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Abstract

Time series data measure how environments
change over time and drive decision-making
in critical domains like finance and healthcare.
When analyzing time series, we often seek to
understand the underlying events occurring in
the measured environment. For example, one
might ask: “What caused a sharp drop in the
stock price?” Events are often described with
natural language, so we conduct the first study
of whether Large Language Models (LLMs)
can infer natural language events from time se-
ries. We curate a new benchmark featuring win
probabilities collected from 4,200 basketball
and American football games, featuring 1.7M
timesteps with real value data and correspond-
ing natural language events. Building on the
recent wave of using LLMs on time series, we
evaluate 16 LLMs and find that they demon-
strate promising abilities to infer events from
time series data. The open-weights DeepSeek-
R1 32B model outperforms proprietary models
like GPT-4o. Despite this impressive initial
performance, we also find clear avenues to im-
prove recent models, as we identify failures
when altering the provided context, event se-
quence lengths, and evaluation strategy.*

1 Introduction

Time series data are pervasive. Examples of
time series include wearable device measurements
of users’ actions (Anguita et al., 2013), clinical
records about changes in health (Harutyunyan et al.,
2019), and asset market prices (Wang et al., 2024c;
Li et al., 2024a). Each of these examples repre-
sents a real-valued sequence of data points with
time stamps. In addition to the real-valued data, a
time series often has associated events described
in natural language which are related to trends and
patterns in the time series. Figure 1 illustrates an
example from sports—events favorable to Team A

*All resources needed to reproduce our work are available:
https://github.com/BennyTMT/GAMETime

increase its win probability, while unfavorable ones
decrease it. Benefiting from the promising poten-
tial of integrating natural language with time series
analysis (Jin et al., 2024), along with the rapid ad-
vancement of natural language processing, LLMs
have been employed for important time series anal-
ysis tasks including forecasting (Wang et al., 2024c;
Williams et al., 2024; Liu et al., 2024a; Tan et al.,
2024), anomaly detection (Dong et al., 2024; Liu
et al., 2024b), and time series understanding (Cai
et al., 2024; Li et al., 2024a,b). When analyzing
time series data, the goal is often to infer events
occurring in the measured environment (Liu et al.,
2024b). Therefore, there is a need to explore how
LLMs infer event descriptions given context and
time series data.

Prior work on reasoning about time series in con-
junction with natural language has largely over-
looked event descriptions (Merrill et al., 2024;
Williams et al., 2024) and primarily focused on
numerical sequences, such as trend analysis (Cai
et al., 2024) or anomaly detection (Dong et al.,
2024). Some studies collect sequences of news
related to time series (Wang et al., 2024c; Liu et al.,
2024a; Cheng and Chin, 2024), however they are
curated for forecasting and do not explore reason-
ing from time series to events. Meanwhile, due
to the limited size and the potential inclusion of
event descriptions that do not impact the time se-
ries, these data are not ideal as a benchmark source.

To address this gap, we introduce a benchmark
that integrates time series data with associated
events described in natural language. The events
exhibit clear correlations with time series fluctua-
tions, making it feasible to evaluate LLMs’ event
reasoning capabilities. Our benchmark dataset (de-
scribed in Section 3.3) includes 4,200 games from
NBA (basketball) and NFL (American football)
sports leagues, comprising a total of 1.7 million
data points and events, with the capability for con-
tinuous updates. During testing, we replace real en-
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Player B1 personal foul

A1 misses free throw 1 of 2

A1 misses free throw 2 of 2

B3 makes two point shot

A2 misses 3-point jumper
B1 defensive rebound

B1 misses 3-point jumper
A2 defensive rebound

A2 lost ball (B5 steals)

A5 defensive rebound

B3 makes jumpshot

A) Player A2 misses 3-point jumper; Player B4 defensive rebound

B) Player B3 misses two point shot; Player B2 offensive rebound

C) Player A4 makes two point shot; Player B3 misses shot

D) Player A2 makes 3-point jumper; Player B2 makes two point shot

Prompt: The time series and events below are from an NBA game 

between Team A and Team B. Select the most likely option for the 

missing events from the choices below:

Figure 1: Illustration of time series event reasoning. The prompt provides (in text form, see details later in the paper)
a time series of real-valued data (win probabilities) and corresponding natural language event descriptions. The
model is prompted to select the most likely sequence of events for some segment of the time series data where no
events are provided. (This example is taken from near the end of an NBA game, which is 48 minutes regulation
time, between the Dallas Mavericks (Team A) and Los Angeles Lakers (Team B), 1 November 2019.)

tity names and use only games from after the LMs’
training cut-off date to mitigate potential memory
effects in reasoning. We use the win probability
output from ESPN’s game analysis† as the time se-
ries. As we discuss in Section 6, win probability is
an effective measure of game state but potentially
differs from ground truth.

To evaluate the effectiveness of our benchmark
in assessing LLMs’ ability to reason about time se-
ries and events under different conditions, we test
16 models across various factors, including the im-
pact of available context, varying sequence lengths,
and time series similarity on reasoning. Addition-
ally, we examine the impact of the presence or
absence of time series and real entity names on
reasoning through two ablation studies. To explore
the generalizability of our approach, we extend the
evaluation to open-domain settings, including cryp-
tocurrency prices (Li et al., 2024a) and U.S. health
data (Liu et al., 2024a). Our findings indicate that
LLMs exhibit promising reasoning capabilities. For
instance, the distilled DeepSeek-R1 32B achieves
a 68% accuracy on our basketball event reasoning
benchmark (76.5%, w/ CoT prompt), while GPT-
4o reaches 41% accuracy (53%, w/ CoT prompt),
both significantly outperforming guessing (25%).

