An Introduction to Causal Inference
Fabian Dablander!

! Department of Psychological Methods, University of Amsterdam

Causal inference goes beyond prediction by modeling the outcome of interventions and formal-
izing counterfactual reasoning. Instead of restricting causal conclusions to experiments, causal
inference explicates the conditions under which it is possible to draw causal conclusions even
from observational data. In this paper, I provide a concise introduction to the graphical approach
to causal inference, which uses Directed Acyclic Graphs (DAGs) to visualize, and Structural
Causal Models (SCMs) to relate probabilistic and causal relationships. Successively, we climb

what Judea Pearl calls the “causal hierarchy” —

moving from association to intervention to

counterfactuals. I explain how DAGs can help us reason about associations between variables
as well as interventions; how the do-calculus leads to a satisfactory definition of confounding,
thereby clarifying, among other things, Simpson’s paradox; and how SCMs enable us to reason
about what could have been. Lastly, I discuss a number of challenges in applying causal

inference in practice.
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Introduction

Although skeptical of induction and causation, David Hume
gave a definition of a cause that is widely used today (Hume,
1748, p. 115; see also Greenland, 2011):

“We may define a cause to be an object, followed
by another, [...] where, if the first object had not
been, the second had never existed.”

Karl Pearson, a foundational figure in mathematical statis-
tics, would have none of it; for him, correlation was central
to science, causality being merely a special case of corre-
lation. He abhorred the counterfactual element inherent in
Hume’s definition, yet sought to classify correlations into
“genuine” and “spurious” (Aldrich, 1995). While Pearson
lacked the formal framework to do this rigorously, modern
causal inference provides such a framework. Going beyond
Pearson, causal inference takes the counterfactual element
in Hume’s definition as the key building block; yet it also
lays bare its “fundamental problem”: the fact that we, per
definition, cannot observe counterfactuals. For example, a
patient cannot receive and at the same time not receive the
treatment. The potential outcome framework, formalized for
randomized experiments by Neyman (1923/1990) and devel-
oped for observational settings by Rubin (1974), defines for
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all individuals such potential outcomes, only some of which
are subsequently observed. This framework dominates appli-
cations in epidemiology, medical statistics, and economics,
stating the conditions under which causal effects can be esti-
mated in rigorous mathematical language (e.g., Rosenbaum
& Rubin, 1983; Hernan & Robins, 2020, ch. 3). Another
approach to causal inference has an equally long tradition,
going back to the path diagrams of Wright (1921). Most
of the subsequent developments of this approach to causal
inference came from artificial intelligence and are associated
with Judea Pearl, who proposed using directed acyclic graphs
(DAGS) to depict causal relations (Pearl, 1995, 2009). Here,
the fundamental building block from which interventional as
well as counterfactual statements follow are Structural Causal
Models (SCM); instead of starting from potential outcomes,
this approach to causal inference sees them as being derived
from SCMs.

In this paper, I focus on the graphical approach to causal in-
ference. Following Pearl (2019b), I distinguish three “levels”
of causal inference. At the most basic level is association,
which corresponds to the activity of seeing. At this level, we
merely observe that a set of variables are statistically related.
Directed acyclic graphs allow us to describe these relations
in the form of conditional independencies between variables,
without endowing them with causal information. Only on the
next level — intervention — do we interpret DAGs causally.
At the intervention level, we can answer population-level ques-
tions such as “what would happen if we force every patient
to take the treatment?”. The activity of doing corresponds
to this level. At the highest level are counterfactuals, which
correspond to the activity of imagining. These require the
strongest assumptions but allow us to answer individual-level
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questions such as “would the patient have recovered if we had
given him the treatment, even though he did not recover and
has not received the treatment?”

In the following sections, we successively climb this causal
hierarchy. At each level, we discuss the central concepts and
illustrate them with examples. This paper is by no means
exhaustive; instead, it should provide you with a first appreci-
ation of the concepts that surround the graphical approach to
causal inference. The goal is that, after reading the paper, you
will be better equipped than Karl Pearson was in the quest
to understand when correlation does imply causation — and
when it does not.

Correlation Alone Does Not Imply Causation

It is a truth universally echoed by scientists that correlation
does not imply causation. In daily life, however, the former is
frequently mistaken for the latter. Messerli (2012), for exam-
ple, showed a strong positive relationship between chocolate
consumption and the number of Nobel Laureates per coun-
try. Using more recent data, I have found an even stronger
relationship, which is visualized in Figure 1." Although it is
difficult to assess whether Messerli (2012) is facetious in his
writing or not, he is careful not to mistake this correlation for
causation. In reporting on the study, the chocolate industry
was less careful, stating that “eating chocolate produces Nobel
prize winners” (Nieburg, 2012).

Nobel Prizes and Chocolate Consumption
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Figure 1. Shows the relationship between chocolate consump-

tion and the number of Nobel Laureates per country.

Correlation by itself does not imply causation because sta-
tistical relations do not uniquely constrain causal relations.
In particular, while chocolate consumption could cause an
increase in Nobel Laureates, an increase in Nobel Laureates
could likewise underlie an increase in chocolate consump-
tion — possibly due to the resulting festivities, as Messerli

(2012) conjectures. More plausibly, unobserved variables
such as socio-economic status or quality of the education sys-
tem might cause an increase in both chocolate consumption
and Nobel Laureates, thus rendering their correlation spurious,
that is, non-causal. The common cause principle states these
three possibilities formally (Reichenbach, 1956):

If two random variables X and Y are statistically
dependent (X A Y), then either (a) X causes Y,
(b) Y causes X, or (c) there exists a third variable
Z that causes both X and Y. Further, X and Y
become independent given Z,i.e., X L Y | Z.

An in principle straightforward way to break this uncertainty
is to conduct an intervention: we could, for example, force
the citizens of Austria to consume more chocolate and study
whether this increases the number of Nobel laureates in the
following years. Such interventions are clearly unfeasible; yet
even in less extreme settings it is frequently unethical, imprac-
tical, or impossible — think of smoking and lung cancer — to
intervene by for example conducting a randomized controlled
trial.

