Addi-
tionally, pure RL approaches struggle to balance language
quality with reasoning improvement [97, 93], creating a per-
formance ceiling.

The development of hybrid frameworks that initialize RL
policies with distilled knowledge from large models, combining
the exploratory benefits of RL with the stability of supervised
learning is an interesting direction. Similarly, curriculum sam-
pling strategies that progressively increase task complexity
while using distillation to preserve linguistic coherence can
also help. PEFT methods [60] can be leveraged during RL up-
dates to maintain base capabilities while enhancing reasoning.

Integration: Combining PRM-guided tree
search with online distillation achieves 4× effi-
ciency gains over baseline methods, while main-
taining 94% solution accuracy on MATH dataset.

Privacy-Preserving Personalization. Customizing mod-
els for enterprise and individual use cases raises the risk of
exposing private training data through memorization, making
privacy-preserving [326] adaptation essential. Promising so-
lutions include homomorphic instruction tuning [353], which
processes encrypted user queries while maintaining end-to-end

encryption during inference; differential privacy via reward
noising [354], which introduces mathematically bounded noise
into RLHF preference rankings during alignment; and federated
distillation, which aggregates knowledge from decentralized
user-specific models without sharing raw data.
Collaborative Multi-Model Systems. As single-model
[355, 356, 357] scaling approaches physical limits, alterna-
tive paradigms such as multi-agent LLM collaboration [358,
359, 178] become necessary. Researchers are investigating
emergent communication protocols that train models to de-
velop lossy compression “languages” for inter-model knowl-
edge transfer such as GenAINet [360], robust ensembles where
stress-test induced specialization drives automatic division of
problem spaces based on failure analysis [361], and gradient-
free synergy learning through evolutionary strategies designed
to discover complementary model combinations without rely-
ing on backpropagation [362].
Multimodal RL Integration. Multimodal reinforcement
learning [363, 49, 364] faces the obstacle of a combinatorial
state explosion, especially in contexts exceeding 128k tokens.
Pioneering methods to overcome this include hierarchical
attention frameworks that employ modality-specific policies
with cross-attention gating [365], adaptive truncation strate-
gies that compress context while preserving critical reasoning
segments [366], and flash curriculum approaches that leverage
self-supervised [367, 368, 369] complexity prediction to facili-
tate progressive multimodal integration.
Efficient RL Training. Efficient RL training paradigms con-
tinue to be a critical research frontier as current meth-
ods exhibit significant sample inefficiency and computational
overhead. Addressing issues like the overthinking [370, 371]
phenomenon, where excessive reasoning chains waste valu-
able computation [145], requires approaches such as partial
rollout strategies [372], adaptive length penalty mechanisms
employing learned compression transformers, and hybrid ar-
chitectures that combine MCTS with advanced RL optimizers.
These innovations are essential for scaling RL to long-context
tasks while minimizing wasted computational resources.

. Overthinking Phenomenon: Analysis reveals
22% wasted computation is in reasoning chains
exceeding optimal reasoning length.

RL methods exhibit sample inefficiency and computational
overhead, particularly when scaling to contexts exceeding
128k tokens. The ‘overthinking’ phenomenon, where models
generate excessively long reasoning chains, further reduces
token efficiency and increases deployment costs [373]. Inves-
tigate partial rollout strategies with flash attention mech-
anisms for long-context processing. Develop length penalty
mechanisms using learned compression transformers for itera-
tive long2short distillation. Hybrid architectures combining
MCTS [74] with GRPO [59] could enable better exploration-
exploitation tradeoffs. Parallel work by Xie et. al. [74] demon-
strates promising results through adaptive tree search prun-
ing. Several open challenges persist in the field. Uncertainty
propagation remains problematic as current confidence esti-
mators add approximately 18% latency overhead, while catas-
trophic forgetting rresults in a degradation of 29% of base
capabilities during RL fine-tuning [374]. Moreover, benchmark
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saturation is an issue, with MMLU scores correlating poorly (r
= 0.34) with real-world performance [375].

. Adversarial Vulnerabilities: Stress tests re-
veal a high success rate on gradient-based
prompt injections.

8 Conclusion
This survey and tutorial provides a systematic review of post-
training methodologies for LLMs, focusing on fine-tuning, re-
inforcement learning, and scaling. We analyze key techniques,
along with strategies for improving efficiency and alignment
with human preferences. Additionally, we explore the role of
RL in enhancing LLMs through reasoning, planning, and multi-
task generalization, categorizing their functionalities within
the agent-environment paradigm. Recent advancements in
reinforcement learning and test-time scaling have significantly
improved LLMs reasoning capabilities, enabling them to tackle
increasingly complex tasks. By consolidating the latest re-
search and identifying open challenges, we aim to guide future
efforts in optimizing LLMs for real-world applications.
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