†ESPN’s sports data analysis: https://www.espn.com/
analytics/

Our key contributions include introducing an
evaluation approach (Section 3.2) to assess LLMs’
ability to reason about event sequences through
time series and extend it to multiple domains (Sec-
tion 4.5). We create an easily extensible dataset
with 1.7 million timesteps with values and events
(Section 3.3), where changes in time series are ex-
plicitly influenced by events. In benchmarking 16
LLMs, we find promising reasoning capabilities
and find clear avenues to enhance reasoning (Sec-
tion 4.2).

2 Related Work

Despite a growing body of work on LLMs and
time series reasoning which we summarize in this
section, previous benchmarks for LLMs in time
series and event reasoning have not addressed the
task of inferring event sequences from time series.

2.1 Time Series Reasoning with LLMs

Many studies used text to assist in time series rea-
soning (including forecasting), achieving promis-
ing results (Cao et al., 2024; Wang et al., 2024a; Xie
et al., 2024). These works have made significant
contributions to fields such as sociology (Cheng
and Chin, 2024), energy (Wang et al., 2024c; Xu
et al., 2024), and finance (Li et al., 2024a; Wang
et al., 2024b). For example, Williams et al. (2024)
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Benchmark/ Evaluation Properties (with Time Series)

Context Source Task

Williams et al. (2024) Description Manual Forecasting
Merrill et al. (2024) Description Synthetic Reason & Forecast
Cai et al. (2024) Question Manual Understanding
Liu et al. (2024a) News Series Real-World Forecasting

Properties (without Time Series)

Fatemi et al. (2024) Event & Time Synthetic Temporal Reasoning
Xiong et al. (2024) Event & Time Synthetic Temporal Reasoning
Chu et al. (2023) Event & Time Real-World Temporal Reasoning
Quan and Liu (2024) Event Sequence Synthetic Sequential Reasoning
Karger et al. (2024) Event Real-World Future Forecasting

Ours Time Series & Event Sequence Real-World Events Reasoning

Table 1: Time series benchmarks typically lack a focus on inferring event sequences, while event reasoning
evaluations do not incorporate multimodal reasoning over numerical sequences. We propose reasoning about event
sequences through time series data, incorporating corresponding timestamps.

manually curated time series forecasting data along
with related text to highlight the importance of in-
corporating textual information when using LLMs
for forecasting. Wang et al. (2024c) used news
about energy to help LLMs predict local electricity
conditions. Intrinsically, those approaches depend
on LLMs’ multi-modal transfer of knowledge from
natural language to time series.

However, there are also critical areas where rea-
soning about real-world events through time series
analysis holds significant potential to enhance per-
formance (Jin et al., 2024; Jiang et al., 2024b),
compared to unimodal methods. Using LLMs for
anomaly detection (Dong et al., 2024; Zhou and Yu,
2024) often involves processing time series data,
such as CPU usage rates from system monitors,
and then generating an interpretable anomaly re-
port (Liu et al., 2024b). Similarly, other domains,
such as medical care (Chan et al., 2024), market
analysis (Lee et al., 2024; Ye et al., 2024), and hu-
man activity analysis (Li et al., 2024b), also rely
on this multi-modal reasoning capability to make
actionable decisions.

Table 1 summarizes benchmarks intended to
evaluate LLMs’ capability in processing time se-
ries data. Cai et al. (2024) proposed a benchmark
using synthetic data to evaluate LLMs’ understand-
ing of time series, focusing on tasks such as pattern
recognition. Similarly, Merrill et al. (2024) intro-
duced synthetic time series data and relevant tex-
tual descriptions, containing a single event (cause),

to evaluate LLMs’ performance in matching time
series to the scenarios that generated them (i.e., eti-
ological reasoning). Due to the lack of paired event
sequence, none of these works evaluated the LLMs’
ability to reason about events related to the time
series data.

The one exception is Liu et al. (2024a), which
collects news sequences corresponding to time se-
ries dating back to 1983. However, due to the
limited dataset size and potential contamination
issues, it is challenging to use as a fair evaluation
source, especially since the exact impact of news
on time series remains unclear. To fill this gap, we
propose a living benchmark with data sourced from
continuously refreshed naturally-occurring data (in
our case, from widely available sports data). This
avoids the pitfalls associated with synthetic data,
and because it can be easily refreshed avoids the
contamination risks with fixed benchmarks.

2.2 LLMs for Events Reasoning

Reasoning is an ill-defined and broad, yet criti-
cal, capability that determines LLMs’ performance
across many complex tasks. Therefore, numerous
reasoning benchmarks have been developed for
valuable tasks, such as coding (Zhuo et al., 2024;
Jain et al., 2024), mathematics (Cobbe et al., 2021;
White et al., 2024), and finance (Xie et al., 2023;
Islam et al., 2023). Additionally, some benchmarks
have evaluated the general reasoning abilities of
LLMs (Bang et al., 2023; White et al., 2024), in-
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cluding BBH (Suzgun et al., 2022) and MMLU
(Hendrycks et al., 2020).

Several benchmarks, as listed in Table 1, have
been proposed to evaluate LLMs’ understanding of
relationships between events (Quan and Liu, 2024),
as well as temporal reasoning capabilities for un-
derstanding the relationships between events and
time (Xiong et al., 2024; Chu et al., 2023). For
instance, Karger et al. (2024) introduced a dynami-
cally updated benchmark to evaluate LLMs’ fore-
casting of future events. Fatemi et al. (2024) used
synthetic data to assess LLMs’ perception and rea-
soning between events and time. However, these
benchmarks do not consider the interplay between
time series and associated event sequences, which
is the focus of our work.

3 Benchmark

We next define the benchmark task, outline the
evaluation format, and introduce the dataset details.