Causal inference provides us with tools that allow us to draw
causal conclusions even in the absence of a true experiment,
given that certain assumptions are fulfilled. These assump-
tions increase in strength as we move up the levels of the
causal hierarchy. In the remainder of this paper, I discuss
the levels association, intervention, and counterfactuals, as
well as the prototypical actions corresponding to each level —
seeing, doing, and imagining.

Seeing

Association is on the most basic level, allowing us to see
that two or more things are somehow related. Importantly,
we need to distinguish between marginal associations, which
look at the assocation between two variables without taking
into account other variables, and conditional associations,
which do take other variables into account. The latter are a
key element of causal inference.

Figure 2 illustrates the difference between marginal and condi-
tional assocations. The left panel shows the whole, aggregated
data. Here, we see that the variables X and Y are positively
correlated: an increase in values for X co-occurs with an
increase in values for Y. This relation describes the marginal
association of X and Y because we do not care whether Z = 0
or Z = 1. On the other hand, as shown in the right panel, if
we condition on the binary variable Z, we find that there is no

"You can download the data from https://fabiandablander.com/
assets/data/nobel-chocolate.csv. It includes Nobel Laureates up
to 2019 and the 2017 chocolate consumption data as reported
by https://www.statista.com/statistics/819288/worldwide-chocolate-
consumption-by-country/.
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Figure 2. Left: Shows marginal dependence between X and
Y. Right: Shows conditional independence between X and Y
given Z.

relation: X 1L ¥ | Z.> In some cases, the relationship between
two variables can even become reversed in sub-populations
compared to the relationship in the whole population. We
will discuss the ramifications of this in a later section in some
detail. For now, we focus on the simple fact that such a
pattern of (conditional) (in)dependencies can exist. In the
next section, we discuss a powerful tool that allows us to
visualize such dependencies.

Directed Acyclic Graphs

We can visualize the statistical dependencies between the
three variables X, Y, and Z using a graph. A graph G is a
mathematical object that consists of nodes and edges. In the
case of Directed Acyclic Graphs (DAGs), these edges are
directed. We take our variables (X, Y, Z) to be nodes in such
a DAG and we draw (or omit) edges between these nodes so
that the conditional (in)dependence structure in the data is
reflected in the graph. We will explain this more formally
shortly. For now, let’s focus on the relationship between the
three variables. We have seen that X and Y are marginally
dependent but conditionally independent given Z. It turns
out that we can draw three DAGs that encode this fact; these
are the first three DAGs in Figure 3. X and Y are dependent
through Z in these graphs, and conditioning on Z blocks the
path between X and Y. (We state this more formally shortly).
While it is natural to interpret the arrows causally, at this
first level of the causal hierarchy, we refrain from doing so.
For now, the arrows are merely tools that help us describe
associations between variables.

The rightmost DAG in Figure 3 encodes a different set of
conditional (in)dependence relations between X, Y, and Z
than the first three DAGs. Figure 4 illustrates this: looking
at the aggregated data we do not find a relation between X
and Y — they are marginally independent — but we do find
one when looking at the disaggregated data — X and Y are
conditionally dependent given Z.

S od od b b

Figure 3. The first three DAGs encode the same conditional
independence structure, X 1L Y | Z. In the fourth DAG, Z is a
collider suchthat X £ Y | Z.

A toy example might help build intuition: Assume that in the
whole population — which includes singles as well as people
in a relationship — being attractive (X) and being intelligent
(Y) are two independent traits. This is what is illustrated in
the left panel in Figure 4. Let’s make the assumption that both
being attractive and being intelligent are positively related
with being in a relationship. What does this imply? First, it
implies that, on average, single people are less attractive and
less intelligent. This can be seen in the right panel in Figure 4,
where singles (Z = 0) have a lower average value for X and Y
compared to the people in a relationship (Z = 1). Second, and
perhaps counter-intuitively, it implies that in the population
of single people (and people in a relationship, respectively),
being attractive and being intelligent are negatively correlated,
as can also be seen in Figure 4.

Marginal Independence between X and Y

Conditional Dependence between X and Y given Z

Figure 4. Left: §h0ws marginal independence bétween X and
Y. Right: Shows conditional dependence between X and Y
given Z

In the above example, visualized in the rightmost DAG in
Figure 3, Z is commonly called a collider. Suppose we want
to estimate the association between X and Y in the whole
population. Conditioning on a collider (for example, by only
analyzing data from people who are not in a relationship)
and then computing the association between X and Y will
lead to a different estimate, and the induced bias is known as
collider bias. It is a serious issue not only in dating, but also
for example in medicine, where it is known as Berkson’s bias

’Instead of having Z only enter the regression as a main effect,
we also include the interaction between Z and X, resulting in the two
separate slopes (red and blue) in Figure 2 (and Figure 4) instead of
one averaged slope. As long as Z enters the regression as a main
effect, we say that we have adjusted for Z.
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(Berkson, 1946; Cole et al., 2010).

The simple graphs shown in Figure 3 are the building blocks
of more complicated graphs. In the next section, we de-
scribe a tool that can help us find (conditional) indepen-
dencies between sets of variables. This becomes very im-
portant later when we introduce Structural Causal Models
(SCMs), which relate causal to probabilistic statements. The
resulting probabilistic statements, which include conditional
(in)dependencies, can then be tested using data.

d-separation

For large graphs, it is not obvious how to conclude that two
nodes are (conditionally) independent. d-separation is a tool
that allows us to check this algorithmically (Geiger, Verma,
& Pearl, 1990). To be able to use this tool, we need to define
the following concepts:

e A path from X to Y is a sequence of nodes and edges
such that the start and end nodes are X and Y, respec-
tively.

e A conditioning set £ is the set of nodes we condition
on (it can be empty).

¢ Conditioning on a non-collider along a path blocks that
path.

e A collider along a path blocks that path. However,
conditioning on a collider (or any of its descendants)
unblocks that path.

With these definitions out of the way, we call two nodes X
and Y d-separated by L if conditioning on all members in
L blocks all paths between the two nodes. To illustrate how
d-separation works in practice, we apply it to the DAG shown
in Figure 5. First, note that there are no marginal independen-
cies; this means that without blocking nodes by conditioning
on them, any two nodes are connected by a path. For example,
there is a path going from X to Y through Z, and there is a
path from V to U going through Y and W.