3.1 Problem Definition
A time series is a sequence of timestamped real val-
ues: x = [(t0, x0), (t1, x1), ..., (tT , xT )]. An event
sequence is a sequence of timestamped text descrip-
tions of events: e = [(t0, e0), (t1, e1), ..., (tT , eT )].
For each sequence, the timestamps t are monoton-
ically increasing (ti ≤ tj if i < j). While the
timestamps of the time series and event sequence
need not be identical, there is often a one-to-one
correspondence, with an event description associ-
ated with each real value. Critically, the events
describe changes in the environment that result in
changes in the time series values.

Given a dataset D = (X , E) containing N real-
valued time series and timestamp t with correspond-
ing event sequences of length T , we are concerned
with time series data represented as a pair of se-
quences:

X = [(t0, x0), (t1, x1), ..., (tN−1, xN−1)]

consisting of real-valued measurements, and

E = [(s0, e0), (s1, e1), ..., (sT−1, eT−1)]

comprising natural language event descriptions. Al-
though there may not always be a direct causal re-
lationship between the events and measurements,
we assume there is some connection between the
events and measurements and that the timestamps,
sj and ti, are synchronized. Note that we do not
assume that there is one event associated with each

data value, or even that the timestamps of events
and data values match, only that they are aligned
so the ordering relationships between values in X
and events in E are known.

Our goal is to interrogate an LLM’s understand-
ing of time series data by measuring its ability to
infer unobserved values in E given X . As illus-
trated in Figure 1, when the intermediate event
sequence is missing, the LLM is expected to infer
it using the provided real-valued time series and
corresponding timestamps.

3.2 Events Reasoning Format

We formulate our event reasoning evaluation as
a multiple-choice question where the model is
prompted to select the event descriptions that are
most likely to correspond to the provided real-
valued time series data. The prompt follows this
template:

System Prompt: {{sys_prompt}}
ti xi
ti+1 xi+1

...
ti+k−2 xi+k−2

ti+k−1 xi+k−1

Four options to choice:{{options}}
Respond with this format:{{format}}

where we provide contextual task information (i.e.,
sys_prompt), along with real-valued time series
of length k (e.g., xi:i+k−1). Since time series data
are typically accompanied by timestamps, the cor-
responding timestamps ti:i+k−1 are provided in the
prompt. The intermediate events are missing, and
the LLM is tasked with inferring these events. To
make the task tractable we provide four options,
one of which corresponds to the actual sequence
of events, and prompt the model to select the most
likely option. Figure 7 in Appendix B gives exam-
ples of the full prompts used in our experiments.

To further isolate the LLM’s reasoning on time
series, we replace specific named entities in our
dataset with general, non-identifying descriptors.
Specific team names are replaced with Team A or
Team B. Actual player names are replaced with
generic labels, such as Player from Team A, ensur-
ing that the associations between players and their
teams are preserved but revealing no other infor-
mation about their identities. In evaluations from
other domains, such as cryptocurrency prices (Li
et al., 2024a), we replace all numerical values in
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news (events) sequence with symbols (e.g., α) to
prevent LLMs from matching events to time series
using dates or price. In open-domain settings, the
impact of news on time series may exhibit a minor
delay. Therefore, we provide two events occurring
before ti to better capture the full range of events
that may influence the time series.

3.3 Sports Dataset

To obtain paired data of time series and event se-
quences, we use data from sports, a domain where
the impact of events on the measurements is well-
defined. For the natural language events, we used
play-by-play data provided by ESPN‡ that captures
key occurrences during a game, such as scoring,
turnovers, or fouls in basketball. As the game
progresses, these events form a sequence. Each
event impacts the course of the game. ESPN also
provides each teams’ predicted win probability
throughout the game, which we use as the real-
valued time series data. These win probabilities
reflect the state of the game, as well as some knowl-
edge about the teams, at each time step. Since a
game constitutes a relatively closed environment,
there is a clear relationship between the events and
the time series: an event favoring Team A will raise
Team A’s win probability and reduce Team B’s win
probability. This closed environment makes sports
data a good candidate for a benchmark evaluating
how effectively LLMs reason about events through
time series.

Our dataset includes 4,200 time series (games)
collected through 9 January 2025. Because of the
nature of the data, and the fact that new games are
played frequently, our dataset can be continuously
updated. The dataset contains 3,276 time series
from NBA basketball games and 924 from NFL
American football games. On average, each basket-
ball time series contains 460 timesteps, while the
football time series average 179 timesteps. In total,
the dataset consists of 1.7 million time series data
points (win probabilities) paired with correspond-
ing in-game events.

4 Experiments

To investigate LLMs’ event reasoning capabilities
under diverse conditions, we explore these research
questions: RQ1: Can LLMs reason about events,
and does Chain-of-Thought (CoT) prompting en-

‡The source of the sports data can be accessed via https:
//www.espn.com/

hance this reasoning?, RQ2: What is the effect
of various available contexts beyond time series?,
RQ3: How does event sequence length impact
LLMs’ ability to reason about events?, RQ4: Are
LLMs able to distinguish underlying time series
similarities?, and RQ5: How does LLMs’ event
reasoning performance compare across different
domains?

We evaluate 16 language models, includ-
ing closed-weight models such as GPT-4o
(Achiam et al., 2023) and open-weights mod-
els like LLaMA3.1 (Dubey et al., 2024), and
Qwen2.5 (Yang et al., 2024). Additionally, we test
models designed for reasoning, including distilled
DeepSeek-R1 32B and 8B (DeepSeek-AI, 2025).
Our findings indicate that LLMs, such as GPT-4o,
LLaMA3.1 70B, and particularly the reasoning-
oriented DeepSeek-R1 32B, demonstrate promis-
ing reasoning capabilities.

4.1 Accuracy Evaluation

In our event reasoning baseline, we follow the for-
mat in Figure 7 from Appendix B, but provide
only Team A’s win probabilities (in NBA basket-
ball there are no draws, and in NFL football draws
are very rare, so the win probability for Team B
is 1 - the win probability for Team A) and set the
event sequence length to 10. The negative options
are sequences of the same length randomly sam-
pled from other games. Each model is evaluated on
200 questions. To eliminate memorization effects
in reasoning, we select games that occurred after
the models’ training cutoff dates and replace real
team and player names with generic labels such as
Player from Team A. Results, shown in Figure 2, in-
dicate that reasoning about football events is more
challenging, as GPT-4o achieves only 29% accu-
racy, compared to 41% in basketball. Among the
tested LLMs, the distilled DeepSeek-R1 32B per-
forms the best, achieving 43% accuracy in football
event reasoning and 68% in basketball. In addition,
other open-weights models, such as LLaMA3.1
70B and Qwen2.5 72B, or even Phi-4 14B, reaches
performance levels comparable to GPT-4o.

Impact of Chain-of-Thought Prompting. Next,
we investigate if a longer reasoning process with
Chain-of-Thought (CoT) prompting (Wei et al.,
2022) improves results of LLMs on event reason-
ing. In short, the answer is yes—LLMs show an
average improvement from CoT prompting of 4.5%
for basketball events and 9.6% for football events.

5

https://www.espn.com/
https://www.espn.com/


GPT4o-0
513

GPT4o-m
ini

LLaMA3.1-
70B

Qwen2.5-
72B

Mixtr
al-8

x7B

DeepSeek-
R1-32

B

Qwen2.5-
32B

Mistra
l-Small 2

2B
Phi4-1

4B

Phi3.5
-14B

Qwen2.5-
14B

DeepSeek-
R1-8B

LLaMA3.1-
8B

Ministra
l-8B

LLaMA2-7B

Qwen2.5-
7B

0

50

100
A

cc
ur

ac
y,

%

Random Guessing

NBA w/o CoT w/ CoT

GPT4o-0
513

GPT4o-m
ini

LLaMA3.1-
70B

Qwen2.5-
72B

Mixtr
al-8

x7B

DeepSeek-
R1-32

B

Qwen2.5-
32B

Mistra
l-Small 2

2B
Phi4-1

4B

Phi3.5
-14B

Qwen2.5-
14B

DeepSeek-
R1-8B

LLaMA3.1-
8B

Ministra
l-8B

LLaMA2-7B

Qwen2.5-
7B

0

50

100

A
cc

ur
ac

y,
%

Random Guessing

NFL

Figure 2: The performance of various language models on events reasoning indicates that open-weights models, such
as Qwen2.5 72B (Yang et al., 2024), achieve comparable or even superior results to proprietary models like GPT-4o
(API version 2024-05-13) (Achiam et al., 2023), particularly reasoning-focused models such as DeepSeek-R1-distill
32B (DeepSeek-AI, 2025), which significantly outperforms others. Additionally, Chain-of-Though (CoT) prompting
further enhances reasoning performance. Note that open-weight models are ordered by size.

The longer reasoning process with CoT, however,
also increases the likelihood of LLMs failing to
return answers in required format. For example,
GPT-4o achieves an 11% improvement in accuracy
but increases instruction-following failures from
0 to 17 in 400 test samples. In contrast, some
models instruction following benefits from CoT
prompting. For Phi-3.5 14B-Instruct, the failures
rapidly decrease from 359 to 45, which may be at-
tributed to the instruction-tuning process. Adding
CoT prompting improves DeepSeek-R1 32B accu-
racy by 9% while maintaining a 0% failure rate,
demonstrating stability in instruction following.
The overall instruction following failure rate in-
creased by 0.6% after adding CoT prompting. In
our CoT prompt, we provide a example with reason-
ing process to induce LMs (Details are in Figure 8).
We acknowledge the potential for additional CoT
prompt optimization, but we do not further explore
this due to computational constraints.

4.2 Impact of Context

In different applications, the available context that
LLMs can access varies. In addition to the base-
line setting, where only the real-valued time series
data is provided, we also evaluate LLMs’ perfor-
mance when different reasoning-relevant contexts
are made available or modified. For example, in
basketball-related tasks, if the score is provided at
each step, a proficient reasoner should use the score

information to eliminate inconsistent event options,
thereby improving inference accuracy. To evaluate
the impact of real-valued time series in the reason-
ing process, we conduct a simple ablation study.
The impact of different conditions is summarized
in Table 2. We observe that when time series is
removed (i.e., w/o TS), all reasoning performances
drop to near-random guessing levels (i.e., accuracy
is around 25% ), indicating that LLMs are lever-
aging time series for event reasoning. In contrast,
providing LLMs with team names and real enti-
ties in events (e.g., team and player names) (w/
Name) notably improves reasoning, highlighting
the necessity of removing them when evaluating
reasoning (Fatemi et al., 2024).

Due to differences between the football and
basketball data, various conditions influence rea-
soning differently. For example, timestamps pro-
vide the most significant improvement in reason-
ing for football. Similarly, when providing the
score (TS+Score) or partial events, ei and ei+k−1

(TS+Event), reasoning performance also improves.
Given computational constraints, we only include
non-reasoning-oriented models that outperform
guessing in our experiments from now on.