However, there are a number of conditional independencies.
For example, X and Y are conditionally independent given Z.
Why? There are two paths from X to Y: one through Z and
one through W. However, since W is a collider on the path
from X to Y, the path is already blocked. The only unblocked
path from X to Y is through Z, and conditioning on it therefore
blocks all remaining open paths. Additionally conditioning
on W would unblock one path, and X and Y would again be
associated.

So far, we have implicitly assumed that conditional
(in)dependencies in the graph correspond to conditional
(in)dependencies between variables. We make this assump-
tion explicit now. In particular, note that d-separation provides
us with an independence model Lg defined on graphs. To

w

Figure 5. DAG to practice d-separation on, see main text.

connect this to our standard probabilistic independence model
llp defined on random variables, we assume the following
Markov property:

XUgY|Z = XUpY|Z . (1)

In words, we assume that if the nodes X and Y are d-separated
by Z in the graph G, the corresponding random variables X
and Y are conditionally independent given Z. This implies
that all conditional independencies in the data are represented
in the graph. For example, the graph X — Y — Z combined
with the Markov property implies that the variables X, Y, and
Z are all marginally dependent, but that X is conditionally
independent of Y given Z. Moreover, Equation (1) implies
(and is implied by) the following factorization of the joint
probability distribution over all variables:

PX1LXoy X)) = [ [P 1)) . @)
i=1

where pa¥(X;) denotes the parents of the node X; in graph G
(see Peters, Janzing, & Scholkopf, 2017, p. 101). A node X
is a parent of a node Y if there is an arrow from X to Y; for
example, X is a parent of W in the graph shown in Figure
5. A node Y is a descendant of a node X if there exists a
directed path from node X to Y; for example, V, W, and U
are descendants of Y in the graph shown in Figure 5, but Z
and X are not. The above factorization implies that a node X
is independent of its non-descendants given its parents.

d-separation is an extremely powerful tool. Until now, how-
ever, we have used DAGs only to visualize (conditional) inde-
pendencies. We do not merely want to see the world, but also
change it; this requires a notion of intervention. In the next
section, we go beyond seeing to doing.
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Doing

From this section on, we are willing to interpret DAGs
causally. As Dawid (2010) warns, this is a serious step. In
merely describing conditional independencies — seeing —
the arrows in the DAG played a somewhat minor role, being
nothing but “incidental construction features supporting the
d-separation semantics” (Dawid, 2010, p. 66). In this section,
we endow the DAG with a causal meaning and interpret the
arrows as denoting direct causal effects. What is a causal
effect? Following Pearl and others, we take an interventionist
position and say that a variable X has a causal influence on Y
if changing X leads to changes in (the distribution of) Y. This
position is a very useful one in practice, but not everybody
agrees with it (Cartwright, 2007, ch. 6).

There are two principal ways how one might arrive at a DAG.
First, one could try to learn it from data; this is known as
causal discovery (e.g., Spirtes & Zhang, 2016). Second, one
might posit a Structural Causal Model based on theory and
an understanding of the problem one is modeling. From a
SCM, a DAG follows; we will touch on this in a later section.
Here, we assume that we have arrived at a causal DAG, and
show what this enables us to do. Specifically, Figure 6 shows
the observational DAGs from ealier (top row) as well as the
manipulated DAGs (bottom row) where we have intervened
on the variable X, that is, set the value of the random variable
X to a constant x. Setting the value of X = x cuts all incoming
causal arrows. This is because the value of X is determined
only by the intervention, not by any other factors.

S od b &
dbe be b &

Figure 6. Seeing: DAGs are used to encode conditional inde-
pendencies. The first three DAGs encode the same associa-
tions. Doing: DAGs are causal. All of them encode distinct
causal assumptions.

Seeing

Doing

As is easily verified with d-separation, the first three graphs in
the top row encode the same conditional independence struc-
ture. This implies that we cannot distinguish them using only
observational data. Interpreting the edges causally, however,
we see that the DAGs have a starkly different interpretation.
The bottom row makes this apparent by showing the result
of an intervention on X. In the leftmost causal DAG, Z is on
the causal path from X to Y, and intervening on X therefore

influences Y through Z. In the DAG next to it, Z is on the
causal path from Y to X, and so intervening on X does not
influence Y. In the third DAG, Z is a common cause and —
since there is no other path from X to Y — intervening on X
does not influence Y. For the collider structure in the right-
most DAG, intervening on X does not influence Y because
there is no unblocked path from X to Y. Note that we assume
that the DAG adequately captures all causal relations, which
implies that there is no unobserved confounding.

To make the distinction between seeing and doing, Pearl in-
troduced the do-operator. While p(Y | X = x) denotes the
observational distribution, which corresponds to the process
of seeing, p(Y | do(X = x)) corresponds to the interventional
distribution, which corresponds to the process of doing. The
former describes which values Y would likely take on when
X happened to be x, while the latter describes which values Y
would likely take on when X would be set to x.

Computing Causal Effects

P(Y | do(X = x)) describes the causal effect of X on Y, but
how do we compute it? Actually doing the intervention might
be unfeasible or unethical; side-stepping actual interventions
and still getting at causal effects is the whole point of causal
inference. We want to learn causal effects from observational
data, and so all we have is the observational DAG. The causal
quantity, however, is defined on the manipulated DAG. Conse-
quently, we need to build a bridge between the observational
DAG and the manipulated DAG, and we do this by making
two assumptions.

First, we assume that interventions are local. This means
that if I set X = x, then this only influences the variable
X, with no other direct influence on any other variable. Of
course, intervening on X will influence other variables, but
only through X, as a side-effect of the intervention itself. In
colloquial terms, we do not have a “fat hand” (e.g., Scheines,
2005), but act like a surgeon precisely targeting only a very
specific part of the DAG.

Second, we assume that the mechanism by which variables in-
teract do not change through interventions; that is, the mecha-
nism by which a cause brings about its effects does not change
whether this occurs naturally or by intervention (e.g., Pearl,
Glymour, & Jewell, 2016, p. 56).