To test whether LLMs can detect logically incon-
sistent information to aid reasoning, we shuffle the
order of ground-truth events to create negative op-
tions (labeled as Reorder). Due to the nature of pos-
session changes in football and basketball, event
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Tasks Language
Models

Baseline
(TS Only)

Available Context Ablations Options

TS+Time TS+Score TS+Event w/ Name w/o TS Reorder

B
as

ke
tb

al
lR

ea
so

ni
ng

GPT-4o(0513) 41.0% 39.0% 47.5% 39.0% 55.0% 28.5% 69.5%

GPT-4o(mini) 25.0% 24.5% 25.0% 26.0% 43.5% 21.0% 39.0%

Qwen2.5(72B) 36.5% 39.0% 43.5% 39.5% 41.0% 24.5% 66.0%

LLaMA3.1(70B) 40.5% 37.0% 50.5% 38.5% 51.0% 26.5% 47.5%

Qwen2.5(32B) 44.5% 43.5% 57.5% 43.5% 50.0% 22.5% 59.0%

Phi4(14B) 43.0% 35.0% 40.0% 36.0% 42.5% 25.0% 47.0%

Qwen2.5(14B) 27.5% 34.5% 33.0% 32.0% 48.0% 22.0% 44.5%

Avg. Impact of the Condition ↓ -0.6% ↑ 14.6% ↑ 0.0% ↑ 33.2% ↓ -32.2% ↑ 46.8%

Fo
ot

ba
ll

R
ea

so
ni

ng

GPT-4o(0513) 29.0% 75.5% 43.5% 53.0% 71.0% 18.5% 60.0%

GPT-4o(mini) 25.0% 52.0% 26.5% 35.5% 33.5% 24.5% 42.0%

Qwen2.5(72B) 30.5% 69.0% 42.0% 40.5% 52.0% 25.0% 54.0%

LLaMA3.1(70B) 26.5% 71.0% 47.5% 35.5% 65.5% 20.5% 46.0%

Qwen2.5(32B) 33.0% 74.5% 43.5% 46.0% 40.5% 27.5% 43.5%

Phi4(14B) 29.5% 46.5% 36.0% 38.5% 43.5% 25.0% 28.5%

Qwen2.5(14B) 28.5% 55.5% 28.5% 34.5% 63.5% 25.5% 33.0%

Avg. Impact of the Condition ↑ 120.1% ↑ 32.4% ↑ 40.4% ↑ 84.2% ↓ -17.3% ↑ 52.8%

Table 2: LLMs’ event reasoning accuracy (%) under various conditions based on the baseline (i.e., providing
only time series). We provide each model with 200 questions for each condition (N = 200). Red highlights the
best-performing model under a given condition, while Blue represents the second-best.

sequences follow sequential constraints. When log-
ical inconsistencies are introduced in the events,
LLMs with reasoning capabilities should be able to
use this information to eliminate negative options.

4.3 Number of Events

Increasing the number of events in the reasoning
process has two potential effects. On one hand,
a competent reasoner should leverage the addi-
tional information to identify logical inconsisten-
cies, such as contradictions between events and
corresponding win probability changes. On the
other hand, as the reasoning length increases, the
likelihood of errors also rises. A longer reasoning
process does not necessarily lead to more accu-
rate results (Wei et al., 2022). A capable LLM
should ignore any superfluous information in the
additional events, and benefit from any additional
information.

To study the effect of event quantity, we fol-
low the setup in Section 3.2 and design questions
with an increasing number of events. The results,
summarized in Figure 3, reveal an interesting pat-
tern: the impact of event quantity varies across dif-
ferent datasets. When reasoning about basketball
events, LLMs generally perform slightly worse as

the number of events increases; for football events,
however, LLM performance improves. This dis-
crepancy may stem from fundamental differences
between the two sports. In a football game, be-
cause teams alternate possessions that comprise
multiple correlated plays, or events, making it eas-
ier to recognize and match patterns. In basketball,
each possession is typically connected to only one
event, and events are more independent, and most
events impact the score of the game directly. In
football, each possession involves many events (at
least one recorded for each down in football), but
most events do not impact the score of the game.
One insight is that the amount of useful information
is different across different domains.

4.4 Disparity of Data

Time series serve as an alternate modality for event
sequences. Consequently, when two time series
are similar, distinguishing the two corresponding
event sequences based on the time series alone
becomes challenging. To assess how the time series
similarity impacts LLMs’ reasoning, we control the
distance between the time series associated with
positive and negative options. We compute distance
D between time series using the Euclidean distance
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Figure 3: The reasoning performance of LLMs across
event sequences of various lengths. The figure includes
only models that consistently outperform the baseline.
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Figure 4: The performance of LLMs in distinguishing
events corresponding to time series (win probabilities)
with different levels of similarity. Time series similarity
decreases as x (i.e., time series distance) increases.

after z-score normalization:

D = ||norm(pwin)− norm(p
′
win)||l2

We bootstrap the pairwise distances between win
probabilities (i.e., pwin) of length 10 in our dataset
and normalize them to the range (0, 1). The re-
sults show that a large proportion of time series
pairs fall within the (0.4, 1) range, e.g., 90.6% for
NFL and 91.3% for NBA data (see Figure 6 in Ap-
pendix A.4 for details). Therefore, we divided the
distances into seven levels, starting from 0.4 with
an increment of 0.1 per level.

We follow the setup in Section 3.2, setting the
sequence length to 10 and evaluating each LM on
200 questions. We keep the ground-truth events
and question time series consistent across all levels.
The results are presented in Figure 4, showing a
slight upward trend in LLM performance as sim-
ilarity decreases. This is due to the inherent con-
sistency between time series and event sequences,
which LLMs are able to recognize.

4.5 Other Domains
In real-world open environments, time series data
usually coexist with related textual sequences, such
as the proportion of infectious diseases along-
side U.S. government influenza reports (Liu et al.,
2024a) or cryptocurrency prices alongside relevant

financial news (Li et al., 2024a). To evaluate the
generalizability of our approach, we extend our
evaluation to four other domains: trade (Import/-
Export, IMEX), health (influenza rates), and en-
ergy (gasoline prices) from Time-MMD (Liu et al.,
2024a), as well as cryptocurrency time series from
CryptoTrade (Li et al., 2024a). To prevent the ques-
tions from becoming too long, we use news titles
as events for cryptocurrency. We selected the “fac-
tual” field as the events occurring at each times-
tamp from Time-MMD. Liu et al. (2024a) extracted
these “factual” statements from news and reports
to describe real-world occurrences. Our question
follows the format in Section 3.2, with an event
sequence length of 10, corresponding to 10 trad-
ing days for Bitcoin data or 10 weeks of influenza
statistics in the U.S. health dataset.

We evaluate two settings: one where events con-
tain numerical information (i.e., Complete) and
another where all numerical values, such as dates
or real values (e.g., Bitcoin prices or trading vol-
umes), are replaced with symbols like α (i.e., Fil-
tered). Since numerical information provides cru-
cial context for reasoning, removing it degrades
performance. Table 3 summarizes the results. Even
after stripping numerical data, however, LLMs still
demonstrate moderate reasoning ability. GPT-4o,
for instance, consistently achieves over 50% ac-
curacy. Additionally, open-weights models such
as Qwen2.5 72B and reasoning-oriented models
like DeepSeek-R1 32B demonstrate comparable
performance to GPT-4o.

5 Conclusions

Data comprising time series real values paired with
event sequences occur in many important domains.
We introduce a dataset containing 1.7 million real-
valued time series paired with events and a method
for evaluating the ability of an LLM to reason about
events corresponding to real-valued time series
data. Our evaluation of 16 language models us-
ing this benchmark reveals that both open-weights
and proprietary models exhibit promising reason-
ing capabilities, with reasoning-focused models
such as DeepSeek-R1 32B outperforming larger
proprietary model such as GPT-4o.

6 Limitations and Ethical Considerations

Our dataset includes time series representing win
probabilities in sports, which serve as a effective
measurement of how events affect a team’s state
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LLMs →
Domains ↓

GPT-4o
(0513)

GPT-4o
(mini)

Qwen2.5
(72B)

LLaMA3.1
(70B)

Mixtral
(8x7B)

DeepSeek
(R1 32B)

Qwen2.5
(32B)

Mistral
(22B)

Phi4
(14B)

Qwen2.5
(14B)

DeepSeek
(R1 8B)

Crypto
(Bitcoin)

Complete 84% 58% 71% 49% 36% 62% 72% 28% 46% 51% 42%

Filtered
65%

↓22.6%
40%

↓31.0%
40%

↓43.7%
34%

↓30.6%
29%

↓19.4%
39%

↓37.1%
39%

↓45.8%
27%
↓3.6%

28%
↓39.1%

32%
↓37.3%

25%
↓40.5%

Trading
(IMEX)

Complete 91% 90% 90% 85% 52% 93% 86% 54% 75% 71% 78%

Filtered
50%

↓45.1%
35%

↓61.1%
51%

↓43.3%
36%

↓57.6%
21%

↓59.6%
47%

↓49.5%
45%

↓47.7%
27%

↓50.0%
29%

↓61.3%
31%

↓56.3%
22%

↓71.8%

Health
(Influenza)

Complete 62% 53% 77% 64% 34% 74% 60% 24% 52% 42% 48%

Filtered
33%

↓46.8%
26%

↓50.9%
34%

↓55.8%
27%

↓57.8%
25%

↓26.5%
37%

↓50.0%
32%

↓46.7%
23%
↓4.2%

30%
↓42.3%

33%
↓21.4%

25%
↓47.9%

Energy
(Gasoline)

Complete 97% 95% 96% 84% 63% 98% 90% 57% 89% 72% 79%

Filtered
52%

↓46.4%
40%

↓57.9%
48%

↓50.0%
46%

↓45.2%
28%

↓55.6%
49%

↓50.0%
45%

↓50.0%
24%

↓57.9%
43%

↓51.7%
37%

↓48.6%
29%

↓63.3%

Table 3: The number of correct event reasoning (through time series) made by LLMs across other domains among
testing samples (N = 100). Replacing numerical information in the option events—such as dates or prices—with
symbols like α (Filtered) results in a performance decline compared to retaining the original numerical information
(Complete). Red indicates the best model in this task, while Blue represents the second-best.

and have a clear relationship with events. Since it
is impossible to know the true underlying proba-
bility of the game outcome, these probabilities are
estimates of each team’s chances to win the game
produced by ESPN’s proprietary model, and not
the ground truth. Note that we focus on evaluat-
ing the performance of current models rather than
exploring how our data can be used for reasoning
model training, which we leave for future work.

We release all code and data necessary to
replicate our complete experiments at https://
github.com/BennyTMT/GAMETime. As we await
approval from the data provider, however, we may
not be able to release the final curated dataset. In
that case, we will provide the tools necessary to
replicate our data collection process.
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A Appendix

A Datasets and Language models
In this section, we introduce NBA and NFL event
and time series data through examples from sports
datasets. Additionally, we present the models we
evaluate and provide details on data from other
domains.

A.1 Events and Time Series in Sports
Figure 5 illustrates the time series and event se-
quences for basketball and football. When an event
favorable to Team A occurs, Team A’s win probabil-
ity typically increases. For example, in basketball,
this could be a successful score by Team A or a
turnover by Team B. In football, it could include
defensive plays and sacks by Team A, penalties
against Team B, or offensive success by Team A.
Conversely, unfavorable events lead to a decrease
in win probability.