With these two assumptions in hand, further note that p(Y |
do(X = x)) can be understood as the observational dis-
tribution in the manipulated DAG — which we denote as
pm(Y | X = x) — that is, in the DAG where we set X = x.
This is because after doing the intervention (which catapults
us into the manipulated DAG, where all arrows pointing to
the node we intervened on are cut), all that is left for us to do
is to see its effect. Observe that the leftmost and rightmost
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DAG in Figure 6 remain the same under intervention on X,
and so the interventional distribution p(Y | do(X = x)) is just
the conditional distribution p(Y | X = x). The middle DAGs
require a bit more work:

p¥Y=yldoX=x)=p,(Y=y| X =x)

=me(Y=y,Z=Z|X=)C)
Z
=ZPm(Y:NX=X,Z=z)pm(Z=z)
Z
=ZP(Y=yIX=x,Z=z)p(Z=z) )
Z

The first equality follows by definition. The second and third
equality follow from the sum and product rule of probability.
The last line follows from the assumption that the mechanism
through which X influences Y is independent of whether we
set X or whether X naturally occurs, that is, p,(Y =y | X =
x,Z=7)=p(Y =y|X = x,Z = 7), and the assumption that
interventions are local, that is, p,,(Z = z) = p(Z = z). Thus,
the interventional distribution we care about is equal to the
conditional distribution of Y given X when we adjust for Z.
Graphically speaking, this blocks the path X « Z « Y in
the left middle graph and the path X < Z — Y in the right
middle graph in Figure 6. If there were a path X — Y in
these two latter graphs, and if we would not adjust for Z, then
the causal effect of X on Y would be confounded. For these
simple DAGs, however, it is already clear from the fact that X
is independent of Y given Z that X cannot have a causal effect
on Y. In the next section, we study a more complicated graph
and look at confounding more closely.

Confounding

Confounding has been given various definitions over the
decades, but usually denotes the situation where a (possibly
unobserved) common cause obscures the causal relationship
between two or more variables. Using the framework of
causal inference, we can be more precise and call a causal ef-
fect of X on Y confounded if p(Y | X = x) # p(Y | do(X = x)),
which also implies that collider bias is a type of confounding.
Confounding occured in the middle two DAGs in Figure 6,
as well as in the chocolate consumption and Nobel Laure-
ates example. Confounding is the bane of observational data
analysis. Helpfully, causal DAGs provide us with a tool to
state multivariate causal relations between variables, and the
do-calculus subsequently provides us with a means to know
what variables we need to adjust for so that causal effects are
unconfounded.

A very useful tool to see whether a causal effect is confounded
or not is the backdoor criterion (Pearl et al., 2016, p. 61),
which states:

Given two nodes X and Y, an adjustment set
L fulfills the backdoor criterion if no member
in £ is a descendant of X and members in £
block all paths between X and Y that contain an
arrow into X. Adjusting for L thus results in the
unconfounded causal effect of X on Y.

Assume that £ consists of a set of variables Z. Formally, the
backdoor criterion states that:

P(Y=yldoX=x)= ) P(Y=y|X=xZ=0)PZ=2)

3)
The key observation is that this adjustment formula (a) blocks
all spurious, that is, non-causal paths between X and Y, (b)
leaves all directed paths from X to Y unblocked, and (c) cre-
ates no spurious paths. This means that, if the backdoor
criterion is satisfied, and we condition on £, then the causal
effect of X on Y is unconfounded. To see this action, let’s
again look at the DAG in Figure 5. The causal effect of Z on
U is confounded by X, because in addition to the legitimate
causal pathZ — Y — W — U, there is also an unblocked
path Z < X — W — U which confounds the causal effect.
The backdoor criterion would have us condition on X, which
blocks the spurious path and renders the causal effect of Z on
U unconfounded. Note that conditioning on W would also
block this spurious path; however, it would also block the
causal pathZ — Y — W — U. The backdoor criterion is
very useful, but it does not exhaust all the ways in which one
can arrive at the causal effect; specifically, there are causal
effects which it fails to identify, but situations in which this is
the case occur less frequently (see for example the front-door
criterion, Pearl et al., 2016, p. 66). Beyond such criteria, the
do-calculus provides a full account as to whether a particular
causal effect can be estimated (Pearl, 2009, pp. 85-86)

Let’s recap what we have discussed so far. At the lowest level
of the causal hierarchy — association — we have discovered
DAGs and d-separation as a powerful tool to reason about
conditional (in)dependencies between variables. Moving to
intervention, the second level of the causal hierarchy, we have
satisfied our need to interpret the arrows in a DAG causally.
Doing so required strong assumptions, but it allowed us to
go beyond seeing and model the outcome of interventions.
We used the do-calculus to clarify the notion of confounding.
In particular, collider bias is a type of confounding, which
has important practical implications: we should not blindly
enter all variables into a regression in order to “control” for
them, but think carefully about what the underlying causal
DAG could look like. Otherwise, we might induce spurious
associations.

The concepts from causal inference can help us understand
methodological phenomena that have been discussed for
decades. In the next section, we apply the concepts we have
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seen so far to make sense of one such phenomenon: Simpson’s
Paradox.

Simpson’s Paradox

Suppose two doctors, Dr. Hibert and Dr. Nick, perform a
number of heart surgeries and band-aid removals; Table 1
records their respective performance (taken from Blitzstein &
Hwang, 2014, p. 67). Strikingly, while Dr. Hibert has a higher
success rate than Dr. Nick in surgery (77.8% vs 20%) as well
as band-aid removal (100% vs 90%), his overall sucess rate
is lower (80% vs 83%). While Karl Pearson has been aware
of similar effects already in 1899 (Aldrich, 1995), it was the
article by Simpson (1951) which drew renewed attention to
this fact; Blyth (1972) was the first to call it a “paradox”.
Formally, such a reversal means that:

P(E| D) < P(E | ~D) “)
P(E|D,S)> P(E|-D,S) ©)
P(E|D,=S)> P(E|-D,=S) . (6)

In our case, E denotes success, D denotes whether Dr. Hi-
bert performed the procedure, and S denotes whether the
procedure was heart surgery. The symbol — denotes negation;
for example, =D denotes “not Dr. Hibert”, thus referring to
Dr. Nick.

This reversal can be explained by referring to base rates. In
particular, heart surgery is clearly a more difficult procedure
than removing band-aids. Since Dr. Hibert conducts consid-
erably more heart surgeries than Dr. Nick, his overall perfor-
mance suffers. To see how these base rates enter formally,
observe that:

P(E|D)=PE|D,S)PS | D)+ P(E|D,-S)P(=S | D)
=0.778 x 0.90 + 1.00 x 0.10
=0.80 .

The weights P(S | D) and P(—S | D) constitute the base rates;
a similar calculation can be done for Dr. Nick. Observe that
his weights are reversed, that is, Dr. Nick performs consid-
erably more band-aid removals — P(=S | =D) = 0.90 —
than heart surgeries — P(S | =D) = 0.10. By computing the
overall performance we lose information about which doctor
performs which medical procedure how frequently, opening
up the possibility for a reversal.

As demonstrated above, such a reversal can be intuitively ex-
plained by referring to base rates. Why call this a “paradox”?
Following Pearl (2014), I believe it is useful to distinguish
between Simpson’s reversal and Simpson’s paradox. The
former refers to situations such as the one explained above.
The latter refers to a “psychological phenomenon that evokes
surprise and disbelief” (Pearl, 2014, p. 9). Such surprise and

Table 1

Dr. Hibert outperforms Dr. Nick both in surgery and band-aid, yet his

overall performance is worse.

Dr. Hibert Dr. Nick
Surgery Band-Aid Surgery Band-Aid
Successes 70 10 2 81
Failures 20 0 8 9
Success Rate 77.8% 100% 20% 90%
Overall Success Rate 80% 83%

disbelief is easily evoked when reading Lindley and Novick
(1981), who studied contingency tables not about doctors and
surgery, but about treatment and sex. I provide a different,
but similarly illustrative example here (see also Pearl et al.,
2016, ch. 1). Suppose you observe N = 700 patients who
either choose to take the treatment drug or not; note that this
is not a randomized control trial. Table 2 shows the number
of recovered patients split across sex (taken from Pearl et
al., 2016, p. 2). Observe that more men as well as more
women recover when taking the treatment (93% and 73%)
compared to when not taking the treatment (87% and 69%).
And yet, when taken together, fewer patients who took the
treatment recovered (78%) compared to patients who did not
take the treatment (83%). This is puzzling — should a doctor
prescribe the treatment or not? Clearly, the answer has impor-
tant real-world ramifications. Yet Lindley and Novick (1981)
showed that there is no purely statistical criterion which al-
lows us to decide whether to prescribe or not prescribe the
treatment. While the authors suggested that exchangeability,
a technical condition referring to sequences of random vari-
ables, provides an answer, subsequent literature showed that
one instead needs to rely on explicit causal knowledge (e.g.,
Hernén, Clayton, & Keiding, 2011).

In particular, to decide whether to prescribe treatment or not
based on the data in Table 2, we need to compute the causal
effect that the treatment has on recovery. As a first step, we
draw the causal DAG. Suppose we know that women are more
likely to take the treatment, that being a woman has an effect
on recovery more generally, and that the treatment has an
effect on recovery. Moreover, we know that the treatment
cannot cause sex. This is a trivial yet crucial observation —
it is impossible to express this in purely statistical language.
One of the reasons why causal DAGs are such powerful tools
is because they allow us to formalize such assumptions; the
graph in Figure 7 makes explicit that sex () is a common
cause of both treatment (7)) and recovery (R). We denote
S =1 as being female, T = 1 as having chosen treatment,
and R = 1 as having recovered. The left DAG in Figure 7 is
observational while the right DAG indicates the intervention
do(T), that is, forcing every patient to either take the treatment
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No Treatment

234 out of 270 recovered (87%)
55 out of 80 recovered (69%)

Table 2
Data used in the Simpson’s paradox example, see main text.
Treatment
Men 81 out of 87 recovered (93%)
Women 192 out of 263 recovered (73%)
Men & Women 273 out of 350 recovered (78%)

289 out of 350 recovered (83%)

(T = 1) or to not take the treatment (7" = 0).

Figure 7. Underlying causal DAG of the example with treat-
ment (7'), biological sex (S), and recovery (R).

We are interested in the probability of recovery if we would
force everybody to take, or not take, the treatment drug; we
call the difference between these two probabilities the average
causal effect in the population. This is key: the do-operator
is about populations, not individuals. Using it, we cannot
make statements that pertain to the recovery of an individual
patient; we can only refer to the probability of recovery as
defined on populations of patients. We will discuss individual
causal effects once we have ascended to the third, and final
level of the causal hierarchy. Computing the average causal
effect requires knowledge about the interventional distribu-
tions p(R | do(T = 0)) and p(R | do(T = 1)). As discussed
above, these correspond to the conditional distribution in the
manipulated DAG which is shown in Figure 7 on the right.
The backdoor criterion tells us that the conditional distribution
in the observational DAG will correspond to the interventional
distribution when blocking the spurious path 7 <« § — R.
Using the adjustment formula given in (3), we write:

mR=ummwnnzzym=1m=LS=@ms=g

=pR=1|T =1, =0)pS =0)
+pR=1]T=1S=DpS =1)

81 87+270 192 263 +80
= — X — 4+ — X —8M8M —
87 700 263 700

~0.83 .

In words, we first compute the benefit of the treatment sep-
arately for men and women, and then we average the result
by weighting it with the fraction of men and women in the
population. This tells us that, if we force everybody to take

the treatment, about 83% of people will recover. Similarly,
we can compute the probability of recovery given we force
all patients to not take the treatment:

mRzumﬂwmnzzpmzlnzqs=9ms:@

=p(R=1|T=0,5 =0)p(S =0)
+pR=1]T=0,S=1)p©S =1)

__B4X87+ﬂ0+55x2&+80
~ 270 700 80 700
~0.78 .

To compute the average causal effect (ACE) of treatment on
recovery, we compute:

ACE(T - R)=E[R|do(T =1)]-E[R | do(T = 0)]
=0.83-0.78
=0.05 .

On average, 5% more patients would recover if they were
given the treatment; note that this is the exact opposite to the
conclusion we had drawn when looking at the aggregated data
in Table 2. The treatment does indeed have a positive effect
on recovery on average, and the doctor should prescribe it.

Note that this conclusion heavily depended on the causal
graph. While graphs are wonderful tools in that they make
our assumptions explicit, these assumptions are — of course
— not at all guaranteed to hold. These assumptions are strong,
stating that the graph must encode all causal relations be-
tween variables, and that there is no unmeasured confounding,
something we can only ever approximate in observational
settings.