A.2 Language Models and Setups
We have run our evaluation and experiments on
Nvidia A100 GPUs. The specific settings for
LLMs, as well as the packages used for data
processing, are provided in the repository§. We
evaluated a total of 16 models, including open-
weight models such as LLaMA3.1 (Dubey et al.,
2024), proprietary models like GPT4o (Achiam
et al., 2023), and reasoning-focused models such
as DeepSeek-R1 (DeepSeek-AI, 2025). The full
list of tested models is as follows:

• GPT4o (Achiam et al., 2023): We test GPT4o-
0513, a high-performance variant of GPT-4
optimized for both general-purpose genera-
tion and specialized tasks, and GPT4o-mini,
a scaled-down version of GPT-4 designed for
resource-constrained environments.

• LLaMA (Dubey et al., 2024): We evaluate
instruction-tuned models of various parameter
sizes, including LLaMA3.1-Instruct 70B, 8B,
and LLaMA2-Instruct 7B.

• Qwen2.5 (Yang et al., 2024): Our experi-
ments included various instruction-tuned mod-
els such as Qwen2.5-Instruct 72B, 32B, 14B,
and 8B.

• Mixtral (Jiang et al., 2024a): We test the
8x7B Mixture of Experts (MoE) model, along
with Mixtral-Small 22B and Ministral-8B.

§All information and settings needed are available:https:
//github.com/BennyTMT/GAMETime

• Phi (Abdin et al., 2024): We included Phi-4
14B and Phi-3.5-Instruct 14B in our evalua-
tions.

• DeepSeek-R1 (DeepSeek-AI, 2025): Given
computational constraints, we still evaluated
reasoning-focused models such as DeepSeek-
R1 32B and 8B. These models are distilled
versions of DeepSeek-R1, using synthetic data
from R1 to finetune Qwen 32B and LLaMA
8B, respectively.

A.3 Open-world Domains
To validate whether LLMs can reason about events
through time series in other domains, we utilized
four open-world datasets from different fields:
Time-MMD (Liu et al., 2024a) (covering Trading,
US Health, and Energy) and CryptoTrade (Li et al.,
2024a) (Bitcoin prices). The details are outlined as
follows:

• Trading: Includes monthly U.S. International
Trade Balance data from January 1987 to
March 2024 (total length of 423 months), cov-
ering both import and export trade volumes.
The corresponding text consists of keyword
searches and institutional reports relevant to
that month, such as "U.S. International Trade
in Goods and Services".

• U.S. Health: Includes weekly Influenza Pa-
tients Proportion data from September 1997
to May 2024 (total length of 1 389 weeks).
The corresponding text sequences are sourced
from weekly keyword searches or reports
from the "CDC’s ILINet system".

• Energy: Contains weekly Gasoline Prices
(Dollars per Gallon) from April 1993 to April
2024 (total length of 1 479 weeks). The text
sequences are obtained through searches or re-
ports from institutions such as the U.S. Energy
Information Administration.

• Bitcoin: Contains daily Bitcoin price data
from January 1, 2023, to February 1, 2024
(time series length of 397), including open-
ing and closing prices, as well as the highest
and lowest prices of the day. The correspond-
ing text sequence is derived from authorita-
tive sources such as Bloomberg and Yahoo
Finance, filtered through keyword searches to
provide five of the most relevant news arti-
cles per day. We use their headlines as event
descriptions.
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At 26:41, Team A player lost ball turnover (Team B steals)

At 41:38, Team A player misses 10-foot jump shot

At 11:14, Team A player makes 24-foot 3 points jumper
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GOOD, Center-Player from team B, Holder-Player from team B.
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At 50:05, (Shotgun) Player from team B right tackle to CLV 34 
for 16 yards (Player from team A)

… …

NFL events and win probabilities

Figure 5: Examples of events and win probabilities in the NBA and NFL dataset. As the game progresses, ESPN
provides descriptions of on-field events along with the corresponding win probabilities for each team at that moment.
These probabilities can be considered a representation of the team’s current state.

Figure 6: The similarity distribution of time series in
sports data, with a time series length of 10. There is
a 91% probability that the distance between two time
series falls beyond 0.4.

A.4 Time Series Similarity

We bootstrapped 10k pairwise distances between
win probabilities of length 10 for both NBA and
NFL data. After normalizing the distances to the
range (0, 1), their distribution is shown in Figure 6,
where 91% of the distances fall beyond 0.4.

B Prompt Template

Figure 7 presents the complete template for NBA
and U.S Health event reasoning. For NFL data and
other domains, we adopt a similar template with
minor variations to accommodate domain-specific
characteristics. For instance, in cryptocurrency
data (Li et al., 2024a), we specify that the provided
time series represents daily "Closing Prices," while

in Energy data (Liu et al., 2024a), it corresponds to
the "Dollars per Gallon." (Gasoline). In addition,
considering the delayed impact of real-world news,
we included news events from the previous two
timestamp in the options. Figure 8 illustrates the
Chain-of-Thought (CoT) prompt for NBA event
reasoning, with the format up to the "options" sec-
tion remaining consistent across prompts. The CoT
prompt for NFL follows a similar structure with
slight modifications, such as ensuring that exam-
ple events and background knowledge align with
the context of American football. Note that we
acknowledge that the current CoT prompt still has
room for improvement, however, due to time and
computational constraints, we have not conducted
further explorations.