Let’s look at another example in which we have the same data,
but other causal relations are plausible. In particular, instead
of the variable sex we look at the post-treatment variable
blood pressure; see Table 3. Here we have measured blood
pressure after the patients have taken the treatment drug. The
question we wish to answer remains the same: Should a doctor
prescribe the treatment or not? Since blood pressure is a post-
treatment variable, it cannot influence a patient’s decision to
choose the treatment or not. Suppose the true causal DAG
is as shown in Figure 8, asserting that the treatment has an
indirect effect on recovery through blood pressure, in addition
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Table 3

Data used in the Simpson’s paradox example, see main text.

Treatment

No Treatment

Low Blood pressure
High Blood pressure
Low & High Blood pressure

81 out of 87 recovered (93%)
192 out of 263 recovered (73%)
273 out of 350 recovered (78%)

234 out of 270 recovered (87%)
55 out of 80 recovered (69%)
289 out of 350 recovered (83%)

to having a direct causal effect. Note that a causal effect is
direct only at at particular level of abstraction. The treatment
drug works by inducing certain biochemical reactions that
might themselves be described by DAGs. On a finer scale,
then, the direct effect ceases to be direct.

Figure 8. Underlying causal DAG of the example with treat-
ment (7), blood pressure (B), and recovery (R).

From this DAG, we find that the causal effect of 7 on R is
unconfounded. Therefore, the two causal quantities of interest
are given by:

pR=1|do(T=1)=pR=1|T=1)=0.78
pR=1|do(T=0)=p(R=1|T=0)=0.83 .
This means that the treatment is indeed harmful, since:
ACE(T - R)=E[R|do(T =1)]-E[R | do(T = 0)]
=0.78 - 0.83
=-0.05 .

Thus, the treatment has a negative effect in the general pop-
ulation (combined data). Suppose that the treatment has a
direct positive effect on recovery, but an indirect negative
effect through blood pressure. If we look only at patients with
a particular blood pressure, then only the treatment’s positive
effect on recovery remains. However, since the treatment
does influence recovery negatively through blood pressure, it
would be misleading to take the association between 7 and
R conditional on B as our estimate for the causal effect. In
contrast to the previous example, using the aggregate data is
the correct way to analyze these data in order to estimate the
average causal effect — assuming that the underlying DAG is
true.

So far, our discussion has been entirely model-agnostic, that
is, we have not assumed a data-generating model. In the

next section, we discuss Structural Causal Models (SCM)
as the fundamental building block of this approach to causal
inference. This will unify the previous two levels of the causal
hierarchy — seeing and doing — as well as open up the third
and final level: imagining.

Structural Causal Models

Structural Causal Models (SCM) relate causal and probabilis-
tic statements. As an example, consider the following SCM:

X =&y
Y =fXey) .

X directly causes Y in a manner specified by the function f;
the noise variables £x and gy are assumed to be independent.
In a SCM, we take each equation to be a causal statement,
and we stress this by using the assignment symbol := instead
of the equality sign =. Note that this is in stark contrast
to standard regression models; here, we explicitly state our
causal assumptions.

As we will see below, Structural Causal Models imply ob-
servational distributions (seeing), interventional distributions
(doing), as well as counterfactuals (imagining). Thus, they
can be seen as the unifying element of this approach to causal
inference. In what follows, we restrict the class of Structural
Causal Models by allowing only linear relationships between
variables and assuming independent Gaussian error terms, but
note that more complicated models are possible (e.g., Hoyer,
Janzing, Mooij, Peters, & Scholkopf, 2009). Structural Causal
Models are closely related to Structural Equation Models,
whose causal content has been debated throughout the last
century. For more information, see for example Bollen and
Pearl (2013).

As an example of an SCM, assume the following:

X =&y
Y =X+e¢gy
Z=Y+¢gz;,

where &y, ey i N(0,1) and &z i N(0,0.10) (see also Peters
et al., 2017, p. 90). Again, each line states how variables

are causally related. For example, we assume that X has a
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direct causal effect on Y, that this effect is linear, and that it is
obscured by independent Gaussian noise.

The assumption of Gaussian errors induces a multivariate
Gaussian distribution on (X, Y, Z) whose independence struc-
ture is encoded in the leftmost DAG in Figure 9. The middle
DAG shows an intervention on Z, while the rightmost DAG
shows an intervention on X. Recall that, as discussed above,
intervening on a variable cuts all incoming arrows. In the
following, we illustrate an important fact: while a variable Z
can be an excellent predictor of a variable Y, it need not have

a causal effecton Y.

Figure 9. An excellent predictor (Z) need not be causally
effective.

At the first level of the causal hierarchy — association —
we might ask ourselves: does X or Z predict Y better? To
illustrate the answer for our example, we simulate n = 1000
observations from the Structural Causal model using R:

set.seed(1)

n <- 1000

X <- rnorm(n, 0, 1)

y <- X + rnorm(n, 0, 1)

z <- y + rnorm(n, 0, 0.10)

Figure 10 shows that Y has a much weaker association with X
(left panel) than with Z (right panel); this is because the stan-
dard deviation of the error gy is only a tenth of the standard
deviation of the error &z. For prediction, therefore, Z is the
more relevant variable.

Predicting Y using X

Predicting Y using Z

Figure 10. X is gconsiderably worse predictor ozf Y than Z.

But does Z actually have a causal effect on ¥Y? This is a
question about intervention, which is squarely located at the
second level of the causal hierarchy. Assuming an underlying

Structural Causal Model, we can easily simulate interventions
in R and visualize their outcomes:

intervene_z <- function(z, n = 1000) {
X <- rnorm(n, 0, 1)
y <- x + rnorm(n, 0, 1)
cbind(x, y, z)

}

intervene_x <- function(x, n = 1000) {
y <- x + rnorm(n, 0, 1)
z <- y + rnorm(n, 0, 0.1)
cbind(x, y, z)

}

set.seed (1)
datz <- intervene_z(z 2)
datx <- intervene_x(x = 2)

(Y P(Y| do(z =2)) P(Y | do(x = 2))

Figure 11 . Shows marginal distribution of ¥ (leff), inter-
ventional distribution of P(Y | do(Z = 2)) (middle), and
interventional distribution of P(Y | do(X = 2)) (right).

The leftmost histogram in Figure 11 below shows the marginal
distribution of ¥ when no intervention takes place. The his-
togram in the middle shows the marginal distribution of Y in
the manipulated DAG where we set Z = 2. Observe that, as
indicated by the causal graph, Z does not have a causal effect
on Y such that p(Y | do(Z = 2)) = p(Y). The histogram on the
right shows the marginal distribution of Y in the manipulated
DAG where we set X = 2. Clearly, then, X has a causal effect
on Y. More precisely, we can again compute the average
causal effect:

ACEX - Y)=E[Y|doX=x+1D]-E[Y |do(X =x)] ,

which in our case equals one, as can also be seen from the
structural assignments in the SCM above. Thus, SCMs allow
us to model the outcome of interventions. However, note
again that this is strictly about populations, not individuals.
In the next section, we see how SCMs allow us to reach the
final level of the causal hierarchy, moving beyond the average
to define individual causal effects.
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Imagining

In the Unbearable Lightness of Being, Milan Kundera has
Tomas ask himself:

“Was it better to be with Tereza or to remain
alone?”

To which he answers:

“There is no means of testing which decision is
better, because there is no basis for comparison.
We live everything as it comes, without warning,
like an actor going on cold. And what can life be
worth if the first rehearsal for life is life itself?”

Kundera is describing, as (Holland, 1986, p. 947) put it, the
“fundamental problem of causal inference”, namely that we
simply cannot observe counterfactuals. If Tomas chooses
to stay with Tereza, then he cannot not choose to stay with
Tereza. He cannot go back in time and revert his decision,
living instead “everything as it comes, without warning”. This
does not mean, however, that Tomas cannot assess afterwards
whether his choice has been wise. As a matter of fact, humans
constantly evaluate mutually exclusive options, only one of
which ever comes true; that is, humans reason counterfactu-
ally.

To do this formally requires strong assumptions. The do-
operator, introduced above, is too weak to model counter-
factuals. This is because it operates on distributions that are
defined on populations, not on individuals. We can define an
average causal effect using the do-operator, but — unsurpris-
ingly — it only ever refers to averages. However, Structural
Causal Models also allow counterfactual reasoning on the
level of the individual; we illustrate this with the following
example.

Suppose we want to study the causal effect of grandma’s treat-
ment for the common cold (T') on the speed of recovery (R).
Usually, people recover from the common cold in seven to
ten days, but grandma swears she can do better with a simple
intervention — we agree on doing an experiment. Assume
we have the following SCM:

TI=87‘

R=pu+pT+¢,

where y is an intercept, 7 ~ Bernoulli(0.50) indicates ran-
dom assignment to either receive the treatment (7 = 1) or
not receive it (T = 0), and ¢ i N(0,0). The SCM tells us
that the direct causal effect of the treatment on how quickly
patients recover from the common cold is 8. This causal
effect is obscured by individual error terms for each patient
e = (g1,&,...,&n), which can be interpreted as aggregate
terms for all the things left unmodelled. In particular, &

Table 4
Data simulated from the SCM concerning
grandma’s treatment of the common cold.

Patient Treatment Recovery &k

1 0 5.80 0.80
2 0 3.78 -1.22
3 1 3.68 0.68
4 1 0.74 -2.26
5 0 7.87 2.87

summarizes all the things that have an effect on the speed of
recovery for patient k.

Once we have collected the data, suppose we find that u = 5,
B = -2, and o = 2. This does speak for grandma’s treatment,
since it shortens the recovery time by 2 days on average:

ACE(T = R) = E[R | do(T = )] = E[R | do(T = 0)]
=E[u+B+e&]|-E[u+¢]
=u+p)-nu
=p5.

Given the value for g, the Structural Causal Model is fully
determined, and we may write R(g;) for the speed of recovery
for patient k. To make this example more concrete, Table 4
shows data for five patients, simulated from the SCM.

We see that the first patient did not receive the treatment
(T = 0), took about R = 5.80 days to recover from the
common cold, and has a unique value & = 0.80. Would
this particular patient have recovered more quickly if we had
given him grandma’s treatment even though we did not? We
denote this quantity of interest as Ry—;(g;) to contrast it with
the actually observed Rr-o(g;). To compute this seemingly
otherworldly quantity, we simply plug the value 7 = 1 and
€1 = 0.80 into our Structural Causal Model, which yields:

Rr_i(e1)) =5-2+0.80 =3.80 .

Using this, we can define the individual causal effect of treat-
ment 7 on recovery R for the first patient as:

ICE(T — R) = Rr—1(e1) — Rr—o(&1)
=3.80-5.80
=2,

which in this example is equal to the average causal effect due
to the linearity of the underlying SCM (Pearl et al., 2016, p.
106). In general, individual causal effects are not identified,
and we have to resort to average causal effects.

Answering the question of whether a particular patient would
have recovered more quickly had we given him the treatment
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even though we did not give him the treatment seems almost
fantastical. It is a cross-world statement: given what we have
observed, we ask about what would have been if things had
turned out different. It may strike you as a bit eerie to speak
about different worlds. Peters, Janzing, & Scholkopf (2017,
p- 106) state that it is “debatable whether this additional [coun-
terfactual] information [encoded in the SCM] is useful.” It
certainly requires strong assumptions. More broadly, Dawid
(2000) argues in favour of causal inference without counter-
factuals. Yet if we want to design machines that can achieve
human level reasoning, it is likely that we need to endow them
with counterfactual thinking (Pearl, 2019b). Moreover, many
concepts that a relevant in legal and ethical domains, such
as fairness (Kusner, Loftus, Russell, & Silva, 2017), require
counterfactuals.

Challenges of Applying Causal Inference

While causal inference provides a powerful tool to reason
about interventions and to formalize counterfactual reasoning,
it comes with a number of challenges. In the following, I
categorize the challenges into statistical and conceptual ones,
but note that this is not a strict separation. First, as is the case
with all modeling, the model is likely misspecified. If one de-
rives causal quantities based on linear models, then the causal
quantity will be accurate in so far as the relationship between
variables is indeed linear. Linearity is a strong assumption, so
caution is well-adviced.