C Language Models Reasoning Process

To further understand how LLMs infer events from
time series, we analyzed their output. As shown
in Figure 9, this illustrates the reasoning process
of DeepSeek-R1 32B (DeepSeek-AI, 2025) for
NBA events (under a CoT prompt). The model
first interprets the trend in the time series and then
matches it with potential events—If the time se-
ries exhibits an upward trend, the model aligns it
with events favorable to Team A, and vice versa.
After sequentially analyzing all data points and
their corresponding events, LLMs synthesize their
step-by-step analyses to formulate a final reasoning
conclusion. High-performing models, such as GPT-
4o (Achiam et al., 2023), LLaMA3.1 70B (Dubey
et al., 2024), Qwen2.5 72B (Yang et al., 2024), and

13



even smaller language model, like Phi-4 (Abdin
et al., 2024) 14B, demonstrate similar reasoning
trajectories with CoT Prompting.

D Licensing
The code from our work is released under the
MIT License, while the dataset is made avail-
able under the Creative Commons Attribution-
NonCommercial-ShareAlike (CC BY-NC-SA) li-
cense. This allows anyone to use, distribute, and
modify the data for non-commercial purposes, pro-
vided they give proper attribution and share any
derivative works under the same license terms.
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Event Reasoning in Sports (Basketball)

You are an assistant for NBA basketball task. We will provide a series of consecutive
timestamps, win probabilities from a basketball game, though some intermediate
events will be missing. You will need to infer the likely events that occurred in the
missing intervals.
Below is provided timestamps, win probabilities (team A).
Step 1. TimeStamp1 WP1

Step 2. TimeStamp2 WP2

Step 3. TimeStamp3 WP3

...
Step k. TimeStampk WPk

Please select the correct sequence of events for steps 2, ..., k − 1 from the four
options below,
Here are the potential options:{{options}}
Here is the instruction for returning reasoning results in:{{format}}

Event Reasoning in Other Domains (U.S Health)

You are an assistant for an Influenza Patients task. We will provide a series of
consecutive timestamps along with the Influenza Patients Proportion. Additionally,
we will present four potential event (news) sequences that occurred during that
period, as well as from the previous two days. Your task is to identify and select the
correct sequence of events.
Below is provided date and Patients Proportion (%),
Step 1. Date1 x1
Step 2. Date2 x2
Step 3. Date3 x3
...
Step k. Datek xk
Please select the correct sequence of events for steps 2, ..., k − 1 from the four
options below,
Here are the potential options:{{options}}
Here is the instruction for returning reasoning results in:{{format}}

Figure 7: Template used to infer events through win probabilities in sports (e.g., basketball) and open-world
domains (e.g., U.S Health). For NFL data and other domains, we adopt a similar template with minor variations to
accommodate domain-specific characteristics. In addition, we use the format "**X**".
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Chain-of-Thought (CoT) Prompt Template for Basketball

You are an assistant for NBA basketball task ...
...
Here are the potential options:{{options}}

When reasoning, please refer to the following guidelines:
1. Analyze Team A’s 1st win probability change. For example:
- 0. 53.4%
- 1. 57.1%
- Team A’s win probability increased from 53.4% to 57.1%, indicating that an event
positive to Team A or negative to Team B has occurred.
2. Pause the win probability analysis for now and focus on the 1st event in options
a, b, c, d, and eliminate the inconsistent options or skip this step if unsure. Please
ignore very minor changes in win probabilities, such as 0.1%-0.4%. Base your
decision on significant changes.
3. Similarly, turn to analyze the change in the 2nd win probability and match it
with the 2nd event in the remaining options, and eliminate the inconsistent options
or skip this step if unsure.
4. Repeat the above process until all incorrect options are eliminated.

Consider the following information when reasoning, it will assist you in reasoning.

1. Positive events for Team A, such as "Player from Team A scores (e.g., makes a
layup or jump shot) or rebounds," or negative events for Team B, such as "Player
from Team B makes a mistake (e.g., misses a shot, commits a foul, or loses the
ball)."
2. Some events do not impact the win probability, such as a player entering the
game or a timeout.
3. Ignore very minor changes in win probabilities, such as 0.1%-0.4%.

Return your answer in the format **X**, where X only contains the chosen option,
such as **a**, **b**, **c**, or **d**.

Figure 8: Chain-of-Thought (CoT) Template used to infer events through win probabilities in sports (e.g., basketball).
For NFL data, we adopt a similar CoT Prompt with minor variations to accommodate domain-specific characteristics.
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Process of Event Reasoning via Time Series From DeepSeek-R1 32B

<think>
Alright, I’m trying to figure out which sequence of events corresponds to the given
win probabilities for Team A. The probabilities are as follows:
0. 31.9%
1. 43.9%
... ...
10. 56.7%
11. 50.9%

I need to analyze the changes in win probability after each event and match
them with the options provided (a, b, c, d). Let’s go through each step one by one.

Starting with the first change: from 31.9% to 43.9%. That’s an increase of
about 12%, which is significant. This suggests a positive event for Team A or a
negative event for Team B. Looking at the options, the first events are:
a. Player A makes a 3-pointer with an assist.
b. Player B makes a free throw 2 of 2.
c. Player B defensive rebound.
d. Timeout and coach’s challenge.

Option a’s first event is a 3-pointer made by Team A, which would increase
their win probability. Option b’s first event is a free throw made by Team B,
which would decrease Team A’s win probability, but the probability went up, so b
might be inconsistent.
... ...
So, option a seems the most likely for the first event because scoring a 3-pointer
would increase Team A’s chances.

....
The sixth change: from 43.0% to 49.3%, an increase of about 6.3%. Positive event
for Team A.
....
Putting it all together, option a seems to fit all the significant changes in win
probability. The other options don’t align as well with the increases and decreases
observed.
<think>
**a**

Figure 9: Reasoning process example from basketball data: In this case, the ground-truth answer is "a", which
aligns with the reasoning of DeepSeek-R1 32B (DeepSeek-AI, 2025). Other LLMs, such as GPT-4o (Achiam et al.,
2023), follow a similar reasoning pattern. To save space, some content has been omitted.
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