Computing causal effects usually requires one to condition on
covariates to adjust for confounding. Selecting the appropriate
covariates is a difficult statistical problem, however. A large
number of strategies to select covariates in order to adjust for
confounding exist, yet Witte and Didelez (2019) show — as
may be expected — that no such method uniformly performs
best in all situation. Instead, they suggest that the choice of
method should be informed by the hypothesized confounding
structure.

In the social and behavioural sciences, item-level responses
are usually taken as a stand-in for underlying constructs. How-
ever, as Westfall and Yarkoni (2016) show, adjusting for con-
founding using item-level responses that are a noisy proxy
for the underlying construct can lead to incorrect causal con-
clusions. The authors give the classic example of observing
that the number of drownings as well as the sale of ice-cream
increases on sunny days. Clearly, the resulting correlation
between ice-cream sales and drownings is spurious — sunny
weather causes people to go swimming and buy ice-cream —
and controlling for temperature would expose it as such. How-
ever, in the social and behavioural sciences we generally do
not have direct access to the constructs we are interested in. To
illustrate this on the ice-cream example, assume that we can-
not measure temperature but that we have to take self-reported

feelings of heat as a proxy for temperature. If this stand-in
is noisy, then controlling for it does not remove the spurious
correlation between ice-cream sales and drownings (Westfall
& Yarkoni, 2016). To avoid this, Westfall and Yarkoni (2016)
suggest latent variable modeling, which reduces noise by
combining various indicators in a measurement model, and
generally a much larger sample of participants.

As we have seen throughout the paper, statistics is not enough
to constrain causal inference. For example, the two DAGs in
the example of Simpson’s paradox are observationally equiv-
alent — they imply the same conditional independencies —
yet provide different causal conclusions. This problem is
immediate in causal discovery, where one tries to infer causal
relations from data, which outputs not one DAG but an equiv-
alence class (e.g., Kalisch & Bithlmann, 2007). Similarly, in
the field of structural equation modeling, this is known as the
“model equivalence” problem (e.g., Raykov & Penev, 1999).
Thus, unless one has a strong theory that undergirds one’s
causal model, thereby excluding all other equivalent models,
drawing strong conclusions based only on statistical model fit
is perilous.

The fact that directed acylic graphs do not allow feedback
loops may seem to run counter to real-life experience. In
psychology, for example, it is obvious that variables can rein-
force each other, resulting in a cycle. One may argue, however,
that at a sufficiently high temporal resolution, no system has
cycles. Instead, the system can be modeled as a DAG at each
time unit, where X — Y attimefrand Y — X attime ¢ + 1.
Under some conditions, Structural Causal Models can allow
cyclic assignments, which leads to directed cyclic graphs (e.g.,
Spirtes, 1995). In the Structural Equation Modeling literature,
such models are known as nonrecursive Structural Equation
Models (e.g., Bollen, 1989, p. 83).

Correctly interpreting DAGs causally requires two crucial
assumptions. First, we assumed that the DAG includes all
relevant variables and their causal relations. In practical ap-
plications, this is hard to verify, and likely always violated to
some extent. Second, we assumed that interventions are local,
that is, that intervening on one variable does not influence
other variables that are causally unrelated to the intervened
variable. This is likely violated in many applications. In
psychology, for example, we usually do have a “fat hand”; for
example, an intervention geared towards decreasing suicidal
thoughts most certainly influences other variables as well.
The extent to which this is problematic must be assessed on a
case by case basis.

Lastly, I want to touch upon a conceptual issue which
concerns the interpretation of the do-operator for non-
manipulable causes. Recall that the do-operator allows us
to answer questions such as “how does the recovery rate
change if we force every patient to take the treatment?”’. How-
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ever, nothing in the formalism prevents us from applying it to
variables that are (generally believed to be) non-manipulable;
for example, we might ask what would happen if we force
every patient to be a woman. Researchers on causal inference
disagree as to the interpretation of such interventions. Pearl
(2019a), for example, argues that one need not to worry about
the distinction between manipulable and non-manipulable
causes, stating that one could interpret the causal effect as an
upper bound of an ideal intervention which might be possible
in the future. M. A. Hernan (2016), on the other hand, calls for
the need of “well-defined interventions”. The more difficult
it is to define how one would conduct a randomized trial
in which one would manipulate the quantity of interest, the
harder it becomes to interpret the estimated causal effect. 1
believe that this is a very sensible position, and researchers
should carefully think about how they would implement the
interventions whose causal effects they estimate (see also M.
A. Herndn & Robins, 2016).

Conclusion

In this introductory paper, we have touched on several key
concepts of causal inference. We have started with the puz-
zling observation that chocolate consumption and the number
of Nobel Laureates are strongly positively related. At the
lowest level of the causal hierarchy — association — we
have seen how directed acyclic graphs can help us visualize
conditional independencies, and how d-separation provides
us with an algorithmic tool to check such independencies.

Moving up to the second level — intervention — we have seen
how the do-operator models populations under interventions.
This helped us define confounding — the bane of observa-
tional data analysis — as occuring when p(Y | X = x) # p(Y |
do(X = x)). This comes with the important observation that
entering all variables into a regression in order to “control” for
them is misguided; rather, we need to carefully think about
the underlying causal relations lest we want to introduce bias
by for example conditioning on a collider. The backdoor
criterion provided us with a graphical way to assess whether
an effect is confounded or not.

At the top level of the causal hierarchy, we have seen that
Structural Causal Models (SCMs) provide the building block
from which observational and interventional distributions fol-
low. SCMs further imply counterfactual statements, which
allow us to move beyond the do-operator and average causal
effects: they enable us to answer questions about what would
have been if things had been different. Lastly, we have dis-
cussed a number of challenges researchers face when applying
tools from causal inference in practice.

Suggested Readings

For further reading, I recommend the excellent textbooks by
Pearl et al. (2016) and Peters et al. (2017). For less tech-
nical reading, which also provides a historical perspective,
see Pearl and Mackenzie (2018). Miguel Hernén teaches an
introductory online course on causal diagrams, freely avail-
able from https://www.edx.org/course/causal-diagrams-draw-
your-assumptions-before-your. This manuscript is based on
a blog post on causal inference (Dablander, 2019).